元素地球化学

合集下载

重要元素的地球化学特征与分布规律

重要元素的地球化学特征与分布规律

重要元素的地球化学特征与分布规律地球化学是地球科学的一个分支,主要研究地球上各种元素及其化合物的存在情况、地球化学特征和规律。

其中,地球上的重要元素是地球化学研究的重点之一。

那么,这些重要元素的地球化学特征和分布规律是什么呢?一、碳的地球化学特征与分布规律碳是地球上最丰富的元素之一,不仅存在于地球的表层岩石和大气中,而且还存在于深部地球和海洋中。

碳主要以碳酸盐的形式存在于地球的表层岩石中,而全球大气中的二氧化碳则是碳最主要的形式之一。

此外,化石燃料的燃烧和人类工业活动也会导致二氧化碳排放,对全球气候变暖等产生重要影响。

二、氧的地球化学特征与分布规律氧是地球上最丰富的元素之一,广泛存在于地球的不同组成部分中,包括地壳、水、大气和生物体内。

在地壳中,氧主要以氧化物的形式存在于多种岩石和矿物中。

在水和大气中,氧主要以氧气分子形式存在。

在生物体内,氧则参与到许多生物代谢过程中,是维持生命的重要元素之一。

三、金属元素的地球化学特征与分布规律金属元素是地球上一些重要的元素之一,包括铁、铜、铝、锌、镁等。

这些元素在地壳中的分布广泛,铁是地壳中最丰富的金属元素,铝则是地壳中第三丰富的元素。

这些元素大多以氧化物、硫化物等形式分布在地球表层的岩石和矿床中。

不同岩石类型和地质环境对于金属元素的富集具有重要的影响,比如超级大陆的形成和储层形成等都对于金属元素的富集具有重要的影响。

四、硅的地球化学特征与分布规律硅是地球上最丰富的元素之一,也是地壳中第二丰富的元素。

大部分硅存在于地壳中的硅酸盐岩石和石英矿物中,同时也广泛存在于深海水和地下水中。

硅在地质作用中具有重要的作用,比如石英矿物的晶化过程、沉积物的成因和成岩作用等都与硅密切相关。

五、其他元素的地球化学特征与分布规律除了以上几种元素,地球上还存在着许多其他的重要元素。

比如氮、硫、磷等在生命体系中扮演着重要的角色。

另外,地球上也存在着一些稀有元素,比如锂、铈、钼等,它们的分布与地球内部的物质组成和地质作用有密切的联系。

元素地球化学

元素地球化学

亲气元素atmophile:组成地球大气圈的主要元素,惰性气体元素,以及主要呈易挥发化合物存在的元素。如氢、氮、碳、氧、及惰性气体元素等。
亲生物元素biophile:集中在有生命的动植物内的元素。C, H , O, N, P, S, Cl, I, (B), (Ca, Mg, K, Na), (V, Mn, Fe, Cu)
◆元素地球化学主要研究内容和任务:
(1)每个或每组化学元素的地球化学性质;
(2)元素或元素群在自然界的分布、分配情况;
(3)元素相互置换、结合、分离的规律和机制;
(4)元素的存在形式、组合特点、迁移条件;
(5)每个元素的地球化学旋回及其演化历史和原因
(6)应用于地球资源、环境和材料的研究、预测、开发和保护。
亲铁元素Siderophile:富集于陨石金属相和铁陨石中的化学元素。它们与氧和硫的结合能力均弱,并易溶于熔融铁中;在地球中相对于地壳和地幔,明显在地核内聚集。其离子最外层电子数在8~18之间。典型的秦铁元素有镍、钴、金、铂族元素。
亲石元素lithophile:在陨石硅酸盐相中富集的化学元素;在地球中它们明显富集在地壳内,有较大的氧化自由能。在自然界中都以氧化物,含氧盐,特别是硅酸盐的形式出现。如硅、铝、钾、钠、钙、镁、铷、锶、铀、稀土元素等。其离子最外层电子数为2或8。
◆ 有关其他元素分类的常用术语:
常量元素:组成物质主要结构和成分的元素,它们常占天然物质总组成的99%以上,并决定了物质的定名和大类划分。
微量元素(trace element, microelement):物质中除了那些构成主要结构格架所必须的元素之外,所有以低浓度存在的化学元素。其浓度一般低于0.1%,在大多数情况下明显低于0.1%而仅达到ppm乃至ppb数量级。

