序列检测器
EDA实验报告实验三、序列检测器的设计

实验三、序列检测器的设计一、预习内容1、预习序列发生器和检测器的基本工作原理;2、画出实验原理草图;3、写出实验的基本步骤和源程序。
二、实验目的1、掌握序列检测器的工作原理;2、学会用状态机进行数字系统设计。
三、实验器材PC机一台、EDA教学实验系统一台、下载电缆一根(已接好)、导线若干四、实验要求1、检测连续4个‘1’的状态机,画出状态转移图,并写出VHD代码;(必做部分)2、了解试验箱,完成数据分配器的硬件实验。
(实验一的硬件操作,首次使用请谨慎使用试验箱!)3、检测“10001110”序列,当检测到该序列后输出为‘1’。
(此部分选作)五、实验原理和实验内容1、序列发生器原理(此部分选作)在数字信号的传输和数字系统的测试中,有时需要用到一组特定的串行数字信号,产生序列信号的电路称为序列信号发生器。
本实验要求产生一串序列“10001110”。
该电路可由计数器与数据选择器构成,其结构图如图6-1所示,其中的锁存输出的功能是为了消除序列产生时可能出现的毛刺现象:图6-1 序列发生器结构图2、序列检测器的基本工作过程:序列检测器用于检测一组或多组由二进制码组成的脉冲序列信号,在数字通信中有着广泛的应用。
当序列检测器连续收到一组串行二进制码后,如果这组码与检测器中预先设置的码相同,则输出1,否则输出0。
由于这种检测的关键在于正确码的收到必须是连续的,这就要求检测器必须记住前一次的正确码及正确序列,直到在连续的检测中所收到的每一位码都与预置的对应码相同。
在检测过程中,任何一位不相等都将回到初始状态重新开始检测。
状态图如图6-2所示:图6-2 序列检测器状态图3、状态机的基本设计思想:在状态连续变化的数字系统设计中,采用状态机的设计思想有利于提高设计效率,增加程序的可读性,减少错误的发生几率。
同时,状态机的设计方法也是数字系统中一种最常用的设计方法。
一般来说,标准状态机可以分为摩尔(Moore)机和米立(Mealy)机两种。
二进制序列检测器工作原理

二进制序列检测器工作原理一、概述在计算机科学中,机器可以理解的最小单位是二进制数,因此计算机需要一个可靠的方式来检查二进制序列是否正确。
在这里,我们将介绍二进制序列检测器的工作原理和应用。
二、二进制序列检测器的定义二进制序列检测器是一种电子设备,它可以对输入的数据流进行检查,以便确定该数据流是否符合规定的位模式。
三、二进制序列检测器的工作原理二进制序列检测器通常具有以下组件:1.输入接口:用于将数据流传送到二进制序列检测器。
2.缓存器:用于缓存数据流,以便在不干扰数据流的情况下进行检测。
3.比较器:负责将缓存器中的数据与规定的位模式进行比较。
4.输出接口:通过该接口向用户返回比较结果。
当数据流到达二进制序列检测器时,它首先由输入接口接收并缓存在缓存器中。
一旦有一定数量的数据被缓存,比较器将会开始对缓存器中的数据进行比较,并将结果存储在输出接口中。
在二进制序列检测器中,比较器通常采用硬件实现来提高检测效率。
比较器将从规定的位模式中读取数据,并与缓存器中的数据进行比较。
如果规定的位模式与缓存器中的数据完全匹配,则比较器会向输出接口发送信号报告检测成功,否则返回检测失败。
四、二进制序列检测器的应用二进制序列检测器在计算机科学中有着广泛的应用,包括以下几个方面:1.数据通信:在数据通信中,二进制序列检测器可用于检查网络包,以确保数据包是否已完整传输。
2.计算机安全:在计算机安全中,二进制序列检测器可用于检查病毒和恶意软件,以保护计算机和网络免受攻击。
3.硬件检测:在硬件检测中,二进制序列检测器可用于检查数据总线,以确保硬件设备正常工作。
4.电子设计:在电子设计中,二进制序列检测器可用于验证模拟数据,并确保模拟数据与设计规范相符合。
五、结论二进制序列检测器是一种重要的电子设备,它可以在许多领域中确保数据的完整性和准确性。
通过对数据流进行缓存、比较和输出,二进制序列检测器能够快速、可靠地检测输入的二进制序列是否符合规定的位模式。
序列检测器原理

序列检测器原理
序列检测器是一种用来检测和识别输入序列中特定模式的设备或算法。
它能够根据事先给定的规则或模型对输入序列进行分析和判断,并输出相应的结果或响应。
序列检测器通常由以下几个组成部分构成:
1. 输入接口:用于接收输入序列的信号或数据。
2. 存储器:存储检测器的状态信息和输入序列的历史数据。
3. 状态机:用于根据输入序列的不同模式进行状态转换和控制。
4. 判决逻辑:根据当前状态和输入序列的特征,判断当前模式是否匹配。
5. 输出接口:根据判决的结果,输出相应的响应或结果。
序列检测器的工作原理如下:
1. 初始化:将序列检测器的状态设为初始状态,准备接收输入序列。
2. 接收输入:逐个接收输入序列的信号或数据。
3. 状态转换:根据当前状态和输入序列的特征,根据事先设定好的规则或模型进行状态转换。
4. 判决匹配:根据当前状态和输入序列的特征,判断当前模式是否匹配。
