主成分分析方法及maab运用解释

主成分分析方法及maab运用解释
主成分分析方法及maab运用解释

主成分分析方法

在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法是可以实现的,这里介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。

一、主成分分析的基本原理

主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n 个地理样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的地理数据矩阵:

111212122212p p n n np x x x x x x X x x x ???=????L L L L L L

L (1)

如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为x 1,x 2,…,x p ,它们的综合指标——新变量指标为z 1,z 2,…,zm (m≤p)。则

11111221221122221122,,.........................................

,p p p p m m m mp p z l x l x l x z l x l x l x z l x l x l x =+++??=+++????=+++?L L L (2)

在(2)式中,系数l ij 由下列原则来决定:

(1)z i 与z j (i≠j ;i ,j=1,2,…,m)相互无关;

(2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m-1都不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者。

这样决定的新变量指标z 1,z 2,…,zm 分别称为原变量指标x 1,x 2,…,x p 的第一,第二,…,第m 主成分。其中,z 1在总方差中占的比例最大,z 2,z 3,…,z m 的方差依次递减。在实际问题的分析中,常挑选前几个最大的主成分,这样既减少了变量的数目,又抓住了主要矛盾,简化了变量之间的关系。

从以上分析可以看出,找主成分就是确定原来变量x j (j=1,2,…,p)在诸主成分z i (i=1,2,…,m)上的载荷l ij (i=1,2,…,m ;j=1,2,…,p),从数学上容易知道,它们分别是x 1,x 2,…,x p 的相关矩阵的m 个较大的特征值所对应的特征向量。

二、主成分分析的计算步骤

通过上述主成分分析的基本原理的介绍,我们可以把主成分分析计算步骤归纳如下:

(1) 计算相关系数矩阵

111212122212p p p p pp r r r r r r R r r r ???=????L L L

L L L L

(3) 在公式(3)中,r ij (i ,j=1,2,…,p)为原来变量x i 与x j 的相关系数,其计算公式为 因为R 是实对称矩阵(即r ij =r ji ),所以只需计算其上三角元素或下三角元素即可。

(2)计算特征值与特征向量

首先解特征方程|λI -R |=0求出特征值λi (i=1,2,…,p),并使其按大小顺序排列,即λ1≥λ2≥…,≥λp ≥0;然后分别求出对应于特征值λi 的特征向量e i (i=1,2,…,p)。

(2) 计算主成分贡献率及累计贡献率

主成分i z 贡献率:1/(1,2,,)p i k k r i p γ==∑L ,累计贡献率:11/p m k

k k k γγ==∑∑。

一般取累计贡献率达85-95%的特征值λ1,λ2,…,λm 所对应的第一,第二,……,第m (m≤p)个主成分。

(3) 计算主成分载荷

(,)(,1,2,,)

k i ki p z x i k p ==L (5)

由此可以进一步计算主成分得分: 1112121

22212m m n n nm z z z z z z Z z z z ???=????L L L

L L L L (6)

matlab:princomp 解释

主成分分析函数:

[coeff,score,letent]=princomp(x);

供献率:每一维数据对于区分全部数据的供献,供献率最大的显然是主成分,第二大的是次主成分......

[coef ,score ,latent ,t2]?=?princomp (x );

x :为要输入的n 维原始数据。带入这个matlab 自带函数,将会生成新的n 维加工后的数据(即score )。此数据与之前的n 维原始数据一一对应。

score:生成的n维加工后的数据存在score里。它是对原始数据进行的解析,进而在新的坐标系下获得的数据。他将这n维数据按供献率由大到小分列。(即在改变坐标系的景象下,又对n维数据排序)

latent:是一维列向量,每一个数据是对应score里响应维的供献率,因为数占领n维所以列向量有n个数据。由大到小分列(因为score也是按供献率由大到小分列)。

coef:是系数矩阵。经由过程cofe可以知道x是如何转换成score的。但这个转换不是单纯的转换,必须使用下列计算方法,即score(:,i)=coef*(x(:,i)-mean(x (:,i))),这样才能得到。

