甘肃省天水市秦安县2018-2019学年八年级(下)期末数学试卷含解析
2024届甘肃省天水市八年级数学第二学期期末学业水平测试试题含解析

2024届甘肃省天水市八年级数学第二学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.点P (2,﹣3)关于y 轴的对称点的坐标是( ) A .(2,3)B .(﹣2,﹣3)C .(﹣2,3)D .(﹣3,2)2.在同一坐标系中,函数y =kx 与y =3x ﹣k 的图象大致是( )A .B .C .D .3.若分式21x x +口1x x +,的运算结果为x (x≠0),则在“口”中添加的运算符号为( )A .+或xB .-或÷C .+或÷D .-或x4.一家鞋店在一段时间内销售了某种运动鞋50双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的( ) 尺码/cm 22 22.5 23 23.5 24 24.5 25 销售量/双 466 20455A .平均数B .中位数C .众数D .方差5.如图所示, ABC ∆和DCE ∆都是边长为2的等边三角形,点,,B C E 在同一条直线上,连接BD ,则BD 的长为( )A 3B .23C .33D .36.若方程233x m x x =---有增根,则m 的值为( )A .2B .4C .3D .-3 7.如图,中,,,平分交于,若,则的面积为( )A .B .C .D .8.如图,矩形ABCD 的对角线AC=8 cm ,∠AOD=120°,则AB 的长为( )A .cmB .4 cmC .cmD .2cm9.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( )A .1B .43C .32D .210.若m >n ,则下列各式错误的是( )A .2m <2nB .-3m <-3nC .m +1>n +1D .m -5>n -5二、填空题(每小题3分,共24分) 11.若反比例函数y=(2k-1)2321kk x --的图象在二、四象限,则k=________.12.如图,将正五边形 ABCDE 的 C 点固定,并按顺时针方向旋转一定的角度,可使得新五边形A′B′C′D′E′的 顶点 D′落在直线 BC 上,则旋转的角度是______________度.13.如图,正方形A 1B 1C 1O,A 2B 2C 2C 1,A 3B 3C 3C 2, ……,按如图的方式放置.点A 1,A 2,A 3,……和点C 1,C 2,C 3……分别在直线y =x +1和x 轴上,则点A 6的坐标是____________.14.如下图,用方向和距离表示火车站相对于仓库的位置是__________.15.已知菱形的两对角线长分别为6㎝和8㎝,则菱形的面积为______________㎝216.已知直线y =﹣33x +与x 轴、y 轴分别交于点A 、B ,在坐标轴上找点P ,使△ABP 为等腰三角形,则点P 的个数为_____个.17.命题“对角线相等的四边形是矩形”的逆命题是_____________.18.若点A (x 1,y 1)和点B (x 1+1,y2)都在一次函数y=2018x-2019的图象上,则y 1_______y 2(选择“>”、“<”或“=”填空).三、解答题(共66分)19.(10分)在平面直角坐标系xOy 中,一次函数y kx b =+的图象与直线2y x =平行,且经过点A(1,6). (1)求一次函数y kx b =+的解析式;(2)求一次函数y kx b =+的图象与坐标轴围成的三角形的面积.20.(6分)如图,在ABCD 中,对角线BD 平分ABC ∠,过点A 作AEBD ,交CD 的延长线于点E ,过点E 作EF BC ⊥,交BC 延长线于点F .(1)求证:四边形ABCD 是菱形; (2)若452ABC BC ∠︒=,=,求EF 的长.21.(6分)已知:如图,在▱ABCD 中,设BA =a ,BC =b . (1)填空:CA = (用a 、b 的式子表示)(2)在图中求作a +b .(不要求写出作法,只需写出结论即可)22.(8分)在平面直角坐标系xOy 中,点C 坐标为()6,0,以原点O 为顶点的四边形OABC 是平行四边形,将边OA 沿x 轴翻折得到线段'OA ,连结'A B 交线段OC 于点D .(1)如图1,当点A 在y 轴上,且其坐标为()0,2A -. ①求'A B 所在直线的函数表达式; ②求证:点D 为线段'A B 的中点;(2)如图2,当45AOC ∠=︒时,'OA ,BC 的延长线相交于点M ,试求ODBM的值.(直接写出答案,不必说明理由) 23.(8分)如图,AE BF ,AC 平分BAD ∠,交BF 于点C ,BD 平分ABC ∠,交AE 于点D ,连接CD .求证:四边形ABCD 是菱形.24.(8分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元. (1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买x个文具盒,10件奖品共需w元,求w与x的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?25.(10分)某公司经营甲、乙两种商品,两种商品的进价和售价情况如下表:进价(万元/件) 售价(万元/件)甲12 14.5乙8 10两种商品的进价和售价始终保持不变.现准备购进甲、乙两种商品共20件.设购进甲种商品x件,两种商品全部售出可获得利润为w万元.(1)w与x的函数关系式为__________________;(2)若购进两种商品所用的资金不多于200万元,则该公司最多购进多少合甲种商品?(3)在(2)的条件下,请你帮该公司设计一种进货方案,使得该公司获得最大利润,并求出最大利润是多少?26.(10分)如图,反比例函数y=kx(k>0)的图象与一次函数y=34x的图象交于A、B两点(点A在第一象限).(1)当点A的横坐标为4时.①求k的值;②根据反比例函数的图象,直接写出当﹣4<x<2(x≠0)时,y的取值范围;(2)点C为y轴正半轴上一点,∠ACB=90°,且△ACB的面积为10,求k的值.参考答案一、选择题(每小题3分,共30分)1、B【解题分析】试题分析:点P (2,-3)关于y 轴的对称点的坐标是(-2,-3).故选B . 考点:关于x 轴、y 轴对称的点的坐标. 2、B 【解题分析】分析:根据图象分别确定k 的取值范围,若有公共部分,则有可能;否则不可能.详解:根据图象知:第二个函数一次项系数为正数,故图象必过一、三象限,而y =kx 必过一三或二四象限, A. k <0,−k <0.解集没有公共部分,所以不可能,故此选项错误; B. k <0,−k >0.解集有公共部分,所以有可能,故此选项正确; C. 00k k ,>->.解集没有公共部分,所以不可能,故此选项错误; D. 正比例函数的图象不对,所以不可能,故此选项错误. 故选B.点睛:此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况: ①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限; ②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限; ③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限; ④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限. 3、C 【解题分析】分别将,,,+-⨯÷运算代入,根据分式的运算法则即可求出答案. 【题目详解】2(1)111x x x x x x x x ++==+++ 2(1)111x x x x x x x --=+++ 23211(1)x x x x x x ⋅=+++ 221111x x x x x x x x x+÷=⋅=+++ 综上,在“口”中添加的运算符号为+或÷【题目点拨】本题考查了分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 4、C 【解题分析】根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据. 【题目详解】解:∵众数体现数据的最集中的一点,这样可以确定进货的数量, ∴商家更应该关注鞋子尺码的众数. 故选C . 【题目点拨】本题考查统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 5、B 【解题分析】根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现90BDE ∠=︒,再进一步根据勾股定理进行求解. 【题目详解】 解:ABC ∆和DCE ∆都是边长为2的等边三角形,60DCE CDE ∴∠=∠=︒,2BC CD ==.BDC CBD ∴∠=∠且60BDC CBD DCE ∠+∠=∠=︒30BDC CBD ∴∠=∠=︒. 90BDE BDC CDE ∴∠=∠+∠=︒.BD ∴= 故选:B . 【题目点拨】此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理. 6、D 【解题分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x−1)=0,得到x =1,然后代入化为整式方程的方程算出m 的值.233x m x x =--- 方程两边都乘(x−1), 得x=2(x−1)-m , ∵原方程有增根,∴最简公分母(x−1)=0, 解得x =1,当x =1时,1=2(1−1)-m m =-1. 故选:D . 