武理化学知识点总结

武理化学知识点总结

武理化学知识点总结武理化学是地球化学中的一个重要领域,它研究的是地球中物质的组成、性质和变化规律。

在这个领域中,有许多重要的知识点,包括地球化学元素、地球化学物质循环、地球化学地球历史和地球化学分析方法等。

下面我们来对这些知识点进行总结。

1. 地球化学元素地球化学元素是构成地球的基本物质,它们包括地壳元素、地幔元素和核心元素。

地壳元素主要分布在地壳中,包括氧、硅、铝、铁、钙等元素;地幔元素主要分布在地幔中,包括镁、铁、硅、铝等元素;核心元素主要分布在地球核心中,包括铁、镍等元素。

地球化学元素的分布和演化对地球的结构和性质有重要影响。

2. 地球化学物质循环地球化学物质循环是指地球中物质的流动和演化过程,它包括了岩石圈、大气圈、水圈和生物圈。

岩石圈是地球上岩石的层,它对地球和其他圈层起着重要作用;大气圈是地球上大气层,它对地球气候和环境起着重要作用;水圈是地球上水的层,它对地球生态环境和人类生活起着重要作用;生物圈是地球上生物的层,它对地球生态环境和生物多样性起着重要作用。

地球化学物质循环对地球和生物圈的演化和变化有重要影响。

3. 地球化学地球历史地球化学地球历史是指地球历史演化的地球化学过程,它包括地球演化、生命起源和生态演化等过程。

地球演化是指地球形成和演化的过程,它包括地球的起源和地球的结构演化;生命起源是指生物的起源和演化过程,它包括生命的起源和生物的演化;生态演化是指生物和环境的演化过程,它包括生态环境的变化和生物多样性的演化。

地球化学地球历史对地球演化和生态环境的演化有重要影响。

4. 地球化学分析方法地球化学分析方法是研究地球中物质组成和性质的分析方法,它包括了化学分析、物理分析和仪器分析等方法。

化学分析是通过化学反应和化学性质来分析物质的组成和性质;物理分析是通过物理性质和物理过程来分析物质的组成和性质;仪器分析是通过仪器和设备来分析物质的组成和性质。

地球化学分析方法对地球化学研究和应用有重要意义。

《主量元素地球化学》课件

《主量元素地球化学》课件

现代阶段
现代科技的应用使得主量元素地 球化学研究更加深入和广泛,研 究领域不断拓展,研究方法和技 术也不断创新和完善。
02
主量元素在地壳中的分布 与迁移
主量元素在地壳中的分布规律
区域分布规律
主量元素在地壳中的分布呈现明显的区域性特征,受到地 球形成与演化历史、地质构造、岩浆活动等多种因素的影 响。
主量元素地球化学与环境科学的交叉研究
总结词
研究主量元素在环境中的迁移、转化和 归宿,以及它们对环境和生态系统的生 态效应。
VS
详细描述
环境科学主要关注地球上各种环境因素和 人类活动对环境的影响,而主量元素地球 化学则关注主量元素在环境中的迁移、转 化和归宿。通过交叉研究,可以更深入地 了解主量元素对环境和生态系统的生态效 应,为环境保护和治理提供科学依据。
主量元素地球化学在地质灾害预测中的应用
• 总结词:地质灾害预测是主量元素地球化学的一个重要应用方向,通过分析地质体中元素的异常变化,可以预 测地质灾害的发生。
• 详细描述:主量元素地球化学在地质灾害预测中具有重要的作用。许多地质灾害,如地震、火山喷发、滑坡等,都与地壳中元素的异常分布和活动有关。通过分析地质体中元素的丰度 、分布和活动性,可以预测地质灾害的发生。例如,在地壳板块边界,由于地壳应力作用,常常会发生地震和火山喷发。通过分析这些区域的地壳元素组成和活动性,可以预测地质灾 害的可能性和影响范围。此外,主量元素地球化学还可以用于研究地质演化过程,为地质学研究提供重要的理论依据。
熔融迁移
在高温条件下,地壳中的岩石发生熔 融,主量元素以熔融态的形式进行迁 移。
水溶迁移
主量元素可溶解于水溶液中,随着地 下水的流动而发生迁移。
岩浆作用迁移