用你的原矩阵x*coeff(:,1:n)才是你要的的新数据,其中的n是你想降到多少维。

而n的取值取决于对特征值的累计贡献率的计算。

主成分分析法matlab实现,实例演示

利用Matlab 编程实现主成分分析 1.概述 Matlab 语言是当今国际上科学界 (尤其是自动控制领域) 最具影响力、也是 最有活力的软件。它起源于矩阵运算,并已经发展成一种高度集成的计算机语言。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、与其他程序和语言的便捷接口的功能。Matlab 语言在各国高校与研究单位起着重大的作用。主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。 1.1主成分分析计算步骤 ① 计算相关系数矩阵 ?? ? ???? ???? ?? ?=pp p p p p r r r r r r r r r R 2 122221 11211 (1) 在(3.5.3)式中,r ij (i ,j=1,2,…,p )为原变量的xi 与xj 之间的相关系数,其计算公式为 ∑∑∑===----= n k n k j kj i ki n k j kj i ki ij x x x x x x x x r 1 1 2 2 1 )() () )(( (2) 因为R 是实对称矩阵(即r ij =r ji ),所以只需计算上三角元素或下三角元素即可。

② 计算特征值与特征向量 首先解特征方程0=-R I λ,通常用雅可比法(Jacobi )求出特征值 ),,2,1(p i i =λ,并使其按大小顺序排列,即0,21≥≥≥≥p λλλ ;然后分别求 出对应于特征值i λ的特征向量),,2,1(p i e i =。这里要求i e =1,即112 =∑=p j ij e ,其 中ij e 表示向量i e 的第j 个分量。 ③ 计算主成分贡献率及累计贡献率 主成分i z 的贡献率为 ),,2,1(1 p i p k k i =∑=λ λ 累计贡献率为 ) ,,2,1(11 p i p k k i k k =∑∑==λ λ 一般取累计贡献率达85—95%的特征值m λλλ,,,21 所对应的第一、第二,…,第m (m ≤p )个主成分。 ④ 计算主成分载荷 其计算公式为 ) ,,2,1,(),(p j i e x z p l ij i j i ij ===λ (3)

主成分分析法运用

统计学简介及在实践中的应用 --以主成分分析法分析影响房价因素为例 姓名:阳飞 学号:2111601015 学院:经济管理学院 指导教师:吴东武 时间:二〇一七年一月六日

1 简介 统计语源最早出现于中世界拉丁语的Status,意思指各种现象的状态和状况。后来由这一语根组成意大利语Stato,有表示“国家”的概念,也含有国家结构和 国情知识的意思。根据这一语根,最早作为学名使用的“统计”的是在十八世纪德国政治学教授亨瓦尔(G.Achenwall)。他在1749年所著《近代欧洲各国国家学纲要》一书的绪言中,就把国家学名定义为“Statistika”(统计)这个词。原意是 指“国家显著事项的比较和记述”或“国势学”,认为统计是关于国家应注意事项的学问。自此以后,各国就相继沿用“统计”这个词,更把这个词译成各国的文字,其中,法国译为Statistique;意大利译为Statistica;英国译为Statistics;日本最初译为“政表”、“政算”、“国势”、“形势”等,直到1880年在太政官中设立了统计院,这个时候才确定以“统计”二字正名。 在我国近代史上首次出现是在1903年(清光绪廿九年)由钮永建、林卓南等翻译了四本由横山雅南所著的《统计讲义录》一书,这个时候才把“统计”这个词从日本传到我国。1907年(清光绪卅三年),由彭祖植编写的《统计学》在日本出版,同时在国内发行。这本书是我国最早的一本“统计学”书籍。自此以后“统计”一词就成了记述国家和社会状况的数量关系的总称。 关于“统计”这个词,后来又引申到了各种各样的组合,包括:统计工作、统计资料、统计科学。 统计工作是指利用科学的方法搜集、整理、分析和提供关于社会经济现象数量资料的工作的总称,它是统计的基础,也称统计实践或统计活动。是在一定统计理论指导下,采用科学的方法,搜集、整理、分析统计资料的一系列活动过程。