5. 输出结果:根据判决的结果,输出相应的响应或结果。
6. 循环操作:重复执行2-5步骤,直至所有的输入序列被处理完毕。
通过以上的工作原理,序列检测器可以有效地检测和识别输入序列中的特定模式。
它在许多应用中都有广泛的应用,如通信领域中的错误检测、模式识别等。
实验三_用状态机实现序列检测器的设计

实验三_用状态机实现序列检测器的设计引言:序列检测器是一类常用的电子设计电路,它在接收到特定的输入序列时,会产生特定的输出序列。
在许多应用场景中,如通信系统、数字信号处理和自动控制等领域,序列检测器都发挥着重要的作用。
本实验将利用状态机的概念,设计并实现一个简单的序列检测器。
一、序列检测器的设计原理序列检测器的设计原理基于状态机的思想。
状态机是一种抽象的计算模型,它由一组状态、一组输入和一组转移动作组成。
在序列检测器中,输入序列被连续地输入,状态也会根据输入进行不断变化。
当状态机检测到了预设的特定输入序列时,就会产生相应的输出序列。
二、序列检测器的设计步骤1.确定输入和输出序列:首先确定所需检测的输入序列和对应的输出序列,这将决定状态机的状态转移条件。
2.绘制状态转移图:根据输入和输出序列,绘制状态转移图,即用状态变量和状态转移条件表示状态转移关系。
3.设计状态机的状态转移表:根据状态转移图,将所有可能的状态转移关系整理为一个状态转移表。
4.实现状态机的代码逻辑:根据状态转移表,编写代码实现状态机的逻辑功能。
三、设计实例在本实验中,我们以一个简单示例为例,演示序列检测器的设计流程。
假设输入序列为0101,当检测到该输入序列时,输出序列为011.确定输入和输出序列:输入序列为0101,输出序列为012.绘制状态转移图:根据输入和输出序列,绘制状态转移图如下:0/00,S0,1/1/1说明:状态S0表示未检测到特定输入序列,状态S1表示检测到特定输入序列。
3.设计状态机的状态转移表:根据状态转移图,得到状态转移表如下:输当前状态,0,1S0,S0,S1S1,S0,S14.实现状态机的代码逻辑:根据状态转移表,编写代码实现状态机的逻辑功能,伪代码如下:if (当前状态 == S0)if (输入 == 0)当前状态=S0;输出=0;} else if (输入 == 1)当前状态=S1;输出=0;}} else if (当前状态 == S1)if (输入 == 0)当前状态=S0;输出=1;} else if (输入 == 1)当前状态=S1;输出=1;}}四、实验总结本实验利用状态机的思想,设计并实现了一个简单的序列检测器。
序列检测器_实验报告

一、实验目的1. 理解序列检测器的工作原理和设计方法;2. 掌握时序电路的经典设计方法;3. 学习使用Verilog HDL语言进行状态机的设计;4. 通过实验验证序列检测器的功能。
二、实验原理序列检测器是一种同步时序电路,用于检测输入的一串二进制编码。
当输入序列与预设的编码相匹配时,输出高电平;否则,输出低电平。
序列检测器在数字通信、安全防盗、密码认证等领域有着广泛的应用。
序列检测器的基本工作原理如下:1. 预设一个编码序列,称为目标序列;2. 当输入序列与目标序列相匹配时,输出高电平;3. 当输入序列与目标序列不匹配时,输出低电平。
三、实验器材1. PC机一台;2. EDA教学实验系统一台;3. 下载电缆一根(已接好);4. 导线若干。
四、实验步骤1. 设计序列检测器的Verilog代码;2. 在EDA教学实验系统上编译、仿真和下载Verilog代码;3. 连接实验电路,下载Verilog代码;4. 通过逻辑分析仪观察输出波形,验证序列检测器的功能。
五、实验内容1. 设计一个长度为4位的序列检测器,目标序列为1001;2. 设计一个长度为8位的序列检测器,目标序列为11001001;3. 通过实验验证序列检测器的功能。
六、实验代码```verilogmodule seqdet(input clk, // 时钟信号input rst, // 复位信号input [3:0] din, // 输入序列output reg out // 输出信号);// 定义状态localparam [1:0] IDLE = 2'b00,MATCH = 2'b01,NOMATCH = 2'b10;// 状态寄存器reg [1:0] state, nextstate;// 输出函数always @(posedge clk or posedge rst) beginif (rst) beginstate <= IDLE;out <= 1'b0;end else beginstate <= nextstate;out <= (state == MATCH) ? 1'b1 : 1'b0; endend// 激励函数always @() begincase (state)IDLE: beginif (din == 4'b1001) beginnextstate = MATCH;end else beginnextstate = NOMATCH;endendMATCH: beginnextstate = IDLE;endNOMATCH: beginnextstate = IDLE;enddefault: beginnextstate = IDLE;endendcaseendendmodule```七、实验结果与分析1. 长度为4位的序列检测器:当输入序列为1001时,输出高电平;当输入序列不为1001时,输出低电平。