【题目点拨】本题考查了分式方程的增根,增根问题可按如下步骤进行: ①让最简公分母为0确定增根; ②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 7、A 【解题分析】 由平分可得,故BD=CD=2,利用30°的Rt可得AD=BD=1可得AC=AD+CD=3,根据勾股定理可得:AB= 计算即可得的面积.【题目详解】∵中,,∴∵平分∴ ∴∴BD=CD=2 ∵,,∴AD=BD=1 ∴AC=AD+CD=1+2=3 根据勾股定理可得:AB=∴故选:A 【题目点拨】本题考查了勾股定理及30°的直角三角形所对的直角边是斜边的一半及三角形的面积公式,掌握勾股定理及30°的直角三角形的性质是解题的关键. 8、B 【解题分析】利用对角线性质求出AO=4cm ,又根据∠AOD=120°,易知△ABO 为等边三角形,从而得到AB 的长度. 【题目详解】AC 、BD 为矩形ABCD 的对角线,所以AO=AC=4cm ,BO=BD=AC=4cm, 又因为∠AOD=120°,所以∠AOB=60°,所以三角形ABO 为等边三角形, 故AB=AO=4cm ,故选B. 【题目点拨】本题考查矩形的对角线性质,本题关键在于能够证明出三角形是等边三角形. 9、C 【解题分析】试题解析:设AG x = ,因为ADG A DG ∠=∠' ,90A DA G '∠=∠=︒ ,所以A G AG x '== ,在BA G ' 与BAD 中,90A BG ABDBA G A ''∠=∠⎧⎨∠=∠=︒⎩所以 BA G '∽BAD ,那么x BG AD BD = ,22345BD =+= ,则435xx,解得32x = ,故本题应选C. 10、A 【解题分析】按照不等式的性质逐项排除即可完成解答。
2018-2019学年甘肃省天水市八年级下学期期末考试数学试卷及答案解析

第 1 页 共 17 页2018-2019学年甘肃省天水市八年级下学期期末考试数学试卷一、选择题(每小题4分,共40分) 1.(4分)若分式2x−1无意义,则( ) A .x ≥1B .x ≠1C .x ≥﹣1D .x =12.(4分)如下图,平行四边形ABCD 的周长为40,△BOC 的周长比△AOB 的周长多10,则AB 长为( )A .20B .15C .10D .53.(4分)下列函数中,自变量x 的取值范围是x ≥3的是( ) A .y =1x−3B .y =x−3C .y =x ﹣3D .y =√x −34.(4分)在4月14日玉树发生的地震导致公路破坏,为抢修一段120米的公路,施工队每天比原来计划多修5米,结果提前4天通了汽车,问原计划每天修多少米?若设原计划每天修x 米,则所列方程正确的是( ) A .120x −120x+5=4 B .120x+5−120x =4 C .120x−5−120x=4D .120x−120x−5=45.(4分)下列有关四边形的命题中,是真命题的是( ) A .一组对边平行,另一组对边相等的四边形是平行四边形 B .对角线互相平分且互相垂直的四边形是菱形 C .对角线相等的四边形是矩形 D .一组邻边相等的四边形是正方形6.(4分)若点P (3,2m ﹣1)在第四象限,则m 的取值范围是( ) A .m >12B .m <12C .m ≥−12D .m ≤127.(4分)如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果∠BF A =30°,那么∠CEF 等于()。
甘肃省2019学年八年级下学期期末考试数学试卷【含答案及解析】

丁肃省2019学年八年级下学期期末考试数学试卷【含答案及解析】姓名____________ 班级________________ 分数___________、单选题1. 下列各式:I | •其中分式共有( )个5 T-3 2 x xA. 2B. 3C. 4D. 52. 下面平行四边形不具有的性质是( )A•对角线互相平分 B. 两组对边分别相等C.对角线相等D. 相邻两角互补3. 已知等腰三角形的两边长分别为 5 cm、2 cm,则该等腰三角形的周长是()A. 7 cmB. 9 cmC. 12 cm或者9 cmD. 12 cm4. 已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )—G J丨匚A. >- 1B. >1C. —3v:<- 1D. ‘ >—3二、选择题5. 下列各式从左到右的变形中,为因式分解的是( ).A. x (a—b) =ax—bxB. V' - 1 + T' = (JT-1 i(.v+1)-+-C. - - 1= (y+1) ( y —1)D. ax+by+c=x (a+b) +c三、单选题6.如图,口 ABC 的周长是22 cm ,A ABC 勺周长是17 cm ,贝V AC 的长为()7. 下列多项式中,可以用平方差公式分解因式的是( )A. .rtlB.匚:一:;C.- 4 D. -门 7四、选择题8.如下图,在四边形 ABCD 中,对角线AC BD 相交于点0,下列条件不能判定四边形 ABCD 为平行四边形的是( )五、单选题9.若关于x 的方程 -有增根,贝【J m 的值是()A. 3B. 2C. 1D.10.已知△ AB 的周长为1,连结△ AB 的三边中点构成第二个三角形, ?再连结第二个三角形的三边中点构成第三个三角形, 依此类推,第 2010个三角形的周长是( ) 1 1 1 1A. --------B. 2008C.D7轄Q六、填空题12.不等式 —L 的正整数解为:14.如果9 + 是一个完全平方式,那么 k 的值是 __________13.化简的结果为A. 5 cmB. 6 cmC. 7 cmD. 8 cm A.AB// CD AD// BC B.0A=0C0B=0DC.AD=BC AB// CDD.AB=CD , AD=BC11.分解因式:16. 一个多边形的每一个内角为 108 °,则这个多边形是17.如图,等腰△ AB (中 ,AB=AC, Z DBC=15° ,AB 垂直平分线 MN 交AC 于点D,则/A 的度七、解答题21.如图,方格纸中的每个小方格都是边长为 1个单位长度的正方形,每个小正方形的顶点叫格点,△ ABC 的顶点均在格点上,请按要求完成下列步骤:AD=BD AE=E( BC=6 贝V DE=边形.的值为零,则人-x-319.如图,在厶 AB 中, Z B=90 ° ,AB=3 AC=5将厶 AB 折叠,使点 C 与点A 重合,折 痕为DE 则厶ABE 的周长为 _______________ 。
2018-2019学年度八年级下学期期末考试数学试卷(最新整理)

绝密★启用前2018-2019学年度八年级下学期期末考试数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列图形是中心对称图形的是( )A.B.C.D.2.如果a>b,那么下列各式中正确的是( )A.a﹣2<b﹣2B.<C.﹣2a<﹣2b D.﹣a>﹣b3.下列运算正确的是( )A.(x﹣y)2=x2﹣y2B.x3•x4=x12C.=x3D.(x3y2)2=x6y44.等腰三角形一腰上的高与另一腰的夹角是50°,则这个等腰三角形的底角为( )A.70°B.20°C.70°或20°D.40°或140°5.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2=( )A.4B.6C.8D.不能确定6.某密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:中,爱,我,二,游,美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )A.我爱美B.二中游C.爱我二中D.美我二中二.填空题(本大题共6小题,每小题3分,共18分)7.分解因式:x2﹣4x= .8.用不等式表示“a与6的差不是正数”: .9.在Rt△ABC中,∠C=90°,∠A=30°,AB=6,则AC= .10.在平面直角坐标系中,点(3,4)关于原点对称的点的坐标是 .11.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于 .12.如图,在平面直角坐标系中,O为坐标原点,四边形ABCD是平行四边形,点A、B、C 的坐标分别为A(0,4),B(﹣2,0),C(8,0),点E是BC的中点,点P为线段AD 上的动点,若△BEP是以BE为腰的等腰三角形,则点P的坐标为 .三.(本大题共5小题,每小题6分,共30分)13.(1)化简:(a+2)2﹣2(2a﹣1);(2)解不等式组:.14.解不等式,并把解集表示在数轴上.15.先化简:()÷然后选取一个你认为合适的数作为x的值代入求值.16.如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线.17.如图,已知∠BAC=60°,D是BC边上一点,AD=CD,∠ADB=80°,求∠B的度数.四.(本大题共3小题,每小题8分,共24分)18.已知关于x的分式方程+=(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m的值.19.如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.20.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,DC=BF,以BF 为边在△ABC外作等边三角形BEF.(1)求证:四边形EFCD是平行四边形.(2)△ABC的边长是6,当点D是BC三等分点时,直接写出平行四边形CDEF的面积.五.(本大题共2小题,每小题9分,共18分)21.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?22.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.