通用变频器和专用变频器的区别
变频器结构和工作原理

三、变频器的结构原理
1、变频器的分类:
交~交型:将频率固定的交流电源直接变换成频率连续可调的交流电 源,其主要优点是没有中间环节,变换率高。但其连续可调的频率 范围较窄。主要用于容量较大的低速拖动系统中。又称直接式变频 器。 交~直~交型:先将频率固定的交流电整流后变成直流,在经过逆变 电路,把直流电逆变成频率连续可调的三相交流电。由于把直流电 逆变成交流电较易控制,因此在频率的调节范围上就有明显优势。 又称为间接性变频器。
二、变频的控制方式
在各种薄膜或线材的收卷或放卷过程 中,要求被卷物的张力F必须保持恒 定即F=C,为此: 1)被卷物的线速度v也必须保持恒定即 v =C,所以卷绕功率是恒定的; 2)负载的阻转矩随被卷物卷径的增大而 增大:但为了保持线速度恒定,负载 的转速必须随卷径的增大而减小: (b) 用转矩控制模式实现 恒张力运行 令 变频器在转矩 控制模式下运行,将 给 定信号设定在某一值下不变。则 电动机的电磁转矩TM也将不变,如 图 (b)中之曲线①所示: TM=C 而动态转矩TJ则随着卷径D 的增大而变为负值,如图(b)中之曲 线③所示。拖动系统将处于减速状态, 满足图(c)所示的转速变化规律。 改 变给定转矩的大小,可以改变卷绕的 松紧程度
2、变频器的组成(交~直~交型)
如下图:
三、变频器的结构原理
a、主电路结构 该电路是现在通用的低压变频器主电路图。不管什么品牌的 变频器,其主电路结构基本如此。因为:整流电路和逆变电 路是两个标准模块,没有变化的空间。
三、变频器的结构原理
b、变频器控制电路 任何品牌的变频器,其 内部功能框图是一样的, 因为变频器要保证正常 工作,必须要有相应的 功能。变频器主要包括: 主电路、电流保护电路、 电压保护电路、过热保 护电路、驱动电路、稳 压电源、控制端子、接 口电路、操作面板、 CPU等。
变频器的分类方式

变频器基础知识及变频器的分类变频器的分类(1)按直流电源的性质分类变频器中间直流环节用于缓冲无功功率的储能元件可以是由电容或是电感,据此变频器可分成电压型变频器和电流型变频器两大类。
电流型变频器的特点是中间直流环节采用大电感作为储能元件,无功功率将由该电感来缓冲。
电流型变频器的一个较突出的优点是,当电动机处于再生发电状态是,回馈到直流侧的再生电能可以方便地回馈交流电网,不需要在主电路内附加任何设备。
电流型变频器常用于频繁急加减速的大容量电动机的传动。
在大容量风机、泵类节能调速中也有应用。
电压变频器的特点是中间直流环节的储能元件采用大电容,用来缓冲负载的无功功率。
对负载而言,变频器是一个交流电压源,在不超过容量限度的情况下,可以驱动多台电动机并联运行,具有不选择负载的通用性。
缺点是电动机处于再生发电状态时,回馈到直流侧的无功能量难于回馈给交流电网。
要实现这部分能量向电网的回馈,必须采用可逆变流器。
(2)按变换环节分类1)交-交变频器交-交变频器是将工频交流电直接变换成频率电压可调的交流电(转换前后的相数相同),又称直接式变频器。
对于大容量、低转速的交流调速系统,常采用晶闸管交一交直接变频器直接驱动低速电动机,可以省去庞大的齿轮减速箱。
其缺点是:最高输出频率不超过电网频率的l/3~1/2,且输入功率因数较低,谐波电流含量大,谐波频谱复杂,因此必须配置大容量的滤波和无功补偿设备。
近年来,又出现了一种应用全控型开关器件的矩阵式交一交变压变频器,采用PWM控制方式,可直接输出变频电压。
这种调速方法的主要优点是:①输出电压和输人电流的低次谐波含量都较小。
②输入功率因数可调。
③输出频率不受限制。
④能量可双向流动,可获得四象限运行。
⑤可省去中间直流环节的电容元件。
2)交-直-交变频器交-直-交变频器是先把工频交流电通过整流器变成直流电,然后再把直流电变换成频率电压可调的交流电,又称间接式变频器。
把直流电逆变成交流电的环节较易控制,在频率的调节范围,以及改善变频后电动机的特性等方面,都具有明显的优势。
变频器的分类