基于主成分分析法的供应商评价指标筛选

龙源期刊网 https://www.360docs.net/doc/4010751313.html, 基于主成分分析法的供应商评价指标筛选 作者:孙蒙蒙赵茂松纪赛赛 来源:《物流科技》2017年第10期 摘要:针对传统的供应商评价与选择方法的主观性过强的问题,文章利用相似性度量理 论中的x■统计量,在专家评分的基础上,构造出每两两指标之间的相关系数矩阵,再运用主成分分析法做因子分析,根据因子载荷矩阵得出主成分与原始指标的相关系数,再确定出阈值,剔除相关系数小于阈值的指标,从而实现指标的筛选。最后,以L公司的供应商为例,进行了实证研究。验证了该方法的实用性和有效性。 关键词:供应商评价与选择;皮尔逊相关系数;主成分分析;指标筛选 中图分类号:F272 文献标识码:A Abstract: In view of the fact that the traditional methods of supplier evaluation and selection are too subjective. Based on the chi-square statistic in similarity measure theory, the correlation coefficient matrix between indexes is constructed on the basis of expert scores, then the principal component analysis is used to do factor analysis. According to the factor load matrix, the correlation coefficient between the principal component and the original index is obtained, and then the threshold is determined, and eliminate the index of correlation coefficient which is smaller than the threshold. So as to filter the index. Finally, taking a company as an example, an empirical study is conducted. The practicability and effectiveness of the method are verified. Key words: supplier evaluation and selection;Pearson's correlation coefficient;principal component analysis; index sselection 0 引言 供应商作为供应链的源头,在供应链的竞争中起着至关重要的作用,所以供应商的评价与选择也成了供应链管理中的一个重要环节[1]。对供应商进行评价需要建立供应商评价指标体系,指标的选择与确定也是值得研究的一个重要课题。指标的选取要遵循科学全面、切实可行、具有可操作性、独立性强等原则。如果设置的评价指标没有太大的独立性,那么可能会出现多个指标只是评价的同一项,会出现很多无用功。这样会增加指标权重确定的难度。 指标的筛选方法也有很多种,如灰色关联分析法[2],极大不相关法[3],模糊数学方法[4],但是这些方法主观性太强,得出的结果差异也很大,在很多综合评价的问题中不能得到 应用。结果不尽人意。所以本文在专家评判的基础上,引进主成分分析法[5],由相关系数确 定主成分,再根据相似性度量理论用皮尔逊x■近似相关系数[6],有效地解决了指标之间的相关度的统计问题。本文最后以某公司为例进行了分析与验证。

SPSS进行主成分分析的步骤(图文)精编版

主成分分析的操作过程 原始数据如下(部分) 调用因子分析模块(Analyze―Dimension Reduction―Factor),将需要参与分析的各个原始变量放入变量框,如下图所示:

单击Descriptives按钮,打开Descriptives次对话框,勾选KMO and Bartlett’s test of sphericity选项(Initial solution选项为系统默认勾选的,保持默认即可),如下图所示,然后点击Continue按钮,回到主对话框: 其他的次对话框都保持不变(此时在Extract次对话框中,SPSS已经默认将提取公因子的方法设置为主成分分析法),在主对话框中点OK按钮,执行因子分析,得到的主要结果如下面几张表。 ①KMO和Bartlett球形检验结果:

KMO为0.635>0.6,说明数据适合做因子分析;Bartlett球形检验的显著性P值为 0.000<0.05,亦说明数据适合做因子分析。 ②公因子方差表,其展示了变量的共同度,Extraction下面各个共同度的值都大于0.5,说明提取的主成分对于原始变量的解释程度比较高。本表在主成分分析中用处不大,此处列出来仅供参考。 ③总方差分解表如下表。由下表可以看出,提取了特征值大于1的两个主成分,两个主成分的方差贡献率分别是55.449%和29.771%,累积方差贡献率是85.220%;两个特征值分别是3.327和1.786。 ④因子截荷矩阵如下:

根据数理统计的相关知识,主成分分析的变换矩阵亦即主成分载荷矩阵U 与因子载荷矩阵A 以及特征值λ的数学关系如下面这个公式: λi i i A U = 故可以由这二者通过计算变量来求得主成分载荷矩阵U 。 新建一个SPSS 数据文件,将因子载荷矩阵中的各个载荷值复制进去,如下图所示: 计算变量(Transform-Compute Variables )的公式分别如下二张图所示:

主成分分析法精华讲义及实例

主成分分析 类型:一种处理高维数据的方法。 降维思想:在实际问题的研究中,往往会涉及众多有关的变量。但是,变量太多不但会增加计算的复杂性,而且也会给合理地分析问题和解释问题带来困难。一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同,而在很多情况下,变量间有一定的相关性,从而使得这些变量所提供的信息在一定程度上有所重叠。因而人们希望对这些变量加以“改造”,用为数极少的互补相关的新变量来反映原变量所提供的绝大部分信息,通过对新变量的分析达到解决问题的目的。 一、总体主成分 1.1 定义 设 X 1,X 2,…,X p 为某实际问题所涉及的 p 个随机变量。记 X=(X 1,X 2,…,Xp)T ,其协方差矩阵为 ()[(())(())], T ij p p E X E X X E X σ?∑==-- 它是一个 p 阶非负定矩阵。设 1111112212221122221122T p p T p p T p p p p pp p Y l X l X l X l X Y l X l X l X l X Y l X l X l X l X ?==+++? ==+++?? ??==+++? (1) 则有 ()(),1,2,...,, (,)(,),1,2,...,. T T i i i i T T T i j i j i j V ar Y V ar l X l l i p C ov Y Y C ov l X l X l l j p ==∑===∑= (2) 第 i 个主成分: 一般地,在约束条件 1T i i l l =

及 (,)0,1,2,..., 1.T i k i k C ov Y Y l l k i =∑==- 下,求 l i 使 Var(Y i )达到最大,由此 l i 所确定的 T i i Y l X = 称为 X 1,X 2,…,X p 的第 i 个主成分。 1.2 总体主成分的计算 设 ∑是12(,,...,) T p X X X X =的协方差矩阵,∑的特征值及相应的正交单位化特 征向量分别为 120p λλλ≥≥≥≥ 及 12,,...,, p e e e 则 X 的第 i 个主成分为 1122,1,2,...,,T i i i i ip p Y e X e X e X e X i p ==+++= (3) 此时 (),1,2,...,,(,)0,. T i i i i T i k i k V ar Y e e i p C ov Y Y e e i k λ?=∑==??=∑=≠?? 1.3 总体主成分的性质 1.3.1 主成分的协方差矩阵及总方差 记 12(,,...,) T p Y Y Y Y = 为主成分向量,则 Y=P T X ,其中12(,,...,)p P e e e =,且 12()()(,,...,),T T p Cov Y Cov P X P P Diag λλλ==∑=Λ= 由此得主成分的总方差为 1 1 1 ()()()()(),p p p T T i i i i i i V ar Y tr P P tr P P tr V ar X λ ==== =∑=∑=∑= ∑∑∑ 即主成分分析是把 p 个原始变量 X 1,X 2,…,X p 的总方差

