统计学——假设检验概念和方法报告.ppt

合集下载

《假设检验》课件

《假设检验》课件

方差分析
总结词
适用于多组数据比较的检验方法
详细描述
方差分析是一种适用于多组数据比较的假设检验方法。它通过比较不同组之间的变异和 误差来源,计算F值和对应的P值,以判断原假设是否成立。方差分析在很多领域都有
应用,如农业、生物统计学和心理学等。
秩和检验
总结词
适用于等级数据或非参数数据的检验方法
详细描述
秩和检验是一种适用于等级数据或非参数数 据的假设检验方法。它通过将数据排序后进 行比较,计算秩和值和对应的P值,以判断 原假设是否成立。秩和检验在很多领域都有 应用,如医学、生物学和环境科学等。
04 假设检验的实例分析
单样本Z检验实例
总结词
用于检验一个样本的平均值与已知的 某一总体均值之间是否存在显著差异 。
如果样本量过小,可能无 法得出可靠的结论,因为 小样本可能无法代表总体 。
样本量过大
如果样本量过大,可能会 导致统计效率降低,增加 计算复杂度和成本。
样本代表性
在选择样本时,需要确保 样本具有代表性,能
假设检验的结果只能给出拒绝或接受 假设的结论,但无法给出假设正确与 否的确凿证据。
置信区间有助于判断假设的正确性
02
通过比较置信区间和假设值的位置关系,可以判断假设是否成
立。
置信区间与假设检验的互补关系
03
置信区间和假设检验各有优缺点,可以结合使用以更全面地评
估数据的统计性质。
THANKS 感谢观看
提出假设
根据研究问题和目的,提出原 假设和备择假设。
确定临界值
根据统计量的性质和显著性水 平,确定临界值。
做出决策
根据计算出的样本统计量和临 界值,做出接受或拒绝原假设 的决策。

管理统计学-第4章 假设检验

管理统计学-第4章  假设检验

• 在本例中,
_
x 32 35
3.184
s / n 5.96 / 40
⑤作出统计决策
• 根据样本信息计算出统计量z的具体值,Z 将它与临界值 相比较,就可以作出接受 原假设或拒绝原假设的统计决策。
• 在本例中,由于z=3.184>1.96,落在拒绝 域内,所以拒绝原假设H0。可以得出结论:
在0.05的显著性水平下,抽样结果的平
– p<α,拒绝零假设 – p>α,不应拒绝零假设
举例1
• 某健身俱乐部主管经理估计会员的平均年 龄是35岁,研究人员从2005年入会的新 会员中随机抽取40人,调查得到他们的年 龄数据如下。
33 28 32 26 37 35 27 29 33 30 35 29 39 34 27 37 34 36 31 29 29 26 19 21 36 38 42 39 36 38 27 22 29 34 36 20 39 37 22 39
素有:总体方差已知还是未知,用于进行检验的
样本是大样本还是小样本,等等。
• 在本例中,由于n=40>30是大样本,所以 近似
服从正态分布,以样本标准差代替总体标准差, 所用的统计量是:
_
x
3.184
s/ n
③选取显著性水平,确定接受域和拒绝域
• 显著性水平(Significant Level):事先给定的形 成拒绝域的小概率,用表示。
(3)右单侧检验
两侧,左单侧检验的拒绝域位于统计量分布曲线的左侧,
右单侧检验的拒绝域位于统计量分布曲线的右侧。
④计算检验统计量的值
• 在提出原假设H0和备选假设H1,确定了检验统计 量,给定了显著性水平以后,接下来就要根据