元素的生物地球化学循环

元素的生物地球化学循环

元素的生物地球化学循环元素是构成生物体的基本组成部分,其生物地球化学循环是指元素在地球上的环境中循环,包括了元素在生物体内的吸收、利用、排泄以及在自然界中的分布、沉积、再循环过程。

这一循环过程中涉及到了多个方面和步骤,下面就对其进行详细阐述。

第一步:元素在自然界中的分布元素在地球上的分布与地球的地壳构造和地球化学过程密切相关。

地球上的元素主要来源于行星物质的内部和外部,包括陨石、大气沉积、太阳风暴等自然现象。

自然界中元素的分布形式比较复杂,其中以地壳中的元素最为丰富。

第二步:元素进入生物体内元素进入生物体内是通过生物体摄取食物或直接摄取自然界中的元素进入生命体系中。

在生物界内,通过生态系统中的物质循环而实现元素在不同生物之间的转移,同时也伴随着元素在生物体内的转化。

第三步:元素在生物体内的利用和代谢元素在生物体中经过一系列反应并参与了生物体的各种代谢过程,生物在利用元素以完成其生理和生态功能的同时也会产生代谢副产品和废物。

第四步:元素在生物体外的排泄生物体在利用元素过程中将产生许多废物和代谢产物,这些废物需要及时排出生物体以保持机体内部平衡。

排泄是指生物体将废物和部分代谢产物排出体外的过程。

第五步:元素在自然界中的沉积和再循环元素在自然界中的沉积和再循环是指生物排泄出的废物和死亡生物,其体内的元素在经过生物分解和化学变化后进入土壤和水体中,再通过微生物和其他生物的作用使得元素重新进入生态系统中循环。