序列检测器实验报告

序列检测器实验报告序列检测器实验报告概述:序列检测器是一种用于判断输入序列是否符合特定规则的工具。
在本次实验中,我们使用了一种基于深度学习的序列检测器模型,并对其进行了性能评估和优化。
1. 实验背景序列检测器在许多领域中都有着广泛的应用,如自然语言处理、语音识别、图像处理等。
本次实验旨在通过搭建一个序列检测器模型,探索其在序列数据处理中的效果和潜力。
2. 实验设计我们选择了一组包含数字序列的数据集作为实验样本。
数据集中的每个序列都由一系列数字组成,我们的目标是通过训练序列检测器模型,使其能够准确地判断输入序列是否符合某种规则。
3. 模型搭建我们采用了一种基于循环神经网络(RNN)的模型来构建序列检测器。
RNN是一类特殊的神经网络,可以有效地处理序列数据。
我们使用了长短期记忆(LSTM)单元作为RNN的基本构建块,以提高模型对长期依赖关系的建模能力。
4. 实验步骤首先,我们将数据集划分为训练集和测试集,其中训练集用于模型的训练和参数优化,测试集用于评估模型的性能。
接下来,我们对训练集进行预处理,将每个数字序列转换为对应的数值表示。
然后,我们构建了一个包含多个LSTM 层的序列检测器模型,并通过反向传播算法对其进行训练。
5. 实验结果经过多次实验和参数调整,我们得到了一个性能较好的序列检测器模型。
在测试集上的评估结果显示,该模型能够以高准确率和较低的误判率判断输入序列是否符合规则。
此外,我们还对模型的训练时间和资源消耗进行了分析,发现其在处理大规模序列数据时表现出较好的效率。
6. 优化探索为了进一步提升序列检测器的性能,我们尝试了一些优化策略。
首先,我们增加了模型的深度,即增加了LSTM层的数量。
实验结果显示,增加模型深度可以提高模型的准确率,但也会增加训练时间和资源消耗。
其次,我们尝试了不同的优化算法和学习率调度策略,以寻找更好的模型参数配置。
最后,我们还尝试了集成学习的方法,将多个序列检测器模型的预测结果进行集成,以进一步提升模型的性能。
101序列检测器原理

101序列检测器原理你想啊,就像我们在生活里找东西一样,这个序列检测器呢,就是在一堆数字或者信号里找特定的“宝贝”,这个宝贝就是101这个序列啦。
那它到底是怎么做到的呢?这就像是一场超级有趣的寻宝游戏呢。
我们先得有个小“机关”,这个机关就是状态机啦。
状态机就像是一个有着不同状态的小机器人,它可以在不同的情况下做出不同的反应。
比如说,最开始的时候,它有个初始状态,就像是小机器人在休息,啥都还没开始找呢。
当它接收到第一个信号的时候,如果这个信号是1,那它就会进入一个新的状态,这个状态就像是小机器人开始警觉起来啦,觉得可能找到了宝贝的开头。
要是这个信号是0呢,那它就还在初始状态,就像小机器人打了个盹儿,觉得还不是时候。
然后呢,当它处于那个警觉状态的时候,如果下一个信号是0,那它就进入到一个中间状态啦,这个状态就像是小机器人在心里默默记着,已经有了个1,现在又有个0,离目标更近一步喽。
要是下一个信号是1呢,那它就得回到初始状态重新开始找啦,就像小机器人发现自己找错了路,得重新出发。
当它在中间状态的时候,如果下一个信号是1,哇塞,那就找到了101这个宝贝啦,小机器人就可以欢呼起来啦,就像我们找到了藏起来的小糖果一样开心。
要是下一个信号是0呢,那它又得回到初始状态重新开始找喽。
这个101序列检测器啊,在实际生活里用处可大啦。
比如说在数字通信里,就像是一个超级小侦探。
它能在那些乱乱的数字信号流里,把101这个特定的序列给找出来。
这就好比在一堆信件里,找到一封特别标记的信一样。
再想象一下,在电路里呢,它也像是一个聪明的小管家。
电路里有各种各样的信号在跑来跑去,101序列检测器就能把那些符合101序列的信号给挑出来,然后进行特殊的处理,就像小管家把特别的东西单独放到一个小盒子里一样。
而且哦,这个原理其实也没有那么难理解啦。
就像我们玩游戏的时候,有一定的规则,按照规则走就能达到目的。
101序列检测器也是按照它自己的小规则,在那些数字或者信号里游刃有余地找到目标。
序列检测器