统计学课件讲义 第7章 假设检验

统计学课件讲义 第7章   假设检验

第7章假设检验一、假设检验概述1.概念:假设检验是利用样本的实际资料来检验事先对总体某些数量特征所作的假设是否可信的一种统计分析方法。

2.主要目的:在于判决原假设的总体和当前抽样所取自的总体是否发生了显著的差异。

3.假设检验的检验法则假设检验过程就是比较样本观察结果与总体假设的差异。

差异显著,超过了临界点,拒绝H0;反之,差异不显著,接受H0。

4.假设检验中的两类错误:“弃真”、“取伪”在假设检验中,在一定样本容量下,不能同时做到犯这两类错误的概率都很小。

因为减少α会引起β增大,减少β会引起α增大。

5.基本思想:反证法思想、小概率原理6.假设检验的步骤:根据题意合理地建立原假设和备择假设→选择适当的检验统计量,并确定其分布形式→选定显著性水平,并根据相应统计量的统计分布表查出临界值→根据样本观察值计算检验统计量的观察值→根据检验规则作出接受或拒绝原假设的判断二、单个正态总体的假设检验(显著水平为α)三、两个正态总体的假设检(显著水平为α)注:2221212222212121211s s n n f s s n n n n ⎛⎫+ ⎪⎝⎭=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+-- 四、总体比率的假设检验1、根据中心极限定理,在大样本条件下,若np 和nq 都大于5时,样本比率的抽样分布近似服从正态分布,因此,我们可用Z =作为检验统计量2、对于两总体比率之差的概率分布,可证明其近似地服从正态分布。

若总体比率未知,且1111,(1)n p n p -和 2222,(1)n p n p -都大于5时,我们可用样本比率1p 和2p 来替代。

因此,我们可用Z =五、假设检验中的其他问题1、区间估计与假设检验的关系:两者推断的角度不同、两者立足点不同、两者的主要决策参考点不同。

两者都属于统计推断方法,根据样本统计量对总体参数进行推断 对相同条件的推断问题,其推断的理论依据——抽样分布理论相同都是建立在概率基础上的推断,推断结果都具有一定的可靠程度或风险 利用置信区间可以进行假设检验2、假设检验中的p -值假设检验的p -值就是拒绝原假设的最小显著性水平。

卫生统计学课件_第六章_假设检验

卫生统计学课件_第六章_假设检验
16
公式:t
自由度:对子数 - 1
适用条件:两组配对计量资料。 例题:p. 34, 例8
三、两个小样本均数比较的 t 检验
▲目的:由两个样本均数的差别推断两样本
所代表的总体均数间有无差别。 ▲计算公式及意义: t 统计量: 自由度:n1 + n2 –2
18
▲ 适用条件:
(1)已知/可计算两个样本均数及它们的标准差 ;
38
(2)当不能拒绝
II 类错误的概率 β 值的两个规律:
1. 当样本量一定时, α 愈小, 则 β 愈大,反之…; 2.当 α 一定时, 样本量增加, β 减少.
39
4. 正确理解P值的意义, P值很小时“拒绝H0 ”,P值的
大小不要误解为总体参数间差异的大小; 拒绝H0 只是说 差异不为零。 统计学中的差异显著或不显著,和日常生活中所说的差 异大小概念不同. (不仅区别于均数差异的大小,还区别 于均数变异的大小)
统计推断
用样本信息推论总体特征的过程。
包括:
参数估计: 运用统计学原理,用从样本计算出来的统计
指标量,对总体统计指标量进行估计。
假设检验:又称显著性检验,是指由样本间存在的差
别对样本所代表的总体间是否存在着差别做出判断。
第一节
▲显著性检验;
假设检验
▲科研数据处理的重要工具;
▲某事发生了:
是由于碰巧?还是由于必然的原 因?统计学家运用显著性检验来 处理这类问题。
45
41
是非判断: ( )1.标准误是一种特殊的标准差,其 表示抽样误差的大小。 ( )2.N一定时,测量值的离散程度越 小,用样本均数估计总体均数的抽样误差 就越小。 ( )3.假设检验的目的是要判断两个样 本均数的差别有多大。

《统计学(第二版)》电子课件 第4章 假设检验

《统计学(第二版)》电子课件 第4章 假设检验
显著性检验中原假设与备择假设的位置是不对称 的,二者不能随意交换;
显著性检验本身对原假设起保护作用,水平越小, 检验犯第一类错误的概率就越小,换言之,越有 可能不拒绝原假设。
2021/8/7
《统计学》第4章假设检验
4-29
4.1.5 双侧检验和单侧检验
常见的三种显著性假设检验形式: (1)双侧检验 H0 : 0 H1 : 0 (2)右侧检验 H0 : 0 H1 : 0 (3)左侧检验 H0 : 0 H1 : 0
从该批产品中随机抽取了100件,发现其中有4件 次品,即样本次品率为4%,A公司认为样本次品 率4%大于1%,所以不接受B公司的这批产品,B 公司则认为虽然样本次品率为4%,但并不能说明 10万件产品的次品率大于1%,因为样本量很小;
2021/8/7
《统计学》第4章假设检验
4-3
问题
(1)A公司是否应该接受该批产品? (2)如果随机抽取了100件产品有3件次品,
H0:pp01%
2021/8/7
《统计学》第4章假设检验
4-12
记X为100件产品中次品的数目,直观上看, X越大,原假设越值得怀疑,反之, X越小, 对原假设越有利;问题是, X大到多少应 该拒绝原假设?
两种处理方法:
2021/8/7
《统计学》第4章假设检验
4-13
1. 假定H0成立,计算事件X≥4的概率
4-32
4.2 一个正态总体的检验
4.2.1 总体均值μ的检验: Z检验 考虑如下三种检验问题
H0:0 H1:0 H0:0 H1:0 H0:0 H1:0
(4.4) (4.5) (4.6)
2021/8/7
《统计学》第4章假设检验
4-33

