卡尔曼滤波
卡尔曼滤波 公式

卡尔曼滤波公式
卡尔曼滤波是一种用于估计状态变量的数学算法,广泛应用于各种领域,如航空航天、无人驾驶、机器人等。
以下是卡尔曼滤波的公式:
1.状态预测方程:
x[k|k-1] = A[k|k-1] * x[k-1|k-1] + B[k|k-1] * u[k]
其中,x[k|k-1]表示在时间k对时间k-1的状态预测,A[k|k-1]是状态转移矩阵,B[k|k-1]是控制矩阵,u[k]是控制向量。
2.测量更新方程:
z[k|k] = H[k|k] * x[k|k] + v[k]
其中,z[k|k]表示在时间k对时间k的测量更新,H[k|k]是量测矩阵,v[k]是测量噪声。
3.协方差预测方程:
P[k|k-1] = A[k|k-1] * P[k-1|k-1] * A[k|k-1]' + Q
其中,P[k|k-1]表示在时间k对时间k-1的协方差预测,Q是过程噪声协方差。
4.协方差更新方程:
P[k|k] = (I - K[k] * H[k|k]) * P[k|k-1]
其中,P[k|k]表示在时间k对时间k的协方差更新,K[k]是卡尔曼增益矩阵。
5.卡尔曼增益计算:
K[k] = P[k|k-1] * H[k|k]' / (H[k|k] * P[k|k-1] * H[k|k]' + R)
其中,R是测量噪声协方差。
卡尔曼滤波_卡尔曼算法

卡尔曼滤波_卡尔曼算法1.引言1.1 概述卡尔曼滤波是一种用于估计系统状态的技术,通过融合传感器测量值和系统模型的预测值,提供对系统状态的最优估计。
它的应用十分广泛,特别在导航、图像处理、机器人技术等领域中发挥着重要作用。
在现实世界中,我们往往面临着各种噪声和不确定性,这些因素会影响我们对系统状态的准确估计。
卡尔曼滤波通过动态调整系统状态的估计值,可以有效地抑制这些干扰,提供更加精确的系统状态估计。
卡尔曼滤波的核心思想是利用系统模型的预测和传感器测量值之间的线性组合,来计算系统状态的最优估计。
通过动态地更新状态估计值,卡尔曼滤波可以在对系统状态的准确估计和对传感器测量值的实时响应之间进行平衡。
卡尔曼滤波算法包括两个主要步骤:预测和更新。
在预测步骤中,通过系统模型和上一时刻的状态估计值,预测当前时刻的系统状态。
在更新步骤中,将传感器测量值与预测值进行比较,然后根据测量误差和系统不确定性的权重,计算系统状态的最优估计。
卡尔曼滤波具有很多优点,例如它对传感器噪声和系统模型误差具有鲁棒性,可以提供较为稳定的估计结果。
此外,卡尔曼滤波还可以有效地处理缺失数据和不完全的测量信息,具有较高的自适应性和实时性。
尽管卡尔曼滤波在理论上具有较好的性能,但实际应用中还需考虑诸如系统模型的准确性、测量噪声的特性等因素。
因此,在具体应用中需要根据实际情况进行算法参数的调整和优化,以提高估计的准确性和可靠性。
通过深入理解卡尔曼滤波的原理和应用,我们可以更好地应对复杂环境下的估计问题,从而在实际工程中取得更好的效果。
本文将介绍卡尔曼滤波的基本原理和算法步骤,以及其在不同领域的应用案例。
希望通过本文的阅读,读者们可以对卡尔曼滤波有一个全面的了解,并能够在实际工程中灵活运用。
1.2文章结构文章结构部分的内容可以按照以下方式编写:1.2 文章结构本文将围绕卡尔曼滤波和卡尔曼算法展开论述。
首先,我们会在引言部分对卡尔曼滤波和卡尔曼算法进行简要概述,介绍其基本原理和应用领域。
卡尔曼滤波收敛

卡尔曼滤波收敛摘要:1.卡尔曼滤波的基本原理2.卡尔曼滤波的收敛性证明3.卡尔曼滤波在实际应用中的优势4.卡尔曼滤波的局限性及改进方向正文:一、卡尔曼滤波的基本原理卡尔曼滤波是一种线性高斯状态空间模型,主要用于估计系统状态和优化控制策略。