基于主成分法的学生成绩综合评价

现代经济信息 一、引言 在经济全球化和社会分工越来越细化的当今社会,人力资源已成为人类的第一宝贵资源。作为高素质人才主要培养基地的高等院校,如何科学地评价大学生的综合成绩成为当前各高校在全面推进素质教育过程中所面临的问题之一。传统的以多门课程总平均分排名的评价方法,比较笼统,为了尽可能全面、科学地反映被评价对象的情况,往往需要选取众多的指标构成评价体系,但是,过多的指标不仅会增加评价的工作量,还会因评价指标间的相关性造成评价信息相互重叠、相互干扰,从而难以客观地反映被评价对象的真实水平。本文认为可以使用主成分分析法解决此类问题。 二、主成分分析方法简介 主成分分析,是利用降维的方法,将多个指标转化为少数几个综合指标,去解释原始资料中的大部分变异的一种方法。在实际问题中,为了全面、系统地分析问题,通常必须考虑众多的影响因素,这些影响因素一般被称为指标或者变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。因此,把这些变量转化成彼此不相关的变量,然后从中选出比原始变量个数少、却能解释原始资料中大部分变异的几个新变量,即所谓的主成分,从而达到降维和简化问题分析的目的。 具体而言,主成分分析法是通过数学变换把给定的一组相关变量通过线性变换转成另一组不相关的变量,并按方差依次递减的顺序排列,找到第一、第二、…第 k个主成分,然后计算因子载荷矩阵,建立主成分模型,最后按因子得分及贡献率的大小,计算综合得分并进行排序。 三、高校学生成绩综合评价应用 (一)研究的对象及指标的选择 本文以贵州航天职业技术学院11级社区管理与服务班在2011—2012学年的13门主要课程考试成绩为研究对象,借助统计软件进行主成分分析,计算出主成分得分,并按主成分得分对学生进行了排名。班上共有28名同学,将这28名同学作为总体,13门主要课程具体为:大学英语Ⅰ(x1)、思想道德修养与法律基础(x2)、管理学原理(x3)、社区管理学(x4)、社会工作法律实务(x5)、应用统计学(x6)、体育(x7)、社会心理学(x8)、服务礼仪(x9)、高等数学(x10)、团队建设(x11)、大学英语Ⅱ(x12)、大学语文(x13),学生姓名用序号1、2、… 28表示,用xij 表示第i个同学在第j 门课上的得分,则x=(xij)28×l3,这样就得到了一 个28×13的原始数据矩阵。见表1。 (二)主成分分析过程 将原始数据标准化,用计算机求出标准化矩阵的相关系数矩阵;求相关矩阵的特征值,确定主成分个数。(见表2) 基于主成分分析法的学生成绩综合评价 李 畅 贵州航天职业技术学院 摘要:以贵州航天职业技术学院2011级社区管理与服务班在2011—2012学年的13门主要课程考试成绩为研究对象,借助统计软件进行主成分分析,计算出主成分得分,并按主成分得分对学生进行了排名。为使成绩评价更具科学性、客观性和合理性,还将平均分和综合分比对,进行综合评价与分析,为教学研究、学生管理及就业指导提供科学依据。 关键词:主成分分析法;学习成绩;评价 中图分类号:G455 文献标识码:A 文章编号:1001-828X(2013)07-0408-03 408

SPSS主成分分析操作步骤,详细的很啊^_^==

SPSS主成分分析操作步骤,详细的很啊^_^ SPSS在调用Factor Analyze过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,如需要得到标准化数据,则需调用Descriptives过程进行计算。 图表 3 相关系数矩阵

图表 4 方差分解主成分提取分析表 主成分分析在SPSS中的操作应用(3) 图表 5 初始因子载荷矩阵

从图表3可知GDP与工业增加值,第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系,与海关出口总额存在着显著关系。可见许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。 主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。注:特征值在某种程度上可以被看成是表示主成分影响力度大小的指标,如果特征值小于1,说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大,因此一般可以用特征值大于1作为纳入标准。通过图表4(方差分解主成分提取分析)可知,提取2个主成分,即m=2,从图表5(初始因子载荷矩阵)可知GDP、工业增加值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷,说明第一主成分基本反映了这些指标的信息;人均GDP和农业增加值指标在第二主成分上有较高载荷,说明第二主成分基本反映了人均GDP和农业增加值两个指标的信息。所以提取两个主成分是可以基本反映全部指标的信息,所以决定用两个新变量来代替原来的十个变量。但这两个新变量的表达还不能从输出窗口中直接得到,因为“Component Matrix”是指初始因子载荷矩阵,每一个载荷量表示主成分与对应变量的相关系数。用图表5(主成分载荷矩阵)中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数[2]。将初始因子载荷矩阵中的两列数据输入(可用复制粘贴的方法)到数据编辑窗口(为变量B1、B2),然后利用“TransformàCompute Variable”,在Compute Variable对话框中输入“A1=B1/SQR(7.22)” [注:第二主成分SQR后的括号中填1.235],即可得到特征向量A1(见图表6)。同理,可得到特征向量A2。将得到的特征向量与标准化后的数据相乘,然后就可以得出主成分表达式[注:因本例只是为了说明如何在SPSS进行主成分分析,故在此不对提取的主成分进行命名,有兴趣的读者可自行命名]: F 1=0.353ZX 1 +0.042ZX 2 -0.041ZX 3 +0.364ZX 4 +0.367ZX 5 +0.366ZX 6 +0.352ZX 7 +0.364ZX 8+0.298ZX 9 +0.355ZX 10