总结:元素的生物地球化学循环是一个非常复杂和长期的过程,并且这些元素在循环过程中会发生各种物理和化学的变化。

只有合理利用元素,才能更好地保护环境和生物多样性。

地球化学中的重要元素及其地球内分布

地球化学中的重要元素及其地球内分布

地球化学中的重要元素及其地球内分布地球是一个复杂而奇异的星球,由许多不同元素组成。

这些元素在地球化学中扮演着重要的角色,影响着地球的组成和性质。

本文将探讨地球化学中的几个重要元素,包括碳、氧、硅、铁和铝,以及它们在地球内的分布。

碳是地球上最常见的元素之一。

它存在于地壳、大气和生物体中。

地壳中的碳以碳酸盐矿物的形式存在,如方解石和白云石。

大气中的二氧化碳是碳的另一种形式,它在地球的碳循环中起着重要作用。

生物体中的有机化合物也含有碳,如蛋白质、脂类和碳水化合物。

碳的地球内分布表明它在地球生命和能量循环中的关键作用。

氧是地球上最丰富的元素,占地壳和大气的大部分。

在地壳中,氧以氧化物的形式存在,如二氧化硅和氧化铁。

大气中的氧以氧气的形式存在,占空气的约20%。

氧也与其他元素形成化合物,如水和二氧化碳。

氧在地球内的广泛分布对于地球上的生物体进行呼吸和新陈代谢至关重要。

硅是地球壳中的主要元素之一。

它以硅酸盐矿物的形式存在,如石英和长石。

硅酸盐矿物在地壳岩石的形成和变质作用中起着重要作用。

硅也是硅酸盐岩和硅酸盐沉积物的主要组成部分。

硅的地球内分布与地壳构造和岩石圈运动有密切联系。

铁是地球内最常见的金属元素之一。

它广泛存在于地壳、地球内部和大气中。

地壳中的铁以氧化铁矿物的形式存在,如赤铁矿和磁铁矿。

地球内部的外核主要由铁和镍组成。

大气中的铁以氧化铁粉尘的形式存在,这些粉尘来源于土壤和火山喷发。

铁在地球内的分布对于地球磁场和地球动力学过程具有重要影响。

铝是地壳中含量最丰富的金属元素之一。

它以铝硅酸盐矿物的形式存在,如长石和云母。

铝的地球内分布与地壳形成和岩石圈演化有密切关系。

铝也是许多工业材料的重要成分,如铝制品和建筑材料。

总结起来,碳、氧、硅、铁和铝是地球化学中的几个重要元素。

它们在地球内以不同形式存在,并且对地球的组成和性质起着关键作用。

了解这些重要元素的地球内分布可以帮助我们更好地理解地球的形成和演化过程。

地质学知识:地球化学中的元素分布与演化

地质学知识:地球化学中的元素分布与演化

地质学知识:地球化学中的元素分布与演化地球化学是研究地球物质的组成、性质、分布和演化的学科。

其中,元素分布与演化是地球化学研究的基本内容之一。

本文将简要介绍元素分布与演化的相关知识。

一、元素分布地球上的元素主要来源于宇宙物质和地球内部物质。

宇宙物质包括星际物质和陨石,其中包含的元素种类很多,主要是氢、氦和锂等轻元素以及碳、氧、氮、铁等重元素。

地球内部物质主要包括地壳、地幔和核,其元素分布也具有明显的层次性。

较轻的元素主要分布在地壳和地幔,包括硅、铝、钙、钾、钠等。

地壳中的元素主要以氧化物、硅酸盐和硫酸盐的形式存在。

而地幔中的元素主要是以硅酸盐和氧化物的形式存在,且含有较多的铁、镁等元素。

重元素主要存在于地球内部核中。

地球核分为外核和内核,外核主要是由铁和镍等元素组成的液态物质,而内核则主要由铁和一些轻元素如硫、氧组成。

地球内部物质的元素分布不均衡,这种不均衡性是地球化学研究的重要内容之一。

二、元素演化元素的演化是指地球上元素来源、变化和分布的历史过程。

元素演化的主要过程包括元素的起源和演化、元素的循环作用以及元素的分布特征。

地球上的元素起源主要有两种观点,一种是大爆炸后形成的宇宙元素在恒星内部聚合,形成新的元素,然后经由恒星飞出到空间中,经过一定的演化过程后,形成了地球上的基本元素。