它通过将预测状态量的高斯分布和观测量的高斯分布进行融合,生成一个新的高斯分布,从而实现对系统状态的估计。
卡尔曼滤波主要包括五个步骤:预测、校正、更新、观测和修正。
预测步骤用于预测系统的状态,校正步骤用于根据测量值修正预测结果,更新步骤用于更新状态估计值,观测步骤用于观测系统状态,修正步骤用于根据观测结果修正状态估计值。
二、卡尔曼滤波的收敛性证明卡尔曼滤波的收敛性可以通过数学证明来阐述。
假设系统状态满足线性高斯状态空间模型,并且观测噪声和过程噪声都满足正态分布。
则卡尔曼滤波可以得到如下状态估计方程:x_hat = A^T * P * A * x + A^T * P * C * z其中,x_hat 表示状态估计值,P 表示状态协方差矩阵,A 表示系统状态转移矩阵,C 表示观测矩阵,z 表示观测值。
可以看出,卡尔曼滤波得到的状态估计值是观测值和预测值的加权平均,权重分别为卡尔曼增益和观测噪声方差。
由于卡尔曼增益和观测噪声方差都是正数,因此状态估计值会随着观测值的增加而逐渐趋近于真实值,即卡尔曼滤波具有收敛性。
三、卡尔曼滤波在实际应用中的优势卡尔曼滤波在实际应用中具有很多优势,主要体现在以下几个方面:1.高精度:卡尔曼滤波可以有效地融合预测和观测信息,提高状态估计的精度。
2.实时性:卡尔曼滤波可以在实时测量观测值的情况下进行状态估计,适用于动态系统的实时控制。
3.鲁棒性:卡尔曼滤波对噪声具有较强的鲁棒性,即使在噪声较大的情况下,仍然可以得到较为准确的状态估计结果。
4.适用性广泛:卡尔曼滤波适用于线性高斯状态空间模型,可以应用于各种领域的问题,如导航、定位、机器人控制等。
卡尔曼滤波原理及应用

卡尔曼滤波原理及应用
一、卡尔曼滤波原理
卡尔曼滤波(Kalman filter)是一种后验最优估计方法。
它以四个步骤:预测、更新、测量、改善,不断地调整估计量来达到观测的最优估计的目的。
卡尔曼滤波的基本思想,是每次观测到某一位置来更新位置的参数,并用更新结果来预测下一次的位置参数,再由预测时产生的误差来改善当前位置参数。
从而可以达到滤波的效果,提高估计精度。
二、卡尔曼滤波应用
1、导航系统。
卡尔曼滤波可以提供准确的位置信息,把最近获得的各种定位信息和测量信息,如GPS、ISL利用卡尔曼滤波进行定位信息融合,可以提供较准确的空中、地面导航服务。
2、智能机器人跟踪。
在编队技术的应用中,智能机器人往往面临着各种复杂环境,很难提供精确的定位信息,而卡尔曼滤波正是能解决这一问题,将持续不断的测量信息放在卡尔曼滤波器中,使机器人能够在范围内定位,跟踪更新准确可靠。
3、移动机器人自主避障。
对于移动机器人来说,很多时候在前传感器检测不到
人或障碍物的时候,一般将使用卡尔曼滤波来进行自主避障。
卡尔曼滤波的定位精度很高,相对于静止定位而言,移动定位有更多的参数要考虑,所以能提供更准确的定位数据来辅助自主避障,准确的定位信息就可以让我们很好的实现自主避障。
4、安防监控。
与其他传统的安防场景比,安防场景如果需要运动物体位置估计或物体检测,就必须使用卡尔曼滤波技术来实现,这是一种行为检测和行为识别的先进技术。
(注:安防监控可用于感知移动物体的位置,并在设定的范围内监测到超出范围的物体,以达到安全防护的目的。
)。
卡尔曼滤波计算举例全

卡尔曼滤波计算举例⏹计算举例⏹卡尔曼滤波器特性假设有一个标量系统,信号与观测模型为[1][][]x k ax k n k +=+[][][]z k x k w k =+其中a 为常数,n [k ]和w [k ]是不相关的零均值白噪声,方差分别为和。