请解决下列问题:(1)已知点M,N是线段AB的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN的长;(2)如图2,若点F、M、N、G分别是AB、AD、AE、AC边上的中点,点D,E是线段BC的勾股分割点,且EC>DE>BD,求证:点M,N是线段FG的勾股分割点.六.(本大题12题)23.小明同学在学习过程中得出两个结论,结论1:直角三角形中,60°内角的两夹边长是2倍的关系.结论2:在一个三角形中,如果60°内角的两夹边长是2倍的关系,那么这个三角形是直角三角形.(1)上述结论1 .(填写“正确”或“不正确”)(2)上述结论2正确吗?如果你认为正确,请你给出证明.如果你认为不正确,请你给出反例.(3)等边三角形ABC边长为4,点P、Q分别从A、B出发,分别沿边AB、BC运动,速度是每秒1个单位长度,当P点到达B点时停止运动.请问当运动时间是多少秒时△BPQ是直角三角形?请你给出解题过程.2018-2019学年度八年级下学期期末考试数学试卷参考答案一.选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.B.2.C.3.D.4.C.5.C.6.C.二.填空题(本大题共6小题,每小题3分,共18分)7. x(x﹣4) .8. a﹣6≤0 .9.310. (﹣3,﹣4) .11. 72° .12. (1,4)或(6,4)或(0,4) .三.(本大题共5小题,每小题6分,共30分)13.解:(1)原式=a2+4a+4﹣4a+2=a2+6;(2),由①得:x≥1,由②得:x<3,则不等式组的解集为1≤x<3.14.解:去分母得:x+5﹣2<3x+2,移项合并得:﹣2x<﹣1,解得:x>,15.解:原式=(﹣)÷=•=,∵x≠±1且x≠0,∴取x=4,则原式=1.16.解:(1)连接AC,AC即为∠DAE的平分线;如图1所示:(2)①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;如图2所示.17.解:∵∠ADB=80°又∵AD=CD∴∠DAC=∠C=40°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣60°﹣40°=80°.四.(本大题共3小题,每小题8分,共24分)18.解:分式方程去分母得:2(x+2)+mx=x﹣1,整理得:(m+1)x=﹣5.(1)当m=4时,(4+1)x=5,解得:x=﹣1经检验:x=﹣1是原方程的解.(2)∵分式方程无解,∴m+1=0或(x+2)(x﹣1)=0,当m+1=0时,m=﹣1;当(x+2)(x﹣1)=0时,x=﹣2或x=1.当x=﹣2时m=;当x=1是m=﹣6,∴m=﹣1或﹣6或时该分式方程无解.19.证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.20.证明:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵∠EFB=60°,∴∠ABC=∠EFB,∴EF∥DC(内错角相等,两直线平行),∵DC=EF,∴四边形EFCD是平行四边形;(2)解:过E作EH⊥BC交CB的延长线于H,∵△ABC和△BEF是等边三角形,∴∠ABC=∠EBF=60°,∴∠EBH=180°﹣60°﹣60°=60°,∴EH=BE=BF=CD,∵点D是BC三等分点,∴当CD=BC=2时,平行四边形CDEF的面积=2×=2,当CD=BC=4时,平行四边形CDEF的面积=4×2=8,综上所述,平行四边形CDEF的面积为2或8.五.(本大题共2小题,每小题9分,共18分)21.解:(1)设文学书的单价为每本x元,则科普书的单价为每本(x+4)元,依题意得:,解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后还能购进y本科普书.依题意得550×8+12y≤10000,解得,∵y为整数,∴y的最大值为466∴至多还能购进466本科普书.22.(1)解∵点M,N是线段AB的勾股分割点,且BN>MN>AM,AM=2,MN=3,∴BN2=MN2+AM2=9+4=13,∴BN=;(2)证明∵点F、M、N、G分别是AB、AD、AE、AC边上的中点,∴FM、MN、NG分别是△ABD、△ADE、△AEC的中位线,∴BD=2FM,DE=2MN,EC=2NG,∵点D,E是线段BC的勾股分割点,且EC>DE>BD,∴EC2=DE2+DB2,∴4NG2=4MN2+4FM2,∴NG2=MN2+FM2,∴点M,N是线段FG的勾股分割点.六.(本大题12分)23.解:(1)上述结论1正确,如图1,∵∠C=90°,∠B=60°,∴∠A=30°,∴BC=AB,∴60°内角的两夹边长是2倍的关系;故答案为:正确;(2)正确,如图2,取AB的中点D,连接CD,∴BD=AD=AB,∵BC=AB,∴BC=BD,∵∠B=60°,∴△BDC是等边三角形,∴∠BCD=∠BDC=60°,∵AD=CD,∴∠A=∠ACD=BDC=30°,∴∠ACB=90°,∴在一个三角形中,如果60°内角的两夹边长是2倍的关系,那么这个三角形是直角三角形正确.(3)分两种情况考虑:(i)当PQ⊥BC时,如图3所示:由题意可得:AP=BQ=t,BP=4﹣t,∵△ABC为等边三角形,∴∠B=60°,在Rt△BPQ中,cos60°==,即=,解得:t=秒;(ii)当QP⊥AB时,如图4所示:由题意可得:AP=BQ=t,BP=4﹣t,∵△ABC为等边三角形,∴∠B=60°,在Rt△BPQ中,cos60°==,即=,解得:t=秒,综上所述,t的值是秒或秒.。
人教版2018-2019学年八年级数学第二学期期末考试试卷及答案

2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确答案)1.当x=1时,下列式子无意义的是()A.B.C.D.2.“a是正数”用不等式表示为()A.a≤0B.a≥0C.a<0D.a>03.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.2,4,5B.6,8,11C.5,12,12D.1,1,4.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C 的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°5.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+16.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE7.不等式组的解集是x>4,那么m的取值范围是()A.m≤4B.m<4C.m≥4D.m>48.若关于x的分式方程﹣1=无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.59.如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为()A.14B.16C.18D.2010.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC=16,则MD等于()A.4B.3C.2D.1二、填空题(本大题共8个小题,每小题3分,共24分)11.分解因式:2m3﹣8m=.12.若一个正多边形的每个外角都等于36°,则它的内角和是.13.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=.14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了cm.15.颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面包.16.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,垂足为A,交CD于D,若AD=8,则点P到BC的距离是.17.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖元.18.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为.三、(本大题共3个题,其中第19题8分,第20,21题各5分,共18分)19.(1)解不等式组:,并把解集在数轴上表示出来.(2)解方程:=﹣1.20.先化简,再求值:(1+)÷,其中x=﹣5.21.如图,在△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若DC=4,∠DAC=30°,求AD的长.四、(本大题共2个小题,每小题5分,共10分)22.利用对称性可以设计美丽的图案,在边长为1的正方形方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出上面所作的图形连同原四边形绕点O按顺时针方向旋转90°后的图形;(2)完成上述设计后,求出整个图案的面积.23.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?五、(本大题共2个小题,第24题5分,第25题6分,共11分)24.如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.25.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以下信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.六、(本大题共1个小题,共7分)26.如图,在▱ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确答案)1.当x=1时,下列式子无意义的是()A.B.C.D.【分析】分式无意义则分式的分母为0,据此求得x的值即可.