另一种观点认为,地球上的元素大部分来源于超新星爆炸。

元素的循环作用是指地球系统内元素的相互作用过程,主要包括地球化学循环和物质循环。

其中,地球化学循环包括一系列物质的化学反应和迁移,如氧化还原反应、水文循环、生物地球化学循环等。

物质循环则是指物质在不同介质之间的循环过程,如水、大气、岩石、土壤和生物等介质之间的物质转化过程。

元素的分布特征是指地球上各种元素的分布规律和区域特征。

例如,地壳中铝的含量较高,主要分布在长芦山、横山等地区。

地幔中铁的含量较高,主要分布在太平洋橙色液体等地区。

地球内部核中铁和镍的含量较高,约占地球质量的1/3。

地球化学中的元素地球化学行为与地球形成机制

地球化学中的元素地球化学行为与地球形成机制

地球化学中的元素地球化学行为与地球形成机制地球化学是研究地球及其组成物质的科学领域,涉及元素的起源、分布和演化过程。

元素地球化学行为是指元素在地球体内的循环、迁移、转化和沉积规律。

地球形成机制则涉及地球的起源及其演变过程。

本文将以这两个关键领域为中心,探讨元素地球化学行为和地球形成机制之间的关系。

1. 元素地球化学行为1.1 常见元素的地质分布地球地壳中常见的元素主要有氧、硅、铝、铁等。

这些元素的地质分布与地球地壳的成分及构造有关。

例如,硅是地壳中含量最多的元素,主要以硅酸盐的形式存在于岩石中。

1.2 元素的地球内循环过程元素在地球内部存在循环过程,这一过程包括元素的迁移、转化和沉积。

例如,地球的内部热运动促使地幔中的岩浆上涌,将地幔中的元素带到地表形成火山岩等。

同时,元素还可以通过水体、大气和生物体的介导而进入地球系统的不同部分。

1.3 元素地球化学行为的影响因素元素地球化学行为受多种因素影响,包括环境条件、地球化学反应和生物活动等。

例如,水体的氧化还原条件会影响金属元素的溶解度和形态分布,而生物体的吸收作用和代谢过程会改变元素的化学性质和行为。

2. 地球形成机制2.1 地球的起源关于地球的起源,有几个主要学说,包括原初星云学说、原始地壳分层学说和行星撞击学说等。

这些学说从不同角度解释了地球形成的机制,涉及到物质的凝聚、凝集和重组过程。

2.2 地球的分层结构地球内部分为地壳、地幔和核心,不同层次的物质组成和性质各异。

地球的分层结构与地球形成机制密切相关,例如,地核的铁镍合金构成了地磁场的产生机制。

2.3 地球的演化过程地球的演化是一个复杂的过程,涉及到地球内部的物质循环、地壳板块的漂移和地质作用等。

这些过程与元素地球化学行为紧密相连,共同推动着地球的演化和变化。

结论:元素地球化学行为与地球形成机制之间存在密切的联系和相互作用。

元素地球化学行为揭示了地球物质起源、循环和演化的规律,为研究地球形成机制提供了有力的依据和理论支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

元素地球化学第一章:导论◆地球化学的三个主要分支:①元素地球化学②同位素地球化学③实验地球化学◆元素地球化学:是地球化学最主要的分支学科,它通过逐一阐明个别元素的地球化学和宇宙化学特征及其与其它元素的组合关系来研究自然界化学演化规律的学科,是地球化学的传统研究内容和主干学科。

它力求完整地了解元素的地球化学旋回及其演化历史和原因,揭示元素含量变化对自然过程的指示意义◆元素地球化学主要研究内容和任务:(1)每个或每组化学元素的地球化学性质;(2)元素或元素群在自然界的分布、分配情况;(3)元素相互置换、结合、分离的规律和机制;(4)元素的存在形式、组合特点、迁移条件;(5)每个元素的地球化学旋回及其演化历史和原因(6)应用于地球资源、环境和材料的研究、预测、开发和保护。

◆元素地球化学的研究方法:(1)地质研究方法;(2)高灵敏度、高精度、快速和经济的测定和分析手段:ICP-MAS、ICP-AES、X荧光、电子探针等等;(3)各种地球化学模拟实验研究;(4)一些物理化学、热力学等理论的应用;(5)计算机技术在处理大量数据方面的广泛应用。

◆戈尔德施密特的元素地球化学分类:亲铁元素Siderophile:富集于陨石金属相和铁陨石中的化学元素。

它们与氧和硫的结合能力均弱,并易溶于熔融铁中;在地球中相对于地壳和地幔,明显在地核内聚集。

其离子最外层电子数在8~18之间。

典型的秦铁元素有镍、钴、金、铂族元素。

亲石元素lithophile:在陨石硅酸盐相中富集的化学元素;在地球中它们明显富集在地壳内,有较大的氧化自由能。

在自然界中都以氧化物,含氧盐,特别是硅酸盐的形式出现。

如硅、铝、钾、钠、钙、镁、铷、锶、铀、稀土元素等。

其离子最外层电子数为2或8。

亲铜元素chalcophile:在陨石硫化物相和陨硫铁(FeS)中富集的化学元素;在自然界中,它们往往易与S2-结合成硫化物和复杂硫化物。

如硫、铜、锌、铅、镉、砷、银、硒、碲、锑等。

其离子最外层有18个电子。

亲硫元素sulphophile:指不易与氧、氟和氯结合,而易于形成硫化物、硒化物、碲化物、砷化物等矿物的元素。

该术语现一般理解为与“亲铜元素”同义,并包括一些亲铁元素。

亲气元素atmophile:组成地球大气圈的主要元素,惰性气体元素,以及主要呈易挥发化合物存在的元素。

如氢、氮、碳、氧、及惰性气体元素等。

亲生物元素biophile:集中在有生命的动植物内的元素。

C, H , O, N, P, S, Cl, I, (B), (Ca, Mg, K, Na), (V, Mn, Fe, Cu)◆有关其他元素分类的常用术语:常量元素:组成物质主要结构和成分的元素,它们常占天然物质总组成的99%以上,并决定了物质的定名和大类划分。