主成分分析法实例

1、主成分法: 用主成分法寻找公共因子的方法如下: 假定从相关阵出发求解主成分,设有p 个变量,则可找出p 个主成分。将所得的p 个主成分按由大到小的顺序排列,记为1Y ,2Y ,…,P Y , 则主成分与原始变量之间存在如下关系: 11111221221122221122....................p p p p p p p pp p Y X X X Y X X X Y X X X γγγγγγγγγ=+++?? =+++??? ?=+++? 式中,ij γ为随机向量X 的相关矩阵的特征值所对应的特征向量的分量,因为特征向量之间彼此正交,从X 到Y 得转换关系是可逆的,很容易得出由Y 到 X 得转换关系为: 11112121212122221122....................p p p p p p p pp p X Y Y Y X Y Y Y X Y Y Y γγγγγγγγγ=+++?? =+++??? ?=+++? 对上面每一等式只保留钱m 个主成分而把后面的部分用i ε代替,则上式变为: 111121211 2121222221122................. ...m m m m p p p mp m p X Y Y Y X Y Y Y X Y Y Y γγγεγγγεγγγε=++++??=++++????=++++? 上式在形式上已经与因子模型相一致,且i Y (i=1,2,…,m )之间相互独立,且i Y 与i ε之间相互独立,为了把i Y 转化成合适的公因子,现在要做的工作只是把主成分i Y 变为方差为1的变量。为完成此变换,必须将i Y 除以其标准差,由主成分分析的知识知其标准差即为特征根的平方根 i λ/i i i F Y λ=, 1122m m λγλγλγ,则式子变为:

主成分分析法的原理应用及计算步骤..

一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: ↓主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 ↓主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 二、基本原理 主成分分析是数学上对数据降维的一种方法。其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标。那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。 设F1表示原变量的第一个线性组合所形成的主成分指标,即 11112121...p p F a X a X a X =+++,由数学知识可知,每一个主成分所提取的信息量可 用其方差来度量,其方差Var(F1)越大,表示F1包含的信息越多。常常希望第一主成分F1所含的信息量最大,因此在所有的线性组合中选取的F1应该是X1,X2,…,XP 的所有线性组合中方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来p 个指标的信息,再考虑选取第二个主成分指标F2,为有效地反映原信息,F1已有的信息就不需要再出现在F2中,即F2与F1要保持独立、不相关,用数学语言表达就是其协方差Cov(F1, F2)=0,所以F2是与F1不

主成分分析计算方法和步骤

主成分分析计算方法和步骤: 在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。但由于各指标都是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。而主成分分析法可以很好地解决这一问题。 主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。它常被用来寻找和判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。 主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵的特征根和特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。 结合数据进行分析 本题分析的是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以看到许多的变量之间的相关性很高。如:招生人数与教职工人数之间具有较强的相关性,教育投入经费和招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了0.963,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。 表5-6 相关系数矩阵 本科院校 数招生人数教育经费投入 相关性师生比0.279 0.329 0.252 重点高校数0.345 0.204 0.310 教工人数0.963 0.954 0.896 本科院校数 1.000 0.938 0.881 招生人数0.938 1.000 0.893