目录第一章设计方案.........................................................11.1设计任务..........................................................11.2设计要求..........................................................11.2.1整体功能要求.................................................11.2.2测试要求.....................................................1 第二章设计思路.........................................................22.1数字频率计介绍....................................................22.2设计原理..........................................................22.2.1频率测量的基本原理...........................................22.2.2整体方框图及原理.............................................22.2.3序列器结构框图...............................................2 第三章模块介绍.........................................................43.1顶层文件模块......................................................43.1.1顶层文件原理.................................................43.1.2顶层文件模块verilog 语言描述程序.............................43.2伪随机序列发生器模块..............................................43.2.1伪随机序列发生器.............................................43.2.2伪随机序列发生器原理.........................................53.2.3伪随机序列发生器模块verilog 语言描述程序.....................63.3序列检测器模块....................................................73.3.1序列检测器原理...............................................73.3.2序列检测器模块verilog 语言描述程序...........................7 第四章序列检测器的实现.................................................84.1序列检测器的verilog 语言程序描述及仿真............................84.1.1序列检测器的verilog 语言程序描述.............................84.1.2序列检测器的波形仿真.........................................94.2设计中遇到的问题与解决方法.......................................104.2.1设计中遇到的问题.............................................104.2.2解决方法.....................................................10 第五章设计小结.........................................................115.1心得体会..........................................................11第一章设计方案1.1设计任务在掌握常用数字电路功能和原理的基础上,根据 EDA 技术课程所学知识,利用硬件描述语言 Verilog HDL、EDA软件Quartus II 和硬件平台 Cyclone/Cyclone II FPGA 进行电路系统的设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章设计方案.........................................................11.1设计任务..........................................................11.2设计要求..........................................................11.2.1整体功能要求.................................................11.2.2测试要求.....................................................1 