系统的起始变量x [0]为随机变量,其均值为零,方差为。
2nσ2σ[0]x P (1)求估计x [k ]的卡尔曼滤波算法;(2)当时的卡尔曼滤波增益和滤波误差方差。
220.9,1,10,[0]10nx a P =σ=σ==1. 计算举例根据卡尔曼算法,预测方程为:ˆˆ[/1][1/1]xk k ax k k -=--预测误差方差为:22[/1][1/1]x x nP k k a P k k -=--+σ卡尔曼增益为:()1222222[][/1][/1][1/1][1/1]x x x nx n K k P k k P k k a P k k a P k k -=--+σ--+σ=--+σ+σˆˆˆ[/][/1][]([][/1])ˆˆ[1/1][]([][1/1])ˆ(1[])[1/1][][]xk k x k k K k z k x k k axk k K k z k ax k k a K k xk k K k z k =-+--=--+---=---+滤波方程:()()2222222222222[/](1[])[/1][1/1]1[1/1][1/1][1/1][1/1]x x x nx n x n x nx nP k k K k P k k a P k k a P k k a P k k a P k k a P k k =--⎛⎫--+σ=---+σ ⎪--+σ+σ⎝⎭σ--+σ=--+σ+σ滤波误差方差起始:ˆ[0/0]0x=[0/0][0]x x P P =k [/1]x P k k -[/]x P k k []K k 012345689104.76443.27012.67342.27652.21422.18362.16832.16089.104.85923.64883.16542.94752.84402.79352.76870.47360.32700.26730.24040.22770.22140.21840.2168ˆ[0/0]0x=[0/0]10x P =220.9110na =σ=σ=2. 卡尔曼滤波器的特性从以上计算公式和计算结果可以看出卡尔曼滤波器的一些特性:(1)滤波误差方差的上限取决于测量噪声的方差,即()2222222[1/1][/][1/1]x nx x na P k k P k k a P k k σ--+σ=≤σ--+σ+σ2[/]x P k k ≤σ这是因为(2)预测误差方差总是大于等于扰动噪声的方差,即2[/1]x nP k k -≥σ这是因为222[/1][1/1]x x n nP k k a P k k -=--+σ≥σ(3)卡尔曼增益满足,随着k 的增加趋于一个稳定值。
卡尔曼滤波原理

卡尔曼滤波原理卡尔曼滤波(Kalman Filtering)是一种用于估计、预测和控制的最优滤波方法,由美国籍匈牙利裔数学家卡尔曼(Rudolf E. Kalman)在1960年提出。
卡尔曼滤波是一种递归滤波算法,通过对测量数据和系统模型的融合,可以得到更准确、更可靠的估计结果。
在各种应用领域,如导航、机器人、航空航天、金融等,卡尔曼滤波都被广泛应用。
1. 卡尔曼滤波的基本原理卡尔曼滤波的基本原理是基于状态空间模型,将系统的状态用随机变量来表示。
它假设系统的状态满足线性高斯模型,并通过线性动态方程和线性测量方程描述系统的演化过程和测量过程。
具体而言,卡尔曼滤波算法基于以下两个基本步骤进行:1.1 预测步骤:通过系统的动态方程预测当前时刻的状态,并计算预测的状态协方差矩阵。
预测步骤主要是利用前一时刻的状态和控制输入来预测当前时刻的状态。