主成分分析案例

姓名:XXX 学号:XXXXXXX 专业:XXXX 用SPSS19软件对下列数据进行主成分分析: ……

一、相关性 通过对数据进行双变量相关分析,得到相关系数矩阵,见表1。 表1 淡化浓海水自然蒸发影响因素的相关性 由表1可知: 辐照、风速、湿度、水温、气温、浓度六个因素都与蒸发速率在0.01水平上显著相关。 分析:各变量之间存在着明显的相关关系,若直接将其纳入分析可能会得到因多元共线性影响的错误结论,因此需要通过主成份分析将数据所携带的信息进行浓缩处理。 二、KMO和球形Bartlett检验 KMO和球形Bartlett检验是对主成分分析的适用性进行检验。 KMO检验可以检查各变量之间的偏相关性,取值范围是0~1。KMO的结果越接近1,表示变量之间的偏相关性越好,那么进行主成分分析的效果就会越好。实际分析时,KMO统计量大于0.7时,效果就比较理想;若当KMO统计量小于0.5时,就不适于选用主成分分析法。 Bartlett球形检验是用来判断相关矩阵是否为单位矩阵,在主成分分析中,若拒绝各变量独立的原假设,则说明可以做主成分分析,若不拒绝原假设,则说明这些变量可能独立提供一些信息,不适合做主成分分析。

由表2可知: 1、KMO=0.631<0.7,表明变量之间没有特别完美的信息的重叠度,主成分分析得到的模型又可能不是非常完善,但仍然值得实验。 2、显著性小于0.05,则应拒绝假设,即变量间具有较强的相关性。 三、公因子方差 公因子方差表示变量共同度。表示各变量中所携带的原始信息能被提取出的主成分所体现的程度。 由表3可知: 几乎所有变量共同度都达到了75%,可认为这几个提取出的主成分对各个变量的阐释能力比较强。 四、解释的总方差 解释的总方差给出了各因素的方差贡献率和累计贡献率。

主成分分析法的步骤和原理

(一)主成分分析法的基本思想 主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。[2] 采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。 (二)主成分分析法代数模型 假设用p个变量来描述研究对象,分别用X1,X2…X p来表示,这p个变量构成的p维随机向量为X=(X1,X2…X p)t。设随机向量X的均值为μ,协方差矩阵为Σ。对X进行线性变化,考虑原始变量的线性组合: Z=μX+μX+…μX Z=μX+μX+…μX ……………… Z=μX+μX+…μX 主成分是不相关的线性组合Z1,Z2……Z p,并且Z1是X,X…X的线性组合中方差最大者,Z2是与Z1不相关的线性组合中方差最大者,…,Z是与Z1,Z2……Z p-1都不相关的线性组合中方差最大者。 (三)主成分分析法基本步骤 第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始数据可得矩阵X=(x ij)m×p,其中x ij表示第i家上市公司的第j项财务指标数据。 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。 第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。其中,R ij(i,j=1,2,…,p)为原始变量X i与X j的相关系数。R为实对称矩阵

主成分分析法及其在SPSS中的操作

一、主成分分析基本原理 概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。 思路:一个研究对象,往往是多要素的复杂系统。变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。 原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵, 记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则 系数l ij 的确定原则: ①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关; ②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P , 的所有线性组合中方差最大者。 新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。 从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。 ?????? ? ???????=np n n p p x x x x x x x x x X 2 1 2222111211 ?? ??? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111............

主成分分析PCA(含有详细推导过程以及案例分析matlab版)

主成分分析法(PCA) 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 I. 主成分分析法(PCA)模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。 主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求 0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ??????? ??=np n n p p x x x x x x x x x X 21 222 21112 11()p x x x ,,21=

主成分分析法概念及例题

主成分分析法 [ 编辑 ] 什么是主成分分析法 主成分分析也称 主分量分析 ,旨在利用降维的思想,把多 指标 转化为少数几个综合指标。 在 统计学 中,主成分分析( principal components analysis,PCA )是一种简化数据集的技 术。它是一个线性变换。 这个变换把数据变换到一个新的坐标系统中, 使得任何数据投影的第一 大方差 在第一个坐标 (称为第一主成分 )上,第二大方差在第二个坐标 (第二主成分 )上,依次类推。 主成分分析经常用减少数据集的维数, 同时保持数据集的对 方差 贡献最大的特征。 这是通过保留 低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是, 这也不是一定的,要视具体应用而定。 [ 编辑 ] , PCA ) 又称: 主分量分析,主成分回归分析法 主成分分析( principal components analysis