【解答】解:A、x=0分式无意义,不符合题意;B、x=﹣1分式无意义,不符合题意;C、x=1分式无意义,符合题意;D、x取任何实数式子有意义,不符合题意.故选:C.【点评】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.“a是正数”用不等式表示为()A.a≤0B.a≥0C.a<0D.a>0【分析】正数即“>0”可得答案.【解答】解:“a是正数”用不等式表示为a>0,故选:D.【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.3.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.2,4,5B.6,8,11C.5,12,12D.1,1,【分析】根据勾股定理的逆定理,只需验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、∵22+42=20≠52,∴不能构成直角三角形,故本选项不符合题意;B、∵62+82=100≠112,∴不能构成直角三角形,故本选项不符合题意;C、∵52+122=169≠122,∴不能构成直角三角形,故本选项不符合题意;D、∵12+12=2=()2,∴能够构成直角三角形,故本选项符合题意.故选:D.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C 的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°【分析】根据旋转角的定义,旋转角就是∠ABC,根据等腰三角形的旋转求出∠ABC即可.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣∠A)=×140°=70°,∵△A′BC′是由△ABC旋转得到,∴旋转角为∠ABC=70°.故选:B.【点评】本题考查旋转的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键的理解旋转角的定义,属于中考常考题型.5.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+1【分析】对各多项式进行因式分解即可求出答案.【解答】解:(A)原式=(x+2)(x﹣2),结果中含有因式(x﹣2);(B)原式=x(x2﹣4x﹣12)=x(x+2)(x﹣6),结果中不含有因式(x﹣2);(C)原式=x(x﹣2),结果中含有因式(x﹣2);(D)原式=[(x﹣3)+1]2=(x﹣2)2,结果中含有因式(x﹣2);故选:B.【点评】本题考查因式分解,解题的关键是熟练运用因式分解的方法,本题属于基础题型.6.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE【分析】把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.【解答】解:添加:∠F=∠CDE,理由:∵∠F=∠CDE,∴CD∥AB,在△DEC与△FEB中,,∴△DEC≌△FEB(AAS),∴DC=BF,∵AB=BF,∴DC=AB,∴四边形ABCD为平行四边形,故选:D.【点评】本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.7.不等式组的解集是x>4,那么m的取值范围是()A.m≤4B.m<4C.m≥4D.m>4【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了结合不等式组的解集即可得答案.【解答】解:解不等式(x+2)﹣3>0,得:x>4,由不等式组的解集为x>4知m≤4,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键8.若关于x的分式方程﹣1=无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5【分析】方程无解即是分母为0,由此可得:原分式方程中的分母为0:x=0或x=3,解方程后x=﹣,分母2m+1=0,解出即可.【解答】解:﹣1=,方程两边都乘以x(x﹣3),得:x(x+2m)﹣x(x﹣3)=2(x﹣3),整理,得:(2m+1)x=﹣6,x=﹣,∵原分式方程无解,∴2m+1=0或﹣=3或﹣=0,解得:x=﹣0.5或x=﹣1.5,故选:D.【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型,分式方程无解,则分母为0.9.如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为()A.14B.16C.18D.20【分析】由△DBC≌△EBA,可知AE=DC,推出AE+AD+DE=AD+CD+ED=AC+DE即可解决问题;【解答】解:∵△ABC,△DBE都是等边三角形,∴BC=BA,BD=BE,∠ABC=∠EBD,∴∠DBC=∠EBA,∴△DBC≌△EBA,∴AE=DC,∴AE+AD+DE=AD+CD+ED=AC+DE,∵AC=BC=10,DE=BD=8,∴△AED的周长为18,故选:C.【点评】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题时根据是正确寻找全等三角形解决问题,属于中考常考题型.10.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC=16,则MD等于()A.4B.3C.2D.1【分析】延长BD交AC于H,根据等腰三角形的性质得到BD=DH,AH=AB=12,根据三角形中位线定理计算即可.【解答】解:延长BD交AC于H,∵AD平分∠BAC,BD⊥AD,∴BD=DH,AH=AB=12,∴HC=AC﹣AH=4,∵M是BC中点,BD=DH,∴MD=CH=2,故选:C.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题(本大题共8个小题,每小题3分,共24分)11.分解因式:2m3﹣8m=2m(m+2)(m﹣2).【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.若一个正多边形的每个外角都等于36°,则它的内角和是1440°.【分析】先根据多边形的外角和求多边形的边数,再根据多边形的内角和公式求出即可.【解答】解:∵一个正多边形的每个外角都等于36°,∴这个多边形的边数为=10,∴这个多边形的内角和=(10﹣2)×180°=1440°,故答案为:1440°.【点评】本题考查了多边形的内角与外角,能正确求出多边形的边数是解此题的关键,注意:多边形的外角和等于360°,边数为n的多边形的内角和=(n﹣2)×180°.13.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=﹣3.【分析】根据向右平移横坐标加,y轴上的点的横坐标为0列方程求解即可.【解答】解:∵点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,∴m+2+1=0,解得m=﹣3.故答案为:﹣3.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了2cm.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.15.颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面12包.【分析】设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据总价=单价×数量结合总价不超过20元,即可得出关于x的一元一次不等式,解之取其中的最大整数是解题的关键.【解答】解:设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据题意得:0.7x+0.5(35﹣x)≤20,解得:x≤12.5,∵x为整数,∴x≤12.故答案为:12.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.16.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,垂足为A,交CD于D,若AD=8,则点P到BC的距离是4.【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD ⊥CD ,∵BP 和CP 分别平分∠ABC 和∠DCB ,∴PA =PE ,PD =PE ,∴PE =PA =PD ,∵PA +PD =AD =8,∴PA =PD =4,∴PE =4.故答案为:4【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.17.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖 2 元.【分析】设平时每个粽子卖x 元,根据题意列出分式方程,解之并检验得出结论.【解答】解:设平时每个粽子卖x 元.根据题意得:解得:x =2经检验x =2是分式方程的解故答案为2元【点评】本题考查了分式方程的应用,解题的关键是找准等量关系,列出分式方程.18.如图,在△ABC 中,∠BAC =90°,AB =4,AC =6,点D 、E 分别是BC 、AD 的中点,AF ∥BC 交CE 的延长线于F .则四边形AFBD 的面积为 12 .【分析】由于AF ∥BC ,从而易证△AEF ≌△DEC (AAS ),所以AF =CD ,从而可证四边形AFBD 是平行四边形,所以S 四边形AFBD =2S △ABD ,又因为BD =DC ,所以S △ABC =2S △ABD ,所以S 四边形AFBD =S △ABC ,从而求出答案.