1.2简单多面体ppt课件

合集下载

多面体课件

多面体课件

例题分析
例1 下列命题正确的是 A. 有两个面平行,其余各面都是四边形的几何体叫棱柱
B. 有两个面平行,其余各面都是平行四边形的几何体叫棱柱
C. 有两个侧面是矩形的棱柱是直棱柱 D. 有两个相邻侧面垂直于底面的棱柱是直棱柱 解
A1 如图,面ABC∥A1B1C1,但图中 的几何体中每相邻两个四边形的 公共边并不都平行,故不是棱柱。 A、B都不正确。当两个相邻侧 面都垂直于底面是,它们的公共 A 侧棱垂直于底面,因此这样的棱 柱是直棱柱。故选D。 C1 B1
A1
2、棱柱的表示 棱柱用底面各顶点的字母表 示,如图中的棱柱,记做棱柱 ABCDE—A1B1C1D1E1
A B
D1 B1 C1
E D C
3、棱柱的性质
(1)侧棱都相等,侧面是平行四边形; (2)两个底面与平行于底面的截面是全等的多边形; (3)过不相邻的两条侧棱的截面是平行四边形;
E A B
棱锥的基本概念
S
棱锥的顶点 棱锥的侧棱
棱锥的高
D E A O B
棱锥的侧面
棱锥的底面
C
1、棱锥的分类 分类标准:底面多边形的边数
三棱锥
四棱锥
五棱锥
六棱锥
2. 正棱锥的性质
(1)各侧棱相等,各侧面都是全等的等腰三角形.
这些等腰三角形底边上的高叫做正棱锥的斜高,它 们长度都相等. 正棱锥的顶点在底面的射影为底面中心 S (2)棱锥的高、斜高、斜高在底 面内的射影组成一个直角三角形; 棱锥的高、侧棱、侧棱在底面内的 射影也组成一个直角三角形。 A
E
C
D
D
A B
C
问:下列几何体哪些是棱柱?
(1) (2) (3) (4)

人教版高中数学必修2《基本立体图形—多面体》PPT课件

人教版高中数学必修2《基本立体图形—多面体》PPT课件

(4)棱台 定义及分类
定义:用一个平行于棱锥底面的平面去截
棱锥,底面与截面之间那部分多面体叫做
棱台.
分类:由三棱锥、四棱锥、五棱锥……截
得的棱台分别为三棱台、四棱台、五棱
台……
记作棱台
正棱台
ABCD-A′B′C′D′
例题
将下列各类几何体之间的关系用Venn图表示出来:
多面体、长方体、棱柱、棱锥、棱台、直棱柱、四面体、 平行六面体.
基本立体图形(多面体)
高一年级 数学
立体几何是研究现实世界中物体的形状、大小与 位置关系的数学分支,在解决实际问题中有着广泛的 应用,在小学和初中我们已经认识了一些从现实物体 中抽象出来的立体图形,立体图形各式各样、千姿百 态,本节课我们将从空间几何体的整体观察入手,研 究它们的结构特征,学习它们的表示方法.
我们把棱柱中两个互相平行的面叫做棱柱的底面,它 们是全等的多边形;其余各面叫做棱柱的侧面,它们 都是平行四边形;相邻侧面的公共边叫做棱柱的侧棱, 侧面与底面的公共顶点叫做棱柱的顶点.
记作棱柱 ABCDEFA′B′C′D′E′F′
分类:直棱柱,斜棱柱,正棱柱,平行六面体.
像金字塔这样的多面体,均由平面图形围成,其中一个面 是多边形,其余各面都是有一个公共顶点的三角形,这样 的多面体就是棱锥.
剩余部分是一个侧棱长为2的三棱柱,并指出截去的几何 体的特征.
立体几何中常用割补法解题,将一个不规则的几何体 用一个平面分割成规则的几何体,这种方法蕴含了一 种构造思想,有利于提高同学们的创新思维品质.
如果我们用一个平行于棱锥底面的平面去截棱锥,其 中一部分还是棱锥,那么另一部分又是什么几何体呢? 我们把底面和截面之间的部分多面体就叫做棱台.