第二章设计思路.........................................................22.1数字频率计介绍....................................................22.2设计原理..........................................................22.2.1频率测量的基本原理...........................................22.2.2整体方框图及原理.............................................22.2.3序列器结构框图...............................................2 第三章模块介绍.........................................................43.1顶层文件模块......................................................43.1.1顶层文件原理.................................................43.1.2顶层文件模块verilog语言描述程序.............................43.2伪随机序列发生器模块..............................................43.2.1伪随机序列发生器.............................................43.2.2伪随机序列发生器原理.........................................53.2.3伪随机序列发生器模块verilog语言描述程序.....................63.3序列检测器模块....................................................73.3.1序列检测器原理...............................................73.3.2序列检测器模块verilog语言描述程序...........................7 第四章序列检测器的实现.................................................84.1序列检测器的verilog语言程序描述及仿真............................84.1.1序列检测器的verilog语言程序描述.............................84.1.2序列检测器的波形仿真.........................................94.2 设计中遇到的问题与解决方法.......................................104.2.1设计中遇到的问题.............................................104.2.2解决方法.....................................................10 第五章设计小结.........................................................115.1 心得体会..........................................................11第一章设计方案1.1设计任务在掌握常用数字电路功能和原理的基础上,根据EDA技术课程所学知识,利用硬件描述语言Verilog HDL、EDA软件Quartus II和硬件平台Cyclone/Cyclone II FPGA进行电路系统的设计。
1.2设计要求1.2.1整体设计要求1、要求独立完成设计任务。
2、课程设计说明书封面格式要求见《天津城建大学课程设计教学规范》附表1。
3、课程设计的说明书要求简洁、通顺,计算正确,图纸表达内容完整、清楚、规范。
4、测试要求:根据题目的特点,采用相应的时序仿真或者在实验系统上观察结果。
5、课程设计说明书要求:1)说明题目的设计原理和思路、采用方法及设计流程。
2)系统框图、Verilog语言设计程序或原理图。
3)对各子模块的功能以及各子模块之间的关系做较详细的描述。
4)详细说明调试方法和调试过程。
5)说明测试结果:仿真时序图和结果显示图,并对其进行说明和分析。
1.2.2测试要求(1)可预置时钟信号。
(2)可以在二极管上面显示测试结果。
第二章设计思路2.1序列检测器的介绍序列检测器就是将一个指定序列从数字码流中识别出来。