1.2 更新步骤:通过系统的测量方程,将预测的状态与实际测量值进行融合,得到最优估计的状态和状态协方差矩阵。
更新步骤主要是利用当前时刻的测量值来修正预测的状态。
通过不断迭代进行预测和更新,可以得到连续时间上的状态估计值,并获得最优的估计结果。
2. 卡尔曼滤波的优势卡尔曼滤波具有以下几个优势:2.1 适用于线性系统与高斯噪声:卡尔曼滤波是一种基于线性高斯模型的滤波方法,对于满足这些条件的系统,卡尔曼滤波能够给出最优的估计结果。
2.2 递归计算:卡尔曼滤波是一种递归滤波算法,可以在每个时刻根据当前的测量值和先前的估计结果进行迭代计算,不需要保存过多的历史数据。
2.3 最优性:卡尔曼滤波可以通过最小均方误差准则,给出能够最优估计系统状态的解。
2.4 实时性:由于卡尔曼滤波的递归计算特性,它可以实时地处理数据,并及时根据新的测量值进行估计。
3. 卡尔曼滤波的应用卡尔曼滤波在多个领域都有广泛的应用,以下是一些典型的应用例子:3.1 导航系统:卡尔曼滤波可以用于导航系统中的位置和速度估计,可以结合地面测量值和惯性测量传感器的数据,提供精确的导航信息。
卡尔曼滤波 详解
卡尔曼滤波详解卡尔曼滤波是一种常用于估计和预测系统状态的优秀滤波算法。
它于1960年代由R.E.卡尔曼提出,被广泛应用于飞机、导弹、航天器等领域,并逐渐在其他科学领域中得到应用。
卡尔曼滤波的基本思想是通过融合测量数据和系统模型的信息,对系统状态进行更准确的估计。
其核心原理是基于贝叶斯定理,将先验知识与观测数据相结合来更新系统状态的概率分布。
卡尔曼滤波算法包括两个主要步骤:更新和预测。
在更新步骤中,算法通过观测值来计算系统的状态估计。
在预测步骤中,算法使用系统的模型对下一个时间步长的状态进行预测。
通过反复进行这两个步骤,可以得到不断更新的状态估计结果。
卡尔曼滤波算法的关键是系统模型和观测模型的建立。
系统模型描述了系统状态的演化规律,通常用线性动态方程表示。
观测模型描述了观测值与系统状态之间的关系,也通常用线性方程表示。
当系统模型和观测模型都是线性的,并且系统噪声和观测噪声都是高斯分布时,卡尔曼滤波算法能够得到最优的状态估计。
卡尔曼滤波的优点在于,在给定模型和测量信息的情况下,它能够最小化误差,并提供最佳的状态估计。
此外,卡尔曼滤波算法还具有递归、高效、低存储等特点,使其在实时应用中具有广泛的应用前景。
然而,卡尔曼滤波算法也有一些限制。
首先,它要求系统模型和观测模型能够准确地描述系统的动态特性。
如果模型存在误差或不完全符合实际情况,滤波结果可能会产生偏差。
其次,卡尔曼滤波算法适用于线性系统,对于非线性系统需要进行扩展,例如使用扩展卡尔曼滤波或无迹卡尔曼滤波。
另外,卡尔曼滤波算法还会受到噪声的影响。
如果系统的噪声比较大,滤波结果可能会失真。
此外,卡尔曼滤波算法对初始状态的选择也敏感,不同的初始状态可能会导致不同的滤波结果。
综上所述,卡尔曼滤波是一种高效、优秀的滤波算法,能够在给定模型和测量信息的情况下提供最优的状态估计。
然而,它也有一些局限性,需要充分考虑系统模型和观测模型的准确性、噪声的影响以及初始状态的选择。
卡尔曼滤波 参数
卡尔曼滤波参数一、卡尔曼滤波简介卡尔曼滤波是一种利用线性系统状态方程,通过观测数据对系统状态进行估计的最优滤波方法。
它可以在不知道系统初始状态和测量噪声精度的情况下,通过迭代递推计算出系统状态最优估计值和误差协方差矩阵。
卡尔曼滤波广泛应用于航空、导航、控制、信号处理等领域。
二、卡尔曼滤波参数1. 系统模型参数:包括状态转移矩阵A、控制输入矩阵B、观测矩阵C和过程噪声Q等。