统计学第8章假设检验

统计学第8章假设检验

市场调查中常用的假设检验方法包括T检验、Z检验和卡方 检验等。选择合适的检验方法需要考虑数据的类型、分布 和调查目的。例如,对于连续变量,T检验更为适用;对于 分类变量,卡方检验更为合适。
医学研究中假设检验的应用
临床试验
在医学研究中,假设检验被广泛应用于临床试验。研究 人员通过设立对照组和实验组,对不同组别的患者进行 不同的治疗,然后收集数据并使用假设检验来分析不同 治疗方法的疗效。
03 假设检验的统计方法
z检验
总结词
z检验是一种常用的参数检验方法,用于检验总体均值的假设。
详细描述
z检验基于正态分布理论,通过计算z分数对总体均值进行检验。它适用于大样本 数据,要求数据服从正态分布。z检验的优点是简单易懂,计算方便,但前提假 设较为严格。
t检验
总结词
t检验是一种常用的参数检验方法,用于检验两组数据之间的差异。
卡方检验
总结词
卡方检验是一种非参数检验方法,用于 比较实际观测频数与期望频数之间的差 异。
VS
详细描述
卡方检验通过计算卡方统计量来比较实际 观测频数与期望频数之间的差异程度。它 适用于分类数据的比较,可以检验不同分 类之间的关联性。卡方检验的优点是不需 要严格的假设前提,但结果解释需谨慎。
04 假设检验的解读与报告
详细描述
t检验分为独立样本t检验和配对样本t检验,分别用于比较两组独立数据和同一组数据在不同条件下的 差异。t检验的前提假设是小样本数据近似服从正态分布。t检验的优点是简单易行,但前提假设需满 足。
方差分析
总结词
方差分析是一种统计方法,用于比较两个或多个总体的差异。
详细描述
方差分析通过分析不同组数据的方差来比较各组之间的差异。它适用于多组数据的比较,可以检验不同因素对总 体均值的影响。方差分析的前提假设是各组数据服从正态分布,且方差齐性。

假设检验(完版)

假设检验(完版)
统计假设检验
假设检验
第一节、假设检验概述 第二节、总体平均数的假设检验(Z 、 T) 第三节、总体比率的假设检验(P) 第四节、总体方差的假设检验(卡方、F)
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
Ronald Aylmer Fisher,英 国著名的统计学家,遗传学家, 现代数理统计的奠基人之一。
(单侧检验 )
抽样分布
置信水平
拒绝H0

1-
拒绝域 临界值
0 接受域
样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0

1-
临界值
0
样本统计量
观察到的样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0

1-
临界值
0
观察到的样本统计量
样本统计量
•【例2】一种罐装饮料采用自动生产线生产,每罐的容量 是255ml,标准差为5ml,服从正态分布。换了一批工人后, 质检人员在某天生产的饮料中随机抽取了16罐进行检验,
理 过 寻找矛盾 程
发现矛盾—>H1成

没有发现矛盾—> 证明失败
判断H1成立还是H0成立
设H0成立
构造小概率事件
小概率事件发生—>拒绝H0成
立 小概率事件没有发生—>不能 拒绝H0成立
小概率事件在一次实验中不可能发生的事件,如果发生 了,那么就可以拒绝原来的假设。泰力布:等待黑天鹅的人
显著性水平和拒绝域
H0 : 335ml H1 : 335ml