简单旋转体与多面体PPT课件

简单旋转体与多面体PPT课件

A' D
B'
L
c
C
=A B 2A D 2D D 2
=a2b2c2
A
a
b
B
L= a2b2c2
第36页/共38页
B组---2、
第37页/共38页
感谢您的观看!
第38页/共38页

半圆 直径 所在的直线
第31页/共38页
二、多面体的结构特征
多面体
结构特征
棱柱
有两个面 互相平行 ,其余各面都是四边形,并 且每相邻两个面的交线都_平__行__且__相_等___
有一个面是 多边形 ,而其余各面都是有一个公共 棱锥 __顶__点
的三角形
棱台
棱锥被平行于 底面 的平面所截, 截面 和 底面 之间的部分
三棱锥 四面体 直棱锥
四棱锥 正棱锥
第27页/共38页
五棱锥
2. 棱台
用一个平行于棱锥底面的平面去截棱锥 ,底面与截面之间的部分的多面体叫做棱台.
A1
D1
C1
B1
上底面
侧棱 侧面
下底面
正棱台:用正棱椎截得的棱 台叫正棱台
四棱台ABCD--A'B'C'D'
顶点
第28页/共38页
几何体的分类
柱体
锥体
D.圆锥所有的轴截面是全等的等腰三角形
2. 下列命题是真命题的是( )
A 以直角三角形的一直角边所在的直线为轴旋转所得 的几何体为圆锥;
B 以直角梯形的一腰所在的直线为轴旋转所得的旋转 体为圆柱;
C 圆柱、圆锥、棱锥的底面都是圆;
D 有一个面为多边形,其他各面都是三角形的几何体 是棱锥。

2014届北师大版高中数学必修二(高一)课件 第一章§1.2

2014届北师大版高中数学必修二(高一)课件 第一章§1.2

立体几何初步
典题例证技法归纳
题型探究
题型一 简单多面体的概念
例1 下列说法:
(1)棱柱的侧面都是平行四边形; (2)棱锥的侧面为三角形,且所有侧面都有一个公共顶点;
(3)棱台的侧棱所在直线均相交于同一点;
(4)各侧面都是全等的等腰三角形的三棱锥必是正三棱锥; (5)底面是正三角形的棱锥是正三棱锥. 其中,正确的有__________.
是由一个矩形旋转而成的);图(4)不是由一个直角三角形旋转 而成,故不是圆锥;图(5)截圆锥的平面与底面不平行,故截面与 底面之间的几何体不是圆台. 【名师点评】 在识别空间几何体时,要全面抓住概念及几何
体的结构特征,而不要仅根据概念的某一个结论去判断几何体,
判断的依据不充分,被假象所迷惑,作出错误的判断.
第一章
立体几何初步
1.2 简单多面体
栏目 导引
第一章
立体几何初步
学习导航
学习目标 实例 ― ― → 多面体 ― ― →
了解 理解
棱柱、棱锥、棱台的结构特征 重点难点 重点:棱柱、棱锥及棱台的结构特征.
难点:准确运用多面体、棱柱、棱锥、棱台的概念作出判断.
栏目 导引
第一章
立体几何初步
新知初探思维启动
栏目 导引
第一章
立体几何初步
解析:选C.由棱锥的定义可知,棱锥的各侧面 都是三角形.有一个面是多边形,其余各面都 是三角形,如果这些三角形没有一个公共顶点, 则这个几何体就不是棱锥,故(1)错.四面体就是由四个面所 围成的几何体,因此,四面体的任何一个面作底面的几何体
都是三棱锥,故(2)对.棱锥的侧棱长可以相等,也可以不相
等,但各侧棱必须有一个公共顶点,故(3)错.对(4),如图,当 截面不平行于底面时棱锥底面和截面之间的部分不是棱台.

简单多面体

简单多面体

(1)
(2)
思考:棱柱、棱锥和棱台都是多面 体,它们在结构上有那些相同点和 不同点?三者的关系如何?当底面 发生变化时,它们能否互相转化?
棱柱棱台棱锥变换
空间几何体:
对于空间的物体,如果只考虑它的的形状、大小和 位置,而不考虑物体的其他性质,从中抽象出来的空间 图形叫做空间几何体
柱、锥、台、球的结构特征
D1 A1
C1
B1
A1
C1 A1 B1 B1
E1 D1
C1
D C
A
BA
C A
B B
E
D C
1. 侧棱不垂直于底的棱柱叫做斜棱柱。 2.侧棱垂直于底的棱柱叫做直棱柱。 3. 底面是正多边形的直棱柱叫做正棱柱。
棱柱的底面可以是三角形、四边形、五边 形、……
我们把这样的棱柱分别叫做三棱柱、四棱柱、 五棱柱、……
有一个面是多
边形,其余各面都
是有一个公共顶点
的三角形。
侧棱
A
顶点 S
侧面
D
C
底面
B
棱柱 棱锥 棱台
圆柱 圆锥 圆台