2. 初始状态估计值:指在没有任何观测数据的情况下,对系统初始状态的估计值。
3. 初始误差协方差矩阵:指在没有任何观测数据的情况下,对系统初始误差协方差矩阵的估计值。
4. 观测噪声精度:指观测噪声服从高斯分布时的标准差。
三、系统模型参数详解1. 状态转移矩阵A:描述了系统状态之间的关系。
例如,对于一个飞行器,状态转移矩阵可以描述当前位置、速度和加速度之间的关系。
2. 控制输入矩阵B:描述了控制量与系统状态之间的关系。
例如,对于一个飞行器,控制输入矩阵可以描述飞行员对油门、方向舵和升降舵的控制与速度和加速度之间的关系。
3. 观测矩阵C:描述了观测量与系统状态之间的关系。
例如,对于一个飞行器,观测矩阵可以描述雷达或GPS测量到的位置、速度和加速度与系统状态之间的关系。
4. 过程噪声Q:描述了系统状态转移时由于外部因素而引起的噪声。
例如,在飞行过程中由于气流等因素会引起位置、速度和加速度发生变化。
四、初始状态估计值详解初始状态估计值是指在没有任何观测数据的情况下,对系统初始状态进行估计得到的值。
这个值可以基于经验或者先验知识来确定。
例如,在飞行器起飞前可以通过预测模型来估计出初始位置、速度和加速度等参数。
五、初始误差协方差矩阵详解初始误差协方差矩阵是指在没有任何观测数据的情况下,对系统状态估计误差的协方差矩阵进行估计得到的值。
这个值可以基于经验或者先验知识来确定。
例如,在飞行器起飞前可以通过预测模型来估计出位置、速度和加速度等参数的误差协方差矩阵。
卡尔曼滤波计算速度
卡尔曼滤波计算速度摘要:1.卡尔曼滤波简介2.卡尔曼滤波的计算速度3.影响卡尔曼滤波计算速度的因素4.如何提高卡尔曼滤波的计算速度5.结论正文:一、卡尔曼滤波简介卡尔曼滤波(Kalman filter)是一种线性最优递归滤波算法,主要用于实时估计动态系统的状态变量。
其主要优点是在观测数据存在噪声的情况下,能够实现对系统状态的精确估计。
卡尔曼滤波在许多领域都有广泛应用,如导航定位、信号处理、机器人控制等。
二、卡尔曼滤波的计算速度卡尔曼滤波的计算速度主要取决于以下几个因素:1.系统的规模:卡尔曼滤波的计算复杂度与系统状态变量的数量成正比。
状态变量越多,需要计算的矩阵乘法和加法运算越多,计算速度相对较慢。
2.观测数据的数量和质量:观测数据越多,卡尔曼滤波的计算速度会相应提高。
同时,如果观测数据的质量较高,即噪声较小,那么卡尔曼滤波的收敛速度也会较快。
3.滤波器的参数:卡尔曼滤波的计算速度还与滤波器的参数选择有关。
例如,选择合适的滤波器增益可以加速收敛速度,但过大的增益可能导致滤波器不稳定。
三、影响卡尔曼滤波计算速度的因素1.系统矩阵的规模:系统矩阵的规模直接影响卡尔曼滤波的计算速度。
如果系统矩阵较大,那么计算复杂度也会相应增加,导致计算速度较慢。
2.观测矩阵的规模:观测矩阵的规模也会影响卡尔曼滤波的计算速度。
观测矩阵越大,需要的矩阵乘法和加法运算越多,计算速度越慢。
3.噪声水平:观测数据的噪声水平会影响卡尔曼滤波的收敛速度。
噪声越大,滤波器需要更多的迭代次数才能达到预定的收敛精度,计算速度相应降低。
四、如何提高卡尔曼滤波的计算速度1.优化系统模型:通过选择合适的系统模型,可以降低系统矩阵的规模,从而提高卡尔曼滤波的计算速度。
2.采用近似计算方法:对于大规模的系统,可以采用近似计算方法,如矩阵分解、Cholesky 分解等,以降低计算复杂度。
3.并行计算:利用现代计算机的多核处理器,可以实现卡尔曼滤波的并行计算,从而提高计算速度。
卡尔曼滤波