微量元素(trace element, microelement):物质中除了那些构成主要结构格架所必须的元素之外,所有以低浓度存在的化学元素。

其浓度一般低于0.1%,在大多数情况下明显低于0.1%而仅达到ppm乃至ppb数量级。

次要元素(minor element):在文献中单独出现时时与微量元素同义;当两者同时出现时,一般指含量为1~5的化学元素。

稀有元素(rare element):在低壳中分布量较低,但易于在自然界高度富集形成较常见的矿物和独立工业矿床的的化学元素。

如REE、Nb、Ta、Be、Li、(W)等。

分散元素(dispersed element):在地壳中元素丰度低,并且其离子半径和电荷等化学性质与地壳中的高丰度元素(硅、铝、钙、铁、钾、钠等)相似的一类微量元素。

因上述性质,它们在自然界中大多以类质同像置换形式分散存在于高丰度元素的矿物中,从而很少形成自己的独立矿物和单独富集成为矿床。

典型分散元素为锗、镓、钪、锶、镉、铷、铯等。

附属元素(accessory element):地球化学性质与造岩元素有较大的差别,主要在火成岩中呈副矿物及其类质同像形式存在的化学元素。

如Y、REE、Zr、Hf、Nb、Ta、U、Th等。

高场强元素或离子(High field strength cations,HFS):场强指离子每单位表面的静电荷强度,常以离子电荷与离子半径的比值,即离子势表示。

指那些形成小的高电荷离子的元素,包括REE、Sc、Y、Th、U、Pb、Zr、Hf、Ti、Nb、Ta等,其离子势>2。

低场强元素或离子(Low field strength cations):形成大半径小电荷的离子的元素,离子势<2,它们又称为大离子亲石元素—LILE(large ion litho-phile elements),包括 Cs、Rb、K、Ba、Sr、Eu和Pb(二价)。

相容元素(compatible element):趋于在固相中富集的微量元素。

尽管其浓度低,不能形成独立矿物相,但因离子半径、电荷、晶体场等结晶化学性质与构成结晶矿物的主要元素相近,而易于呈类质同像置换形式进入有关矿物相。

相容元素的固相/液相分配系数显著大于1。

不相容元素(incompatible element):趋向于在液相中富集的微量元素。

由于其浓度低,不能形成独立矿物相,并且因离子半径、电荷、晶体场等性质与构成结晶矿物的主元素相差很大,而使其不能进入矿物相。

它们的固相/液相分配系数近于零。

大多数LILE属不相容元素。

两个浓度概念:元素丰度:通过对某自然组成单元的大量样品测试统计而求得的化学元素相对于该单元总量的平均含量。

其单位大多以重量百分数(%)、百万分数(ppm)、或十亿分数(ppb)表示。

克拉克值(Clarke-value):化学元素在地壳中的相对平均含量,即地壳的元素丰度。

因克拉克和华盛顿(Henry Stephens Washington, 1867—1934)于1924年首次计算发表了50种元素的地壳元素丰度,故名。

第2章元素的地球化学分布特征(空间分布)◆陨石的类型及其陨落道地球上的百分率(falls)石陨石: 球粒陨石 (84%) —碳质球粒陨石, 顽火辉石球粒陨石无球粒陨石 (8%)石铁陨石 (1%): 橄揽陨铁, 中铁陨石铁陨石 (7%)非小行星陨石(极少)—月球陨石,火星陨石未分异的陨石:球粒陨石:碳质无球粒陨石、普通无球粒陨石、顽火辉石球粒陨石分异了的陨石:无球粒陨石,铁陨石凝聚温度:元素从太阳系中凝聚出50%时的温度◆根据化学元素的凝聚温度对元素进行分类:难熔元素:(Ca、Al、Ti、Zr、REE、Ir、Os、等),占组成所有凝聚物质质量的大约5%。

镁硅酸盐:镁橄榄石Mg2SiO4,顽火辉石MgSiO3,和金属FeNi。

占凝聚物质的主要质量(1300-1400K)。

中等挥发性元素:(Na、K、Cu、Zn等),在镁硅酸盐和铁镍到硫(FeS)凝聚温度之间凝聚。

FeS(670K)高度挥发性元素:銦、镉、铅等,凝聚温度低于FeS。

元素的宇宙化学分类◆地球的圈层结构:大气圈——围绕固体地球的气体层;生物圈——生物能生存的环境和范围;水圈——地球上的水体主要占据的范围;地壳——以莫霍面(VP由6.8~7.2突变为8.0~8.2 km/s)为界。