结构特征
用一个平行于棱
D’
锥底面的平面去截棱
D
锥,底面与截面之间的 A’
部分是棱台.
A
C’
B’
C
B
棱柱 棱锥 棱台 圆柱
圆锥 圆台

结构特征
A’
以矩形的一边所 母 在直线为旋转轴,其 线
不在同一个面上的两个顶点的连线叫做棱柱的 对角线。
与两个底面都垂直的直线夹在两个底面 间的线段长叫作棱柱的高。
E1 A1
D1 C1
B1
A
E DC

§1.1.2简单多面体

§1.1.2简单多面体

A
x
B
空间几何体的斜二测画法
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
D
Z
C
A
y
M
D
P
O
BQ C N
A
x
B
空间几何体的斜二测画法
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
有一个面是多边形,其余各面是有 一个公共顶点的三角形, 由这些面所围 成的几何体叫做棱锥。
这个多边形面叫做棱锥的底面。 有公共顶点的各个三角形叫做棱 锥的侧面。 各侧面的公共顶点叫做棱锥 的顶点。
相邻侧面的公共边叫做棱锥 的侧棱。
S A
B
D C
2、棱锥的分类: 按底面多边形的边数,可以分为三 棱锥、四棱锥、五棱锥、……
A:大小:长对正(主视图与俯视图),高平 齐(主视图与左视图),宽相等(左视图与俯 视图).
B:虚实:在画图时,看得见部分的轮廓通常画 成实线,看不见部分的轮廓线通常画成虚线.
空间几何体的斜二测画法
空间几何体的直观图是一种平行投影下的图像,一般我们采用斜二测画法来作 空间几何体的直观图。下面就让我们通过一个具体的例子来看下什么是斜二测画法 以及它的作图要点和步骤。
3、棱锥的表示方法:用表示顶点和底面 的字母表示,如四棱锥S-ABCD。
问题:有一个面是多边形,其余
各面都是三角形的几何体是棱锥吗?
F
如图:
E
D
C
A
B
注意棱锥的两个本质特征
正棱锥
S
如果棱锥的底面是正多 边形,且顶点在底面上 的射影是底面的中心, 则这个棱锥叫做正棱锥。 斜高:SM

《简单多面体》课件

《简单多面体》课件

绘画构图
在绘画构图中,简单多面 体可以作为视觉元素,增 强画面的层次感和立体感 。
装饰设计
简单多面体的几何美感在 室内装饰设计中得到广泛 应用,如墙面、地面、家 具等的设计。
科学实验中的应用
物理实验模型
简单多面体的几何特性使其成为 物理学中某些实验模型的理想选 择,如力学、光学、电磁学等实
验。
材料科学
详细描述
每种类型的多面体都有其独特的几何特征和性质。例如,四面体由四个三角形组成,每 个三角形都与其他三个三角形相连接;八面体则由八个四边形组成,每个四边形都与其 他六个四边形相连接。此外,还有十二面体、二十面体等其他类型的多面体,它们的顶
点、面和边的数量各不相同,具有不同的几何属性和应用场景。
02
建筑结构优化
在建筑结构设计中,简单 多面体的结构稳定性好, 能够提高建筑的抗震性能 和承载能力。
建筑空间利用
简单多面体的空间构成特 点有助于实现建筑空间的 合理利用,提高建筑的使 用效率。
艺术创作中的应用
雕塑造型
简单多面体在雕塑创作中 常被用作基本形体,通过 组合、变形等手法创造出 丰富的艺术形象。
在材料科学实验中,简单多面体可 以作为材料结构的模型,有助于研 究材料的性能和结构之间的关系。
数学研究
简单多面体在数学领域常被用作几 何学、拓扑学等学科的研究对象, 有助于深入探讨数学的基本原理和 规律。
05
简单多面体的制作方法
材料选择
纸张
剪刀、胶水等工具
选择厚度适中、质地良好的纸张,以 保证多面体的结实度和美观度。
详细描述
每个面都是一个正方形 ,所有的面都具有相同 的面积,所有的顶点都
是等角的。
特性