什么是卡尔曼滤波?卡尔曼滤波器(Kalman Filter )是一个最优化自回归数据处理算法(optimal recursive data processing algorithm )。
卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。
它适合于实时处理和计算机运算。
现设线性时变系统的离散状态防城和观测方程为:X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)Y(k) = H(k)·X(k)+N(k)其中X(k)和Y(k)分别是k 时刻的状态矢量和观测矢量F(k,k-1)为状态转移矩阵U(k)为k 时刻动态噪声T(k,k-1)为系统控制矩阵H(k)为k 时刻观测矩阵N(k)为k 时刻观测噪声则卡尔曼滤波的算法流程为:预估计)(X k = F(k,k-1)·X(k-1)计算预估计协方差矩阵Q(k) = U(k)×U(k)')(k C =F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'计算卡尔曼增益矩阵R(k) = N(k)×N(k)'K(k) = )(k C ×H(k)'/[H(k)×)(k C ×H(k)’+R(k)]更新估计)(X ~k =)(X k +K(k)×[Y(k)-H(k)×)(X k ]计算更新后估计协防差矩阵)(C ~k = [I-K(k)×H(k)]×)(k C ×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'X(k+1) = )(X ~kC(k+1) =)(C ~k重复以上步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卡尔曼滤波的实质是由量测值重构系统的 状态向量。它以“预测—实测—修正”的 顺序递推,根据系统的量测值来消除随机 干扰,再现系统的状态,或根据系统的量 测值从被污染的系统中恢复系统的本来面 目。
3.卡尔曼滤波特点:
卡尔曼滤波是解决状态空间模型估计与预 测的有力工具之一,它不需存储历史数据, 就能够从一系列的不完全以及包含噪声的 测量中,估计动态系统的状态。卡尔曼滤 波是一种递归的估计,即只要获知上一时 刻状态的估计值以及当前状态的观测值就 可以计算出当前状态的估计值,因此不需 要记录观测或者估计的历史信息。
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……(4)
状态协方差更新:为了要令卡尔曼滤波器不 断的运行下去直到系统过程结束,还要更 新k状态下X(k|k)的协方差。 P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5) 其中I为1的矩阵,对于单模型单测量,I=1。 算法可以自回归的运算下去。 公式(1)-(5)为卡尔曼滤波原理的五个重要基 本公式。
卡尔曼滤波简介
学号: 姓名:
1.背景介绍:
Kalman,匈牙利数学家。 卡尔曼滤波器源于他的博士论文和1960年 发表的论文《A New Approach to Linear Filtering and Prediction Problems》 (线性滤波与预测问题的新方法)。
2. 卡尔曼滤波的概念:
协方差预测: 对应于X(k|k-1)的协方差用P表示: P(k|k-1)=AP(k-1|k-1) A’+Q ……… (2) 式(2)中,P(k|k-1)是X(k|k-1)对应的协方差, P(k-1|k-1)是X(k-1|k-1)对应的协方差,A’ 表示A的转置矩阵,Q是系统过程的协方差。 公式1,2就是卡尔曼滤波器5个公式当中的 前两个,是对系统的状态预测。