序列检测器在数据通讯,雷达和遥测等领域中用与检测步识别标志。
它是一种用来检测一组或多组序列信号的电路。
序列检测器可用于检测一组或多组由二进制码组成的脉冲序列信号,当序列检测器连续收到一组串行二进制码后,如果这组码与检测器中预先设置的码相同,则输出1,否则输出0。
由于这种检测的关键在于正确码的收到必须是连续的,这就要求检测器必须记住前一次的正确码及正确序列,直到在连续的检测中所收到的每一位码都与预置数的对应码相同。
在检测过程中,任何一位不相等都将回到初始状态重新开始检测。
2.2设计原理2.2.1序列检测原理设X为数字码流的输入,Z为检测出标记输出,高电平表示发现指定的序列1101.考虑码流为1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18时钟X 1 1 1 0 1 1 0 1 0 0 0 0 1 1 0 1 0 …Z 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 …在时钟2-5,码流X中出现了指定序列“1101”,对应输出Z在第5个时钟变为高电平—“1”,表示“发现指定序列”,同样地,在时钟13-16码流,X中再次出现指定序列“1101”,Z输出“1”。
注意,在时钟5-8还有一席检出,但它是与第一次检出的序列重叠的,即前者的前面一位同时也是后者的最后一位。
2.2.2序列检测器整体方框图2.2.3序列检测器结构框图序列检测器的结构框图如图2-1所示。
图2-1 序列检测器结构框图本实验有四种状态,即:Idle;Start;Step;Stop。
由上图可知,很显然是莫尔型状态机,总共有四种状态, 4个状态机根据编码原则可以用2位二进制数来表示。
第三章模块介绍3.1顶层文件模块3.1.1顶层文件原理采用图形输入方式构成顶层文件,重新构造本系统。
3.1.2顶层文件模块verilog语言描述程序module XULIEQI(clk,reset,din4,LED7S);input clk;input reset;input [3:0] din4;output LED7S;wire [3:0] AB;wire [3:0] din18;xulie u1 (clk, din4, reset, din);test u2 (din,clk,reset,rst);dec3s u3 (rst,LED7S);endmodule3.2伪随机序列发生器模块3.2.1伪随机序列发生器如果一个序列,一方面它是可以预先确定的,并且是可以重复地生产和复制的;一方面它又具有某种随机序列的随机特性(即统计特性),我们便称这种序列为伪随机序列。
在扩展频谱通信系统中,伪随机序列起着十分关键的作用。
在直接序列扩频系统得发射端,伪随机序列将信息序列的频谱扩展,在接收端,伪随机序列将扩频信号恢复为窄带信号,进而完成信息的接收。
m序列又称为最长线形反馈移位寄存器序列,该序列具有很好的相关性能。
m序列发生器的基本结构为:其中(Cr,Cr-1,…,C0)为反馈系数,也是特征多项式系数。
这些系数的取值为“1”或“0”,“1”表示该反馈支路连通,“0”表示该反馈支路断开。
下图为实际m序列发生器的电路图:图中利用D触发器级联的方式完成移位寄存器的功能。
在系统清零后,D触发器输出状态均为低电平,为了避免m序列发生器输出全“0”信号,图中在“模二加”运算后添加了一个“非门”。
从图中A、B、C、D四个节点均可得到同一m序列,只是序列的初始相位不同。
特征多项式系数决定了一个m序列的特征多项式,同时也决定了一个m序列。
下表给出了部分m序列的反馈系数(表中的反馈系数采用八进制表示)3.2.2伪随机序列发生器原理伪随机序列虽然不是真正的随机序列,但是当伪随机序列周期足够长时,伪随机序列具有随机序列的良好统计特性。
伪随机序列中的m序列线性移位寄存器在逻辑上仅用加法器实现,其反馈函数形式f(x)=cn-1×0σcn-2×1σcn-3×2σ…σ- c0×n-1i,导航,集成电路的,其中cn-1-∈GF(2)是反馈系数,xi∈GF(2)是每位寄存器状态。
而采用FPGA作为系统的核心控制器件,是由于FPGA的最终逻辑功能是通过向内部静态存储器单元加载配置数据来实现的,不同的配置文件决定了逻辑单元不同。
3.2.3伪随机序列发生器模块verilog语言描述程序以下是伪随机序列发生器模块的verilog程序:module wsjxlfsq(clock,out,set);input clock,set;output out;reg[4:0] sr;always @(posedge clock)if(set) sr<=5'b10101;else beginsr<=sr>>1;sr[4]<=sr[2]^sr[0];endassign out=sr[0];endmodule以下是伪随机序列的电路连接图:3.3序列检测器模块3.3.1序列检测器原理序列检测器是时序数字电路中非常常见的设计之一。