《多面体的概念》课件

《多面体的概念》课件

曲面多面体
具有曲面作为面的多面体 ,例如球体和圆柱体。
多面体的表示方法
几何表示法
通过顶点和棱来表示多面体,常 用在几何学中。
代数表示法
通过代数方程来表示多面体的顶点 和棱,常用在计算机图形学中。
参数表示法
通过参数方程来表示多面体的顶点 和棱,也称为参数曲面。
02
多面体的性质
BIG DATA EMPOWERS TO CREATE A NEW
01
02
03
封闭性
多面体是一个封闭的空间 ,由多个平面组成。
凸多面体
多面体的所有面都是凸面 ,即每个面都是向外凸起 的。
凹多面体
多面体的某些面是凹面, 即某些面是向内凹陷的。
多面体的分类
正多面体
所有面都是正多边形的多 面体。例如,正方体、正 八面体、正十二面体和正 二十面体。
斜多面体
不是所有面都是正多边形 的多面体,但所有顶点都 在同一个平面上。
多面体的对称性
总结词
对称性是多面体的一种重要几何属性。
详细描述
多面体的对称性描述了多面体在旋转、平移或镜像反射下保持不变的特性。研究 多面体的对称性有助于深入理解其几何属性和美学价值,并在建筑设计、晶体结 构等领域有广泛应用。
03
多面体的应用
BIG DATA EMPOWERS TO CREATE A NEW
正多面体的每个面都是正多边形,且每个顶点连 接的面数相等,因此它们的所有角度和边长都是 相等的。
半正多面体
半正多面体的定义
半正多面体是一种每个面都是全等的正多边形或等腰三角形,且每 个顶点连接的面数都相同的几何体。
半正多面体的种类
半正多面体的种类较多,包括底面为正多边形的棱柱、底面为等腰 三角形的棱锥等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30
❖ 一个棱锥至少有四个面,所以三棱锥也叫四 面体.
31
❖ 1.下列说法正确的是( ) ❖ A.三棱柱有三个侧面、三条侧棱和三
个顶点 ❖ B.四面体有四个面、六条棱和四个顶
点 ❖ C.六棱锥有七个顶点 ❖ D.棱柱的各条侧棱可以不相等
32
❖ 解析:对于A,三棱柱有六个顶点;对于C, 各侧面的公共顶点叫棱锥的顶点,只有1个; 对于D,棱柱的各侧棱相等.
§1. 简单几何体
亳州一中高一数学备课时
1
§1.2:简单多面体
2
§1.2:简单多面体
国家游泳中心又被称为“水立方”(Water Cube),位于 北京奥林匹克公园内,是北京为2008年夏季奥运会修建的 主游泳馆,也是2008年北京奥运会标志性建筑物之一.其 与国家体育场(俗称“鸟巢”)分列于北京城市中轴线北端 的两侧,共同形成相对完整的北京历史文化名城形象.
顶点
棱台的性质:棱台的上下底面平行,侧棱的延长线交于一点
20
2、棱台的分类:由三棱锥、四棱锥、五棱 锥…截得的棱台,分别叫做三棱台,四棱台, 五棱台…
3、棱台的表示法:棱台用表示上、下底面各
顶点的字母来表示,如图棱台ABCD-A1B1C1D1 。
A1 D1
C B1 1
21
❖ 探究1:多面体与旋转体的主要区别是什么? ❖ 提示:多面体是由多个平面多边形围成的
几何体,旋转体是由平面图形绕轴旋转而 形成的几何体.
22
❖ 探究2:有两个面互相平行,其余各面都是平 行四边形的几何体一定是棱柱吗?
提示:不一定是棱柱.
23
❖ 探究3:棱锥最少有几个面和几条棱? ❖ 提示:面数最少的棱锥是三棱锥,它具有四
个面,六条棱. ❖ 探究4:棱台的各个侧面是什么图形? ❖ 提示:梯形且两侧棱为梯形的两腰.
3
❖ 水立方的外观是什么形状?它有什么结构特 征呢?
❖ 水立方的外观是一个长方体,它的结构特征 是:它由六个矩形围成,而且相对的面是互 相平行的,这就符合本节要学习的棱柱的结 构特征.
4
多面体的定义:把由若干个平面多边形围成的空间图
形叫做多面体。 ❖ 自然界有很多的物体都呈多面体的形状 ❖ 其中:把围成多面体的各个多边形叫作多面体的面;两
个面的公共边叫作多面体的棱,棱与棱的公共点叫作多 面体的顶点; ❖ 连结不在同一个面内的两个顶点的线段叫作多面体的对 角线。 ❖ 多面体按照它的面数的多少,可以分为:四面体、五面 体、六面体、、、、、
5