【解答】解:∵AF ∥BC ,∴∠AFC =∠FCD ,在△AEF 与△DEC 中,∴△AEF ≌△DEC (AAS ).∴AF =DC ,∵BD =DC ,∴AF =BD ,∴四边形AFBD 是平行四边形,∴S 四边形AFBD =2S △ABD ,又∵BD =DC ,∴S △ABC =2S △ABD ,∴S 四边形AFBD =S △ABC ,∵∠BAC =90°,AB =4,AC =6,∴S △ABC =AB •AC =×4×6=12,∴S 四边形AFBD =12.故答案为:12【点评】本题考查平行四边形的性质与判定,涉及全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识,综合程度较高.三、(本大题共3个题,其中第19题8分,第20,21题各5分,共18分)19.(1)解不等式组:,并把解集在数轴上表示出来.(2)解方程:=﹣1.【分析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:(1)由①得:x <﹣1,由②得:x ≤2,∴不等式组的解集为x<﹣1,解集表示在数轴上为:;(2)分式方程去分母得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.20.先化简,再求值:(1+)÷,其中x=﹣5.【分析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=•=•=,当x=﹣5时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.21.如图,在△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若DC=4,∠DAC=30°,求AD的长.【分析】(1)根据角平分线的性质得到DE=DF,证明Rt△BDE≌Rt△CDF,根据全等三角形的性质得到∠B=∠C,根据等腰三角形的判定定理证明;(2)根据直角三角形的性质求出AC,根据勾股定理计算即可.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF,∴∠B=∠C,∴AB=AC;(2)解:∵AD平分∠BAC,BD=CD,∴AD⊥BC,∵∠DAC=30°,∴AC=2DC=8,∴AD==4.【点评】本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.四、(本大题共2个小题,每小题5分,共10分)22.利用对称性可以设计美丽的图案,在边长为1的正方形方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出上面所作的图形连同原四边形绕点O按顺时针方向旋转90°后的图形;(2)完成上述设计后,求出整个图案的面积.【分析】(1)直接利用旋转变换以及轴对称变换得出对应点位置进而得出答案.【解答】解:(1)如图所示:(2)一个四边形面积为:×5×1×2=5,整个图案面积为:5×4=20.【点评】此题主要考查了利用旋转设计图案以及利用轴对称设计图案,正确得出对应点位置是解题关键.23.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【分析】(1)可设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【解答】解:(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:1.5×=,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路=15﹣1.5a(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.【点评】本题主要考查分式方程及一元一次不等式的应用,找出题目中的等量(或不等)关系是解题的关键,注意分式方程需要检验.五、(本大题共2个小题,第24题5分,第25题6分,共11分)24.如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可.(2)想办法证明OM=MF=ME即可解决问题.【解答】解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵OB⊥OC,∴∠BOC=90°,∵∠EOM+∠COM=90°,∠EOM+∠OCB=90°,∴∠COM=∠OCB,∵EF∥BC,∴∠OFE=∠OCB,∴∠MOF=∠MFO,∴OM=MF,∵∠OEM+∠OFM=90°,∠EOM+∠MOF=90°,∴∠EOM=∠MEO,∴OM=EM,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.【点评】本题考查平行四边形的判定与性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG是平行四边形.25.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以下信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【点评】本题主要考查了一次函数的应用,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.六、(本大题共1个小题,共7分)26.如图,在▱ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.【分析】(1)由平行四边形的性质得出∠OAF=∠AOF,OA=OC,进而判断出△AOF≌△COE,即可得出结论;(2)先判断出∠BAC=∠AOF,得出AB∥EF,即可得出结论;(3)先求出AC=2,进而得出A=1=AB,即可判断出△ABO是等腰直角三角形,进一步判断出△BFD是等腰三角形,利用等腰三角形的三线合一得出∠BOF=90°,即可得出结论.【解答】(1)证明:在▱ABCD中,AD∥BC,∴∠OAF=∠OCE,∵OA=OC,∠AOF=∠COE,∴△AOF≌△COE(ASA),∴OE=OF;(2)解:当旋转角为90°时,四边形ABEF是平行四边形,理由:∵AB⊥AC,∴∠BAC=90°,∵∠AOF=90°,∴∠BAC=∠AOF,∴AB∥EF,∵AF∥BE,∴四边形ABEF是平行四边形;(3)解:在Rt△ABC中,AB=1,BC=,∴AC==2,∴OA=1=AB,∴△ABO是等腰直角三角形,∴∠AOB=45°,∵BF=DF,∴△BFD是等腰三角形,∵四边形ABCD是平行四边形,∴OB=OD,∴OF⊥BD(等腰三角形底边上的中线是底边上的高),∴∠BOF=90°,∴∠α=∠AOF=∠BOF﹣∠AOB=45°.【点评】此题是四边形综合题,主要考查了平行四边形的性质和判定,全等三角形的判定和性质,等腰三角形的判定和性质,等腰直角三角形的性质,旋转的性质,判断出△ABO是等腰直角三角形是解本题的关键.。
2018-2019学年八年级下期末数学试卷及答案

2018-2019学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是()A.B.C. D.10.下列计算正确的是()A.2B. C.D.=﹣311.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.12.一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<013.下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:3458月用水量(吨)户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.2018-2019学年八年级(下)期末考试八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。
甘肃省天水市八年级下学期期末考试数学试题

甘肃省天水市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八上·萧山月考) 分式有意义时,x的取值范围是()A . x≠0B . x≠1C . x≠0或x≠1D . x≠0且x≠12. (2分) (2018八上·沈河期末) 由下列条件不能判定为直角三角形的是()A .B .C .D .3. (2分)若+2 +x =10,则x的值等于()A . 2B . ±2C . 4D . ±44. (2分)估算的大小,如果要求结果精确到1,则≈()A . 6B . 7C . 8D . 95. (2分)(2017·德州模拟) 下列命题正确的个数是()①等腰三角形的腰长大于底边长;②三条线段a、b、c,如果a+b>c,那么这三条线段一定可以组成三角形;③等腰三角形是轴对称图形,它的对称轴是底边上的高;④面积相等的两个三角形全等.A . 0个B . 1个C . 2个D . 3个6. (2分) (2017九上·武邑月考) 如图所示,已知四边形ABCD是平行四边形,下列结论中,不一定正确的是()A . AB=CDB . AC=BDC . 当AC⊥BD时,它是菱形D . 当∠ABC=90°时,它是矩形7. (2分) (2016八下·微山期末) 某校八年级一班在两位同学中推荐一位同学参加学校短跑比赛,统计了他们平时10次成绩,经计算,他们的平均成绩一样,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A . 最低分B . 众数C . 中位数D . 方差8. (2分) (2017九上·梅江月考) 下列说法中正确的是()A . 两条对角线垂直的四边形是菱形B . 对角线垂直且相等的四边形是正方形C . 两条对角线相等的四边形是矩形D . 