假设检验

假设检验

产品检验: ■全数检验 ■抽样检验
能最真实、完整的反映所有产品的特性结果 GB/T2828.1-2003 存在抽样误差
总体与样本
判断
总体
随机抽取
样本
测量
数据
根据样本的信息推断总体
2. 假设检验的基本原理:小概率反证法 小概率原理:指小概率事件(通常概率 α≤0.05称为“小概率事件)在一次试 验中基本不会发生,反证法思想是先提 出某项假设(H0 ),用统计方法确定假 设的可能性(即检验假设是否正确): 可能性小,即假设不成立,应拒绝原假 设;如果可能性大,则接受假设,则假 设成立。
⑹根据显著性水平α 及统计量、样本自由 度查概率分布表。获取在此显著性水平α 下的置信区间,即临界值。 双侧检验:根据α/2或(1-α/2)确定临界值 单侧检验:根据α或(1 -α) 确定临界值
⑺做出判断:将计算出的统计量与查表得 出的临界值进行比较,作出拒绝或接受H0 的判断。
五、应用实例
1.单个正态总体的均值检验——t 检验
s12 0.0955 F 2 3.66 s2 0.0261 计算统计量:
n1=8,则样本的自由度 1 n1 1 7 n2=9,则样本的自由度 2 n2 1 8 α =0.05,查F检验临界值(F2)表,P(F >F2)= α 得到:F0.05(7、8)= 3.50 F在拒绝域内 结论:原假设H0不成立,即甲机床的精度比乙机床低。
因此,可用计算确定均值µ及1—α 置信区间的 方法来检验上述假设是否成立。 如果计算出来的置信区间包括µ 0 ,则接受H0 ; 如果计算出来的置信区间不包括µ 0 ,则拒绝H0
三、假设检验类型
• 参数假设:总体分布类型已知,对未知参数 的统计假设。检验参数假设问题称为参数假 设检验。当总体分布类型为正态分布时,则 为正态总体参数检验。 • 非参数假设:总体分布类型不明确,对参数 的各种统计假设。检验非参数假设问题称为 非参数假设检验,也称分布检验。参数假设 检验和非正态总体参数检验都比较复杂,在 QC小组活动中很少应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陪审团审判
裁决
实际情况
无罪
有罪
无罪
正确
错误
有罪
错误
正确
统计检验过程
决策 接受H0 拒绝H0
H0 检验
实际情况
H0为真 H0为假 正确决策 第二类错
(1 – ) 误() 第一类错 正确决策
误() (1-)
精选文档
23
错误和 错误的关系
和的关系就像 翘翘板,小就 大, 大就小
你不能同时减 少两类错误!
精选文档
3
§6.1 假设检验的基本问题
一. 假设问题的提出 二. 假设的表达式 三. 两类错误 四. 假设检验中的值 五. 假设检验的另一种方法 六. 单侧检验
精选文档
4
基本概念
让我们先看一个例子.
精选文档
5
基本概念
罐装可乐的容量按标准应为 355毫升.
生产流水线上罐装可 乐不断地封装,然后装箱 外运. 怎么知道这批罐装 可乐的容量是否合格呢?
2. 在一次试验中小概率事件一旦发生,我 们就有理由拒绝原假设
3. 小概率由研究者事先确定
精选文档ቤተ መጻሕፍቲ ባይዱ
什么是小 概率?
20
什么是小概率?
概率是从0到1之间的一个数,因此小概率 就应该是接近0的一个数 著名的英国统计家Ronald Fisher 把20分之 1作为标准,这也就是0.05,从此0.05或比 0.05小的概率都被认为是小概率 Fisher没有任何深奥的理由解释他为什么选 择0.05,只是说他忽然想起来的
对总体参数的的数值所 作的一种陈述
我认为该地区新生婴儿 的平均体重为3190克!
– 总体参数包括总体均值、 比例、方差等
– 分析之前必需陈述
精选文档
9
什么是假设检验?
(hypothesis testing)
1. 事先对总体参数或分布形式作出某种假 设,然后利用样本信息来判断原假设是 否成立
2. 有参数假设检验和非参数假设检验
抽取随机样本
☺X均=值20☺ 精选文档
作出决策 拒绝假设! 别无选择.
12
假设检验的步骤
▪ 提出假设 ▪ 确定适当的检验统计量 ▪ 规定显著性水平 ▪ 计算检验统计量的值 ▪ 作出统计决策
精选文档
13
提出原假设和备择假设
什么是原假设?(null hypothesis)