主成分分析的基本思想 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [ 编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [ 编辑] 主成分分析的主要作用

基于主成分分析法的城市土地利用潜力评价

第33卷第1期湖南农业大学学报(自然科学版) Vol.33 No.1 2007年2月Journal of Hunan Agricultural University (Natural Sciences) Feb.2007 文章编号:1007-1032(2007)01-0113-04 基于主成分分析法的城市土地利用潜力评价 张晓玲,戴吉开,关 欣,文 倩 (湖南农业大学资源环境学院,湖南长沙 410128) 摘要:城市土地利用潜力水平与城市现实的集约水平密切相关,并且直接关系到城市未来的综合发展.分别从社会、经济、环境三个层面选取12个指标建立城市土地利用潜力评价体系,以中国20个城市为地域研究单元,对其进行全面测度和比较;运用主成分分析法,分析因子的贡献率和各因子载荷量,并进一步利用主成分分析的分类功能,根据所提取的主成分因子对评价单元进行潜力水平分类.结果表明,中国城市的土地利用潜力分为3个大类,6个细类,其中,北京、重庆归类为土地潜力利用水平较好;沈阳、武汉、太原、西安、昆明、天津、南京、哈尔滨、长春、大连、郑州、成都、济南、石家庄归类为土地利用潜力水平一般;青岛、杭州、广州、上海归类为土地利用潜力水平较差. 关键词:城市土地利用潜力水平;主成分分析法;分类 中图分类号:F293.2 文献标识码:A The classification of land use potentials in cities of China based on principal component analysis ZHANG Xiao-ling,DAI Ji-kai,GUAN Xin,WEN Qian (College of Resources and Environment,HNAU,Changsha 410128,China) Abstract:Urban land use potential level which is closely related to the intensive level is directly relevant with the comprehensive development of China cities.This paper develops an assessment system of the urban land use potentials (ASULUP) which includes 12 indicators settled in three layers:social,economical and environmental perspectives.The indexes of the ASULUP,including 20 cities in China mainland,are evaluated and compared thoroughly by developing the assessment system.The principal component analysis (PCA) is applied to rotate them by the method of varimax.Analyzing the component matrix,the principal components are extracted and named according to the comprehensive meaning of indexes.Moreover,utilizing the classification function of PCA method,the appraisement units are classified and ordered.The study shows that the ASULUP of the cities display with three kinds of levels.Beijing and Chongqing are divided into the better potential level;Shenyang,Wuhan,Taiyuan,Xi’an,Kunming,Tianjin,Nanjing,Haerbin,Changchun,Dalian,Zhengzhou,Chengdu,Jinan and Shijiazhuang are categorized into the common potential level; Qingdao,Hangzhou,Guangzhou and Shanghai are subscribed to the less potential level of China. Key words:urban land utilization potentials;principal component analysis;classification 城市土地集约利用水平是现有城市土地利用效率的表征,许多学者从不同角度和不同范围对城市土地集约利用进行了概念解释和界定[1-9],而城市土地利用潜力水平则可揭示城市未来发展水平,同时也是城市土地集约利用水平研究的一个重要方向.笔者认为,土地利用潜力的内涵可从提高城市土地经济利用效率、增加社会利用潜力和改善城市生态环境这三个角度来界定. 随着城市化的推进,经济的发展和人口的急剧增长,中国的城市规模呈现无序蔓延的趋势,因此定量研究城市土地的潜力水平是一个必然的趋势,到目前为止,诸多学者已经做了大量的研究,章其祥等[10]在分析南京市土地利用结构特征的基础上,从城市土地利用的强度潜力、结构潜力和经济潜力三方面分析并提出若干建议和措施;郭爱请等[11]以河北省为例,从宏观层面对省域范围内不同规模等级城市(地级市、县级市、县城)土地进行集约利用潜力评价,从全省城市土地利用的共性和整体性出发, 收稿日期:2006-11-13 基金项目:湖南农业大学人才科学基金(690502) 作者简介:张晓玲(1982-),女,江苏徐州人,硕士研究生.

相关文档
最新文档