两条对角线相等的平行四边形是矩形9. (2分)如图:一次函数y=kx+b的图象经过A、B两点,则不等式kx+b>0的解集是()A . x>0B . x>2C . x>﹣3D . ﹣3<x<210. (2分)(2017·东平模拟) 如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B 出发,沿着B﹣A﹣D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y与x之间的函数图象大致为()A .B .C .D .二、填空题 (共6题;共7分)11. (1分)(2019·安徽模拟) 黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请向问 -1最接近的整数为________.12. (1分)(2014·泰州) 将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为________.13. (1分) (2019七上·江北期末) 在数轴上,若点A表示,则到点A距离等于2的点所表示的数为________.14. (1分)(2018·安徽模拟) 如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG= (BC-AD),⑤四边形EFGH是菱形.其中正确的是________(把所有正确结论的序号都选上).15. (2分)在Rt△ABC中,∠C=90°,c=20,a:b=3:4,则a=________,b=________.16. (1分) (2018七下·浦东期中) 如图,C在直线BE上,∠ABC与∠ACE的角平分线交于点,∠A=m,若再作∠ 、∠ 的平分线,交于点;再作∠ 、∠ 的平分线,交于点;……;依次类推,则为________.三、解答题 (共9题;共96分)17. (5分) (2017八下·宁城期末) 计算:18. (10分)(2017·孝感模拟) 计算下列各题(1)计算:(﹣2)2﹣(1+tan45°)(2)先化简,再求值:,其中a= ﹣2,b= +2.19. (6分)(2018·浦东模拟) 如图,已知△ABC中,点D、E分别在边AB和AC上,DE∥BC,且DE经过△ABC 的重心,设.(1)________(用向量表示);(2)设,在图中求作.(不要求写作法,但要指出所作图中表示结论的向量.)20. (10分)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.21. (15分) (2018八上·焦作期末) 某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中,的值:组别平均分中位数方差合格率优秀率甲组6.8 3.7690%30%乙组7.5 1.9680%20%(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.22. (15分)张萌在做同步训练时,遇到了下面的一道题,请你帮她做完这道题.如图,在△ABC中,∠B=90°,AB=15,AC=17,D是AC的中点,过点D作DE⊥BC,交BC于点E,连接AE,已知DE=7.5.(1)求CE的长度;(2)求△ABE的面积;(3)求AE的长度.23. (10分)(2017·德阳模拟) 某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.24. (10分) (2019七上·威海期末) 如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M,交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.(1)判断直线BE与线段AD之间的关系,并说明理由;(2)若∠C=30°,图中是否存在等边三角形?若存在,请写出来并证明;若不存在,请说明理由.25. (15分) (2016八上·沈丘期末) 如图所示,沿AE折叠长方形ABCD使点D恰好落在BC边上的点F处.已知AB=8cm,BC=10cm.(1)求EC的长;(2)求DE的长;(3)求△AFE的面积.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共96分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、。
2018-2019学年八年级下期末数学试卷2(含答案解析)

2018-2019学年八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣22.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65 4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.109.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.810.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是.12.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD 的面积和对角线长.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试8085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是.24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣2【解答】解:由题意得:a+2≥0,解得:a≥﹣2,故选:B.2.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣【解答】解:A、=2,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4,故原题计算正确;D、2和不能合并,故原题计算错误;故选:C.3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65【解答】解:由表可知1.75m出现次数最多,有4次,所以众数为1.75m,这15个数据最中间的数据是第8个,即1.70m,所以中位数为1.70m,故选:A.4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位【解答】解:要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象向上平移5个单位,故选:C.5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角【解答】解:∵菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分,每一条对角线平分一组对角,;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:每一条对角线平分一组对角.故选:D.6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)【解答】解:在y=3x﹣2中,∵k=3>0,∴y随x的增大而增大;∵b=﹣2<0,∴函数与y轴相交于负半轴,∴可知函数过第一、三、四象限;∵当x=﹣2时,y=﹣8,所以与x轴交于(﹣2,0)错误,∵当y=﹣2时,x=0,所以与y轴交于(0,﹣2)正确,故选:C.8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.10【解答】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴AD=6,∵CD=AB=8,∴AC==10,∴BO=AC=5.故选:A.9.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选:A.10.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6【解答】解:联立两函数的解析式,得:,解得;即两函数图象交点为(﹣3,﹣2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而增大;因此当x=5时,m值最大,即m=6.故选:D.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是5.【解答】解:=5,故答案为:512.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=8.【解答】解:根据勾股定理得:a2+b2=c2,∵a=6,c=10,∴b===8,故答案为8.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为2.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD﹣AE=BC﹣AB=5﹣3=2.故答案为2.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为y=2x﹣7.【解答】解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,∴平行四边形OABC的对称中心D(4,1),设直线QD的解析式为y=kx+b,∴,∴,∴该直线的函数表达式为y=2x﹣7,故答案为:y=2x﹣7.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为87°.