6.2
更新阶段
新息或测量余量:y(k)=Z(k)-H X(k|k-1) 新息协方差:S(k)=H P(k|k-1) H’ +R 卡尔曼增益(Kalman Gain): Kg(k)= P(k|k1) H’ / (H P(k|k-1) H’ + R) …… (3) 状态估计更新:收集现在状态的测量值,结 合预测值和测量值,可以得到现在状态的 最优化估算值。
5.卡尔曼滤波控制系统结构图
由于系统的状态x是不确定的,卡尔曼滤波 器的任务就是在有随机干扰w和噪声v的情 ˆ 况下给出系统状态x的最优估算值 x ,它在 统计意义下最接近状态的真值x,从而实现 最优控制u( x )的目的。 ˆ
状态方程:X(k)=AX(k-1)+BU(k)+W(k) 输出方程:y(k)=CX(k)+Z(k) 系统测量值:Z(k)=HX(k)+V(k) 在上述方程中,X(k)是k时刻的系统状态, U(k)是k时刻对系统的控制量。A和B是系 统参数,对于多模型系统,它们为矩阵。 Z(k)是k时刻的测量值,H是测量系统的参 数,对于多测量系统,H为矩阵。W(k)和 V(k)分别表示过程噪声和测量噪声。它们被 假设成高斯白噪声,它们的协方差分别是Q, R。
卡尔曼滤波就是在有随机干扰和噪声的情 况下,以线性最小方差估计方法给出状态 的最优估计值。卡尔曼滤波是在统计的意 义上给出最接近状态真值的估计值。 卡尔曼提出的递推最优估计理论,采用状 态空间描述法,在算法采用递推形式,卡 尔曼滤波能处理多维和非平稳的随机过程。 卡尔曼滤波理论的提出,在工程上得到了 广泛的应用,尤其在控制、制导、导航、 通讯等现代工程方面。
卡尔曼滤波是美国工程师Kalman在线性最 小方差估计的基础上,提出的在数学结构 上比较简单的而且是最优线性递推滤波方 法,具有计算量小、存储量低,实时性高 的优点。特别是对经历了初始滤波后的过 渡状态,滤波效果非递推估计的算法, 其基本思想是:采用信号与噪声的状态空 间模型,利用前一时刻的估计值和现时刻 的观测值来更新对状态变量的估计,求出 现在时刻的估计值。它适合于实时处理和 计算机运算。
4.卡尔曼滤波器的原理
状态估计原理 状态估计是卡尔曼滤波的重要组成部分, 一般来说,根据观测数据对随机量进行定 量推断就是估计问题,特别是对动态行为 的状态估计,它能实现实时运行状态的估 计和预测功能。
受噪声干扰的状态量是个随机量,不可能 测得精确值,但可对它进行一系列观测, 并依据一组观测值,按某种统计观点对它 进行估计。使估计值尽可能准确地接近真 实值,这就是最优估计。真实值与估计值 之差称为估计误差。若估计值的数学期望 与真实值相等,这种估计称为无偏估计。
6.卡尔曼滤波过程
卡尔曼滤波包括两个阶段:预测和更新。 在预测阶段,滤波器应用上一状态的估计 做出对当前状态的估计。在更新阶段,滤 波器利用在当前状态的观测值优化预测阶 段的预测值,以获的一个更精确的当前状 态的估计。
6.1预测阶段
状态估计: 根据系统的模型,可以基于系统的上一状态而预 测出现在的状态。 X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1) 式(1)中,A是作用在前一状态的状态转移模型(状 态转移矩阵),B是作用在控制向量上的控制输入模 型(输入输出矩阵), X(k|k-1)是利用上一状态预测 的结果,X(k-1|k-1)是上一状态最优的结果,U(k) 为现在状态的控制量,如果没有控制量,它可以 为0 。
Thank You