面 棱 顶点
面 6
一、 观察下列几何体并思考: 它们具有哪些性质?
7
1、定义:有两个面互相平行,其余各面都 是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。
❖ 答案:B
33
❖ 2.五棱锥是由多少个面围成的( )
❖ A.5个
B.7个
❖ C.6个
D.11个
❖ 解析:五棱锥由五个侧面和一个底面,即六 个面围成.
29
❖ 2.棱锥是多面体中重要的一种,它有两个本 质特征:(1)有一个面是多边形;(2)其余各面 是有一个公共顶点的三角形.二者缺一不 可.因此棱锥有一个面是多边形,其余各面 都是三角形.但是要注意“有一个面是多边 形,其余各面都是三角形”的几何体未必是 棱锥,如图,此多面体有一面是四边形,其 余各面都是三角形,但它不是棱锥.
二、观察下列几何体,有什么相同点?
14
1、棱锥的概念
有一个面是多边形,其余各面是有一个公 共顶点的三角形, 由这些面所围成的几何体 叫做棱锥。
这个多边形面叫做棱锥的底面。
有公共顶点的各个三角形叫做棱锥 的侧面。
各侧面的公共顶点叫做棱锥的顶点。
相邻侧面的公共边叫做棱锥的侧棱。
15
S
棱锥的顶点
棱锥的侧棱
24
❖ 典例 如图所示,下列几何体中,哪些是 棱柱?
25
❖ 【错解】 ①③④⑥ ❖ 【错因分析】 没有准确把握棱柱的结构特
征.
26
❖ 【正解】 根据棱柱的结构特征:①有 两个面互相平等,②各侧棱都平行,各 侧面都是平行四边_______条, 棱柱的侧棱长之间的大小关系是________.
两个互相平行的平面叫做棱柱的底面,其 余各面叫做棱柱的侧面。
相邻侧面的公共边叫做棱柱的侧棱。
侧面与底的公共顶点叫做棱柱的顶点。
8
底面
侧面 侧棱 顶点
底面
9
2. 观察下列几何体并思考:棱柱(1),(3) 与棱柱(2)的不同之处?
(1)
(2)
(3) 10
❖ 两个特殊的棱柱:直棱柱与正棱柱 把侧棱垂直于底面的棱柱叫作直棱柱; 把底面是正多边形的直棱柱叫作正棱柱;
D
棱锥的侧面
E A
C 棱锥的底面
B
16
❖ 一个特殊的棱锥:正棱锥 把底面为正多形,侧面是全等的三角形的棱锥叫作 正棱锥
❖ 正棱锥的性质:正棱锥的侧棱长相等;侧面是全等 的等腰三角形;
17
S
A
BC
D
2、棱锥的分类:按底面多边形的边数,可 以分为三棱锥、四棱锥、五棱锥、……
3、棱锥的表示方法:用表示顶点和底面的 字母表示。如四棱锥S-ABCD。
18
思考题:用一个平行于棱锥底面的平面 去截棱锥,那么所得截面与棱锥底面 之间的几何体会是怎样的一个几何体 呢?
A1
D1 B1C1
A1 D1
C B1
1
19
三、棱台的结构特征
1、棱台的概念:用一个平行于棱锥底面
的平面去截棱锥,底面和截面之间的部分
叫做棱台。
A1 D1
C B1 1
上底面 侧面
侧棱
下底面
❖ 直棱柱的性质:直棱柱的侧面都是矩形; ❖ 正棱柱的性质:正棱柱的侧面是全等的矩
形;
11
2、棱柱的分类:棱柱的底面可以是三角形、四 边形、五边形、 …… 我们把棱柱按照底面多边 形边数的多少,可分三棱柱、四棱柱、五棱 柱、……
三棱柱
四棱柱
五棱柱 12
3、棱柱的表示法(下图)
棱柱用表示两底面多边形的顶点的字母表 示棱柱,如:棱柱ABCDE-A1B1C1D1E1 。 13
❖ 答案:三 相等
28
❖ 1.棱柱是多面体中最简单的一种,对 棱柱的概念应正确理解,准确把握,它 有两个本质特征:(1)有两个面(底面)互 相平行;(2)其余各面(侧面)每相邻两个 面的公共边(侧棱)都互相平行.因此, 棱柱有两个面互相平行,其余各面都是
平行四边形.但是要注意“有两个面互
相平行,其余各面都是平行四边形的几 何体”不一定是棱柱.
相关文档
最新文档