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠DAE=∠AEB,∵∠EAB=∠EAD,∴∠EAB=∠AEB,∴BA=BE,∵AB=AE,∴AB=BE=AE,∴∠B=∠BAE=∠AEB=60°,∴∠EAD=∠CDA=60°,∵EA=AB,CD=AB,∴EA=CD,∵AD=DA,∴∠AED≌△DCA,∴∠AED=∠DCA,∵AB∥CD,∴∠ACD=∠BAC=60°+27°=87°,∴∠AED=87°.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.【解答】解:∵AB∥CD,CD=BC=AB,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∴B、D关于AC对称,连接BE交AC于H′,连接DH′,此时DH′+EH′的值最小,最小值=BE,作AM⊥EC于M,EN⊥BA交BA的延长线于N.∵四边形ABCD是菱形,∴AD∥BC,∴∠ADM=∠BCD=30°,∵AD=2,∴AM=AD=1,∵∠AEC=45°,∴AM=EM=1,∵AM⊥CE,EN⊥BN,CE∥NB,∴∠AME=∠N=∠MAN=90°,∴四边形AMEN是矩形,∴AN=EM=AM=EN=1,在Rt△BNE中,BE===,故答案为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)【解答】解:原式=42﹣()2=16﹣7=9.18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD的面积和对角线长.【解答】解:连接BD.∵ABCD为正方形,∴∠A=∠C=90°.在Rt△BCE中,BC=.在Rt△ABD中,BD=.∴正方形ABCD的面积=.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【解答】解:(1)∵一次函数图象过原点,∴,解得:m=3(2)∵一次函数的图象经过第二、三、四象限,∴,∴1<m<3.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试908085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.【解答】解:(1)观察图象1可知:A的面试成绩为90分.故答案为90.条形图如图所示:(2)A的得票数:300×35%=105(人)B的得票数:300×40%=120(人)C的得票数:300×25%=75(人);(3)A的成绩:=93B的成绩:=96.5C的成绩:=83.5,故B学生成绩最高,能当选学生会主席.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.【解答】解:(1)∵A(0,3)、点B(3,0),∴直线AB的解析式为y=﹣x+3,由,解得,∴P(﹣3,6).(2)设Q(m,0),由题意:•|m﹣3|•6=6,解得m=5或1,∴Q(1,0)或(5,0).(3)当直线y=﹣2x+m经过点O时,m=0,当直线y=﹣2x+m经过点B时,m=6,∴若直线y=﹣2x+m与△AOB三条边只有两个公共点,则有0<m<6.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.【解答】解:(1)设每件A商品的单价是x元,每件B商品的单价是y元,由题意得,解得.答:A商品、B商品的单价分别是50元、40元;(2)当0<x≤10时,y=50x;当x>10时,y=10×50+(x﹣10)×50×0.6=30x+200;(3)设购进A商品a件(a>10),则B商品消费40a元;当40a=30a+200,则a=20所以当购进商品正好20件,选择购其中一种即可;当40a>30a+200,则a>20所以当购进商品超过20件,选择购A种商品省钱;当40a<30a+200,则a<20所以当购进商品少于20件,选择购B种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是MN=(BM+ND).【解答】证明:(1)延长NO交BM交点为F,如图∵四边形ABCD是菱形∴AC⊥BD,BO=DO∵DN⊥MN,BM⊥MN∴BM∥DN∴∠DBM=∠BDN,且BO=DO,∠BOF=∠DON∴△BOF≌△DON∴NO=FO,∵BM⊥MN,NO=FO∴MO=NO=FO(2)如图:延长MO交ND的延长线于F∵BM⊥PC,DN⊥PC∴BM∥DN∴∠F=∠BMO∵BO=OD,∠F=∠BMO,∠BOM=∠FOD ∴△BOM≌△FOD∴MO=FO∵FN⊥MN,OF=OM∴NO=OM=OF(3)如图:∵∠BAD=120°,四边形ABCD是菱形,∴∠ABC=60°,AC⊥BD∵∠OBC=30°∵BM⊥PC,AC⊥BD∴B,M,C,O四点共圆∴∠FMN=∠OBC=30°∵FN⊥MN∴MN=FN=(BM+DN)答案为MN=(BM+FN)24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.【解答】解:(1)▱A′B′CD如图所示,A′(2,2t).(2)∵C′(6,t),A(2,0),=12t﹣×2×2t﹣×6×t﹣×4×t=9.∵S△OA′C∴t=.(3)∵D(0,t),B(6,0),∴直线BD的解析式为y=﹣x+t,∴线BD沿x轴的方向平移m个单位长度的解析式为y=﹣x+(6+m),把点A(2,2t)代入得到,2t=﹣+t+,解得m=8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甘肃省天水市秦安县2018-2019学年八年级(下)期末数学试卷一、选择题(每小题4分,共40分)1.(4分)若分式无意义,则()A.x≥1B.x≠1C.x≥﹣1D.x=12.(4分)如下图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB 长为()A.20B.15C.10D.53.(4分)下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y=C.y=x﹣3D.y=4.(4分)在4月14日玉树发生的地震导致公路破坏,为抢修一段120米的公路,施工队每天比原来计划多修5米,结果提前4天通了汽车,问原计划每天修多少米?若设原计划每天修x米,则所列方程正确的是()A.﹣=4B.﹣=4C.﹣=4D.﹣=45.(4分)下列有关四边形的命题中,是真命题的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相平分且互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的四边形是正方形6.(4分)若点P(3,2m﹣1)在第四象限,则m的取值范围是()A.m>B.m<C.m≥﹣D.m≤7.(4分)如图,矩形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BFA=30°,那么∠CEF等于()A.20°B.30°C.45°D.60°8.(4分)一组数据:3,2,1,2,2的众数,中位数,方差分别是()A.2,1,0.4B.2,2,0.4C.3,1,2D.2,1,0.29.(4分)某种感冒病毒的直径为0.0000000031米,用科学记数法表示为()A.3.1×10﹣9米B.3.1×109米C.﹣3.1×109米D.0.31×10﹣8米10.(4分)矩形一个内角的平分线把矩形的一边分成3cm和5cm,则矩形的周长为()A.16cm B.22cm或26cm C.26cm D.以上都不对二.填空题(每小题4分,共32分)11.(4分)|1﹣=.12.(4分)若方程有增根,则m的值为.13.(4分)一个一次函数的图象与直线y=﹣2x+1平行,且经过点(2,﹣1),则这个一次函数的表达式为.14.(4分)如果直线y=﹣2x+k与两坐标轴所围成的三角形面积是4,则k的值为.15.(4分)在平行四边形ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为.16.(4分)已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是.17.(4分)如图,在正方形ABCD中,对角线AC、BD交于O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G、F,AC=10,则EG+EF=.18.(4分)数据1,﹣3,1,0,1的平均数是中位数是,众数是方差是.三.解答题(19题各4分,20、21小题各10分,共28分)19.(8分)(1)先化简代数式,求:当a=2时代数式值.(2)解方程:.20.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)当x为何值时反比例函数值大于一次函数的值;(3)当x为何值时一次函数值大于比例函数的值;(4)求△AOB的面积.21.(10分)如图,在▱ABCD中,点E,F分别在AD,BC边上,且EF垂直平分对角线AC,垂足为O.求证:四边形AECF为菱形.22.(8分)某服装制造厂要在开学前赶制3000套校服,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原计划多20%,结果提前4天完成任务,问原计划每天能完成多少套校服?23.(9分)已知等腰三角形的周长是18cm,底边y(cm)是腰长x(cm)的函数.(1)写出这个函数的关系式;(2)求出自变量的取值范围;(3)当△ABC为等边三角形时,求△ABC的面积.24.(10分)某中学开展“我的中国梦”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.(1)根据如图,分别求出两班复赛的平均成绩和方差;(2)根据(1)的计算结果,分析哪个班级5名选手的复赛成绩波动小?25.(10分)如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=4,求:(1)∠ABC的度数;(2)菱形ABCD的面积.26.