大陆:30~50km, 大洋:10~20km;岩石圈——地球硅酸盐刚性外壳,地壳+上地幔顶部(50~150km,VP低速层之上);软流圈——50~250 km , 厚100~150km, 低速层;地幔——20~2900km,莫霍面~古登堡面;地核——2900~ 6371km。

1、大气圈电离层:80~350km(~1000km:外电离层);平流层:~30km(30~60同温层);对流层:8~20km。

从地表到60km高空的大气成分是近于均匀的,主要由N2、O2和Ar组成。

随着离开地面距离增加,大气圈变得稀薄了,但仍然以氮和氧为主。

次要组分中臭氧和二氧化碳很重要。

臭氧主要集中在平流层内,它吸收紫外线辐射;二氧化碳对地球的碳循环很重要,是主要的温室气体之一,对气候有重要影响。

在80km高度以下的大气中微量(痕量)成分:< 1 ppmv,主要有H2、O3、Xe、N2O(氧化亚氮)、NO(一氧化氮)、NO2(二氧化氮)、NH3(氨气)、SO2、CO,以及气溶胶等。

此外还有一些人为污染成分,其浓度多为10-12(ppt)量级,如PFCs(全氟碳化物)、SF6(六氟化硫)等在大气化学研究中,也根据需要把大气成分按其在大气中的寿命分为:1.基本不变的成分(准定常成分):其寿命大于1000 年,如N2、O2和几种惰性气体成分;2.可变成分:其寿命为即到几十年,如CO2、CH4、 H2、N2O、O3和部分气溶胶等;3.变化很快的成分:其寿命小于1年,如水气、CO、NO、NO2、HN3、SO2、H2S、气溶胶等。

2、水圈水圈的总质量为1.4×1018吨,海洋仅占地球总质量的0.02%。

如果地球是由C1球粒陨石和顽火辉石球粒陨石的混合物组成的,则应含有大约2%的H2O。

水圈可分为地表水圈和地下水圈。

地下水圈中只有上部很小一薄层为冷水,下层为热水根据地热增温率和水的临界温度推算,地下水圈的下界在稳定的古老结晶岩地区约为35公里;在有沉积岩盖层的古老结晶岩地区约20~25公里;而在近代沉降地区和年轻造山带则为15公里左右。

◇在高压下,过渡带中的β-橄榄石和γ-橄榄石可含有2~3%的H2O ,熔融铁能溶解高达4%的H。

水在一些标称的无水矿物,如橄榄石、辉石、石榴子石及其高压相变体中,存在于晶体的点缺陷中。

富MgSiO3钙钛矿和镁方铁矿含H2O约0.2wt%,富CaSiO3钙钛矿约含0.4wt%的H2O。

镁硅酸盐钙钛矿和镁方铁矿的红外显微光谱都显示出OH的吸收带。

下地幔中储存的H2O总量大致相当于的海洋的五倍◆海水的常量元素含量3、生物圈地球上生命的最早出现可追溯到38亿年前。

地球生命物质的总量估计大约为6.25×1018克,脱水后干重约为2.5×1018克,其总量与地壳质量2.3×1024克相比微不足道。

因此,在将地球和地壳作为一个总的地球化学系统进行研究时,生物地球化学作用常被忽略。

但在研究地球表面局部过程和特定元素的表生地球化学行为时,它则是必须被考虑的重要因素。

尤其在有关碳、氮、硫、磷、铁等与生态环境有关的元素地球化学循环中起关键作用。

生物活动造成的物质分异对地球表面过程和元素分布有重要而深刻的影响。

最明显的例子是地球大气中O2和CO2浓度的变化——晚古生代大型维管植物的昌盛导致光合作用急剧增强,从而在约300 百万年前,即石炭纪末,使大气氧含量增高到近40%,达到地质历史中的最高水平,是目前大气氧含量的一倍。

当时的大气二氧化碳含量也相应地明显降低。

相关文档
最新文档