1. 待检验的假设,又称“0假设”
为什么叫0 假设?
2. 研究者想收集证据予以反对的假设
3. 总是有等号 , 或
4. 表示为 H0
– H0: 某一数值 – 指定为 = 号,即 或
– 例如, H0: 3190(克)
精选文档
14
为什么叫 0 假设?
之所以用零来修饰原假设,其原因是原假设的 内容总是没有差异或没有改变,或变量间没有 关系等等
– 左侧检验时,P-值为曲线上方小于等于检
零假设总是一个与总体参数有关的问题,所以 总是用希腊字母表示。关于样本统计量如样本 均值或样本均值之差的零假设是没有意义的, 因为样本统计量是已知的,当然能说出它们等 于几或是否相等
精选文档
15
提出原假设和备择假设
什么是备择假设?(alternative hypothesis)
1. 与原假设对立的假设,也称“研究假设”
3. 采用逻辑上的反证法,依据统计上的小 概率原理
精选文档
10
假设检验的基本思想
这个值不像我 们应该得到的 样本均值 ...
抽样分布
... 因此我们拒 绝假设 = 50
... 如果这是总 体的真实均值
20
= 50
H 精选文档 0
样本均值
11
假设检验的过程
总体
☺☺ ☺
☺☺ ☺☺ ☺☺
提出假设
我认为人口的平 均年龄是50岁
2. 研究者想收集证据予以支持的假设总是有不 等号: , 或
3. 表示为 H1
– H1: <某一数值,或 某一数值 – 例如, H1: < 3910(克),或 3910(克)
精选文档
16
确定适当的检验统计量
什么检验统计量?
1. 用于假设检验决策的统计量
2. 选择统计量的方法与参数估计相同,需考虑
精选文档
21
假设检验中的两类错误
1. 第一类错误(弃真错误)
– 原假设为真时拒绝原假设 – 会产生一系列后果 – 第一类错误的概率为
• 被称为显著性水平
2. 第二类错误(取伪错误)
– 原假设为假时接受原假设 – 第二类错误的概率为(Beta)
精选文档
22
假设检验中的两类错误
(决策结果)
H : 无罪 假设检验就好像一场审判过程 0
第 6章 假设检验
§1 假设检验的基本问题 §2 一个正态总体参数的检验 §3 两个正态总体参数的检验 §4 假设检验中的其他问题
精选文档
1
假设检验在统计方法中的地位
• 统计方法
描述统计
推断统计
参数估计
假设检验
精选文档
2
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 对实际问题作假设检验 4. 利用置信区间进行假设检验 5. 利用P - 值进行假设检验
4. 由研究者事先确定
精选文档
18
作出统计决策
1. 计算检验的统计量
2. 根据给定的显著性水平,查表得出相应
的临界值z或z/2, t或t/2
3. 将检验统计量的值与 水平的临界值进
行比较 4. 得出拒绝或不拒绝原假设的结论
精选文档
19
假设检验中的小概率原理
什么小概率?
1. 在一次试验中,一个几乎不可能发生的 事件发生的概率
精选文档
24
影响 错误的因素
1. 总体参数的真值
– 随着假设的总体参数的减少而增大
2. 显著性水平
当 减少时增大
3. 总体标准差
当 增大时增大
4. 样本容量 n
– 当 n 减少时增大
精选文档
25
什么是P 值?
(P-value)
1. 是一个概率值
2. 如果原假设为真,P-值是抽样分布中大于 或小于样本统计量的概率
精选文档
6
基本概念 通常的办法是进行抽样检查.
每隔一定时间,抽查若干罐 . 如每隔1小时,
抽查5罐,得5个容量的值X1,…,X5,根 据这些值来判断生产是否正常.
精选文档
7
基本概念
根据样本的信息检验关于总体的某个命题 是否正确. 这类问题称作假设检验问题 .
精选文档
8
什么是假设?(hypothesis)
– 是大样本还是小样本
– 总体方差已知还是未知
3. 检验统计量的基本形式为
Z X 0
n
精选文档
17
规定显著性水平
(significant level)
什么显著性水平? 1. 是一个概率值 2. 原假设为真时,拒绝原假设的概率
– 被称为抽样分布的拒绝域
3. 表示为 (alpha)
– 常用的 值有0.01, 0.05, 0.10
相关文档
最新文档