(13分)已知边长为4的正方形ABCD,顶点A与坐标原点重合,一反比例函数图象过顶点C,动点P以每秒1个单位速度从点A出发沿AB方向运动,动点Q同时以每秒4个单位速度从D 点出发沿正方形的边DC﹣CB﹣BA方向顺时针折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.(1)求出该反比例函数解析式;(2)连接PD,当以点Q和正方形的某两个顶点组成的三角形和△PAD全等时,求点Q的坐标;(3)用含t的代数式表示以点Q、P、D为顶点的三角形的面积s,并指出相应t的取值.参考答案一、选择题(每小题4分,共40分)1.【解答】解:根据题意得,x﹣1=0,解得x=1.故选:D.2.【解答】解:∵△AOB的周长比△BOC的周长少10cm即BC﹣AB=10cm,∵周长是40cm,即BC+AB=20cm,∴AB=5cm.故选:D.3.【解答】解:A、分式有意义,x﹣3≠0,解得:x≠3,故A选项错误;B、二次根式有意义,x﹣3>0,解得x>3,故B选项错误;C、函数式为整式,x是任意实数,故C选项错误;D、二次根式有意义,x﹣3≥0,解得x≥3,故D选项正确.故选:D.4.【解答】解:设原计划每天修x米,可得:,故选:A.5.【解答】解:A、一组对边平行且相等的四边形是平行四边形,故本选项错误;B、对角线互相平分且互相垂直的四边形是菱形,故本选项正确;C、对角线相等的四边形可能是矩形还可能是等腰梯形,故本选项错误;D、一组邻边相等的四边形可能是正方形还可能是菱形,故本选项错误.故选:B.6.【解答】解:∵点P(3,2m﹣1)在第四象限,∴2m﹣1<0,2m<1,m<,故选:B.7.【解答】解:∵四边形ABCD是矩形,∴∠C=∠D=90°,由折叠得,∠AFE=∠D=90°,∴∠BFA+∠CFE=90°,∴∠CFE=90°﹣∠BFA=60°,∵∠C=90°,∴∠CEF=90°﹣∠CFE=30°,故选:B.8.【解答】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3﹣2)2+3×(2﹣2)2+(1﹣2)2]=0.4,即中位数是2,众数是2,方差为0.4.故选:B.9.【解答】解:0.0000000031=3.1×10﹣9,故选:A.10.【解答】解:∵矩形ABCD中BE是角平分线.∴∠ABE=∠EBC.∵AD∥BC.∴∠AEB=∠EBC.∴∠AEB=∠ABE.∴AB=AE.平分线把矩形的一边分成3cm和5cm.当AE=3cm时:则AB=CD=3cm,AD=CB=8cm则矩形的周长是:22cm;当AE=5cm时:AB=CD=5cm,AD=CB=8cm,则周长是:26cm.故选:B.二.填空题(每小题4分,共32分)11.【解答】解:原式=﹣1﹣3+1=故答案为:12.【解答】解:方程两边都乘(x﹣2)(x+2),得2(x+2)+mx=3(x﹣2)∵原方程有增根,∴最简公分母(x+2)(x﹣2)=0,解得x=﹣2或2,当x=﹣2时,m=6,当x=2时,m=﹣4.13.【解答】解:∵一次函数的图象与直线y=﹣2x+1平行,∴设一次函数的解析式为y=﹣2x+b,∵一次函数经过点(2,﹣1),∴﹣2×2+b=﹣1,解得b=3,所以这个一次的表达式是y=﹣2x+3.故答案为:y=﹣2x+3.14.【解答】解:直线y=﹣2x+k与两坐标轴的交点为(0,k)、(,0),则直线y=﹣2x+k与两坐标轴所围成的三角形的面积:•|k|•||=4,若k<0,直线y=﹣2x+k经过二、三、四象限,•|k|•||=(﹣k)•(﹣k)=k2=16,即k=﹣4 k=4(舍去);若k>0,直线y=﹣2x+k经过一、二、三象限,•|k|•||=k•k=k2=16,即k=4 k=﹣4(舍去);则k的值为:k=±4.故填±4.15.【解答】解:∵在平行四边形ABCD中,AC=14,BD=8,AB=10,∴AB=BD=8,OA=AC=7,OB=BD=4,∴△OAB的周长为:AB+OB+OA=10+7+4=21.故答案为:21.16.【解答】解:依照题意画出图形,如图所示.在Rt △AOB 中,AB =2,OB =,∴OA ==1, ∴AC =2OA =2,∴S 菱形ABCD =AC •BD =×2×2=2.故答案为:2.17.【解答】解:∵四边形ABCD 是正方形,AC =10,∴AC ⊥BD ,BO =OC =5,∵EG ⊥OB ,EF ⊥OC ,∴S △BOE +S △COE =S △BOC ,∴•BO •EG +•OC •EF =•OB •OC ,∴×5×EG +×5×EF =×5×5,∴EG +EF =5.故答案为5.18.【解答】解:平均数:(1﹣3+1+0+1)=0;将数据从小到大排列﹣3,0,1,1,1,中位数为1;1出现了3次,故众数为1;方差S 2= [(1﹣0)2+(﹣3﹣0)2+(1﹣0)2+(0﹣0)2+(1﹣0)2)]=2.4故答案为0,1,1,2.4三.解答题(19题各4分,20、21小题各10分,共28分)19.【解答】解:(1)原式=[+]÷=•=,当a=2时,原式==2;(2)去分母,得3=2x﹣4﹣x,合并同类项,得3=x﹣4移项,得﹣x=﹣7,x=7经检验:x=﹣7是原分式方程的根.故原分式方程的根为x=﹣7.20.【解答】解:(1)∵把A(﹣2,1)代入y=得:m=﹣2,∴反比例函数的解析式是y=﹣,∵B(1,n)代入反比例函数y=﹣得:n=﹣2,∴B的坐标是(1,﹣2),把A、B的坐标代入一次函数y1=kx+b得:,解得:k=﹣1,b=﹣1,∴一次函数的解析式是y=﹣x﹣1;(2)从图象可知:当反比例函数值大于一次函数的值时x的取值范围﹣2<x<0或x>1.(3)从图象可知:当一次函数的值大于反比例函数的值时x的取值范围x<﹣2或0<x<1.(4)设直线与x轴的交点为C,∵把y=0代入一次函数的解析式是y=﹣x﹣1得:0=﹣x﹣1,x=﹣1∴C(﹣1,0),=×|﹣1|×1+×|﹣1|×|﹣2|=1.5.△AOB的面积S=S AOC+S△BOC21.【解答】解:∵EF垂直平分AC,∴AO=OC,AE=CE,AF=CF,∴∠1=∠2,∠3=∠4,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠1=∠4=∠3,∴AF=AE,∴AE=EC=CF=FA,∴四边形AECF是菱形.22.【解答】解:设原计划每天生产x套校服,则实际每天生产(1+20%)x套校服,由题意得,﹣=4,解得:x=125,经检验:x=125是原分式方程的解,且符合题意.答:原计划每天生产125套校服.23.【解答】解:(1)由题意得,2x+y=18,则y=18﹣2x;(2)由三角形的三边关系可知,2x>y,y>0,2x>18﹣2x,18﹣2x>0,解得,4.5<x<9;(3)当△ABC为等边三角形时,AB=BC=CA=6,作AD⊥BC于D,则BD=DC=3,∴AD===3,∴△ABC 的面积=×6×3=9(cm 2).24.【解答】解:(1)九(1)班的选手的得分分别为85,75,80,85,100, ∴九(1)班的平均数=(85+75+80+85+100)÷5=85,九(1)班的方差S 12=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]÷5=70;九(2)班的选手的得分分别为70,100,100,75,80,九(2)班平均数=(70+100+100+75+80)÷5=85,九(2)班的方差S 22=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]÷5=160;(2)平均数一样的情况下,九(1)班方差小,成绩比较稳定.25.【解答】解:(1)∵四边形ABCD 是菱形,∴AB =BC =CD =DA ,∵E 是AB 的中点,且DE ⊥AB ,∴AE =AD ,∴∠ADE =30°,∠DAE =60°,∴∠ABC =180°﹣60°=120°;(2)连接BD ,交AC 于点O ,在菱形ABCD 中,∠DAE =60°,∴∠CAE =30°,AB =4,∴OB =AB =2,∴BD =2OB =4根据勾股定理可得:AO ==2,即AC=4,=AC•BD=×4×4=8.∴S菱形ABCD26.【解答】解:(1)∵正方形ABCD的边长为4,∴C的坐标为(4,4),设反比例解析式为y=将C的坐标代入解析式得:k=16,则反比例解析式为y=;(2分)(2)当Q在DC上时,如图所示:此时△APD≌△CQB,∴AP=CQ,即t=4﹣4t,解得t=,则DQ=4t=,即Q1(,4);当Q在BC边上时,有两个位置,如图所示:若Q在上边,则△QCD≌△PAD,∴AP =QC ,即4t ﹣4=t ,解得t =,则QB =8﹣4t =,此时Q 2(4,);若Q 在下边,则△APD ≌△BQA ,则AP =BQ ,即8﹣4t =t ,解得t =,则QB =,即Q 3(4,);当Q 在AB 边上时,如图所示:此时△APD ≌△QBC ,∴AP =BQ ,即4t ﹣8=t ,解得t =,因为0≤t ≤,当t =时,P 个Q 重合,此时△PAD 和△QAD 也全等,则Q 4的坐标是(,0).综上所述Q 1(,4); Q 2(4,),Q 3(4,),Q 4(,0);(3)当0<t ≤1时,Q 在DC 上,DQ =4t ,则s =×4t ×4=8t ;当1≤t ≤2时,Q 在BC 上,则BP =4﹣t ,CQ =4t ﹣4,AP =t ,则s =S 正方形ABCD ﹣S △APD ﹣S △BPQ ﹣S △CDQ =16﹣AP •AD ﹣PB •BQ ﹣DC •CQ =16﹣t ×4﹣(4﹣t )•【4﹣(4t ﹣4)}﹣×4(4t ﹣4)═﹣2t 2+2t +8;当2≤t ≤时,Q 在AB 上,PQ =12﹣5t ,则s =×4×(12﹣5t ),即s =﹣10t +24. 总之,s 1=8t (0<t ≤1);s 2=﹣2t 2+2t +8(1≤t ≤2);s 3=﹣10t +24(2≤t ≤)。