变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。
一、主电路工作方式分类:1、电压型变频器:电压型变频器与电流型变频器同属于交一直一交变频器,也由整流器、滤波器、逆变器三部分组成。
工作原理也是整流电路将电网来的交流电转换成直流电;再经三相桥式逆变电路转变为频率可调的交流电,供给推进电动机,电压型变频器的中问环节采用大电容。
2、电流型变频器:电流型工作原理是整流电路将电网来的交流电转换成直流电;再经三相桥式逆变电路转变为频率可调的交流电,供给推进电动机,电流型变频器的直流中间环节,采用大电感滤波。
3、电压型变频器和电流型变频器的区别:就是储能元件不同,电压型的储能元件是电容,电流型的是电感。
其实普通变频器应用电力电子电路,就是一个交流变直流--〉直流储能--〉直流变交流的过程。
也就是常说的整流环节--〉储能环节--〉逆变环节。
一般控制环节在逆变上,除非是四象限变频器,要用于回馈至电网的,会把整流和逆变做的结构一样。
否则的话,整流一般用晶闸管等,逆变用IGBT。
说多了,反正最后的控制都是对变流进行控制的,电压型和电流型的差别就在储能环节。
二、开关方式分类1、PAM控制变频器PAM是英文Pulse Amplitude Modulation (脉冲幅值调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。
2、PWM控制变频器PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调制方式。
3、高载频PWM控制变频器高载频PWM控制。
变频器的分类_变频器应用技术1

二、
外形
ABB变频器(瑞士) 变频器(瑞士) 变频器
电 气 自动化
ABB变频器(瑞士) 变频器(瑞士) 变频器
电 气 自动化
富士变频器G11系列 系列 富士变频器
富士变频器GP11系列 系列 富士变频器
富士变频器(日本) 富士变频器(日本)
电 气 自动化
MICROMASTER 440系列
西门子变频器(德国) 西门子变频器(德国)
电 气 自动化
G110系列 系列
西门子变频器(德国) 西门子变频器(德国)
电 气 自动化
西门子变频器(德国) 西门子变频器(德国)
电 气 自动化
变频器外形
FR-E500系列 系列
FR-S500E系列 系列
三菱变频器(日本) 三菱变频器(日本)
电 气 自动化
J7系列 系列
安川变频器(日本) 安川变频器(日本)
电 气 自动化
变频器外形
SB40系列高性能通用型 系列高性能通用型
SB80系列矢量控制型 系列矢量控制型
森兰变频器
电 气 自动化
变频器外形
SB60系列全能王 系列全能王
SB12系列风机 水泵专用 系列风机/水泵专用 系列风机
森兰变频器
电 气 自动化
当中间直流环节采用大电感滤波时,电流波形较平直, 当中间直流环节采用大电感滤波时,电流波形较平直,因而电源内阻抗大 输出是一个恒流源,输出交流电流是矩形波或阶梯波, ,输出是一个恒流源,输出交流电流是矩形波或阶梯波,这类变频装置叫电 流型变频器。 流型变频器。
电气自动化
3. 电压型和电流型变频器比较
2.交-交变频器 交 交变频器 交-交变频器是把工频交流电直接变换成不同频率交流电的 交变频器是把工频交流电直接变换成不同频率交流电的 过程,它不通过中间直流环节, 过程,它不通过中间直流环节,故又称为直接变频器或周波变换 因为没有中间环节,仅用一次变换就实现了变频, 器。因为没有中间环节,仅用一次变换就实现了变频,效率较高 主要构成环节如下图所示。 。主要构成环节如下图所示。
变频器的分类

变频器的分类变频器是一种能够改变电源频率的装置,广泛应用于工业生产中。
根据其功能和特点的不同,变频器可以分为多种分类。
下面将介绍几种常见的变频器分类。
一、按输出功率分类根据变频器的输出功率不同,可以将其分为低功率变频器、中功率变频器和高功率变频器三类。
1. 低功率变频器:低功率变频器通常指输出功率在1千瓦以下的变频器。
这类变频器体积小、重量轻,适用于小型机械设备的驱动,如风扇、水泵等。
低功率变频器具有运行稳定、噪音低等特点。
2. 中功率变频器:中功率变频器的输出功率在1千瓦到100千瓦之间。
这类变频器广泛应用于中型机械设备的驱动,如压缩机、切割机等。
中功率变频器具有较高的输出功率和较强的控制能力。
3. 高功率变频器:高功率变频器的输出功率在100千瓦以上。
这类变频器适用于大型机械设备的驱动,如电机、风力发电机组等。
高功率变频器具有较大的输出功率和高效率的能量转换。
二、按控制方式分类根据变频器的控制方式不同,可以将其分为V/F控制变频器和矢量控制变频器两类。
1. V/F控制变频器:V/F控制变频器是一种常见的变频器控制方式,其通过控制输出电压和频率的比值来控制电机的转速。
V/F控制变频器结构简单,控制稳定,适用于一般的驱动需求。
2. 矢量控制变频器:矢量控制变频器是一种高级的变频器控制方式,其通过对电机转子位置和转速进行精确控制,实现对电机的高性能驱动。
矢量控制变频器具有较高的控制精度和动态响应能力,适用于对转速要求较高的场合。
三、按输出电压分类根据变频器的输出电压不同,可以将其分为单相变频器和三相变频器两类。
1. 单相变频器:单相变频器适用于单相电源供电的场合,常见于家用电器和小型机械设备的驱动。
单相变频器结构简单,安装方便,但输出功率相对较小。
2. 三相变频器:三相变频器适用于三相电源供电的场合,广泛应用于工业生产中的大型机械设备。
三相变频器输出功率较大,能够满足各种工业驱动需求。
四、按应用场景分类根据变频器的应用场景不同,可以将其分为通用型变频器和专用型变频器两类。
详细解释矢量专用变频器和通用变频器的区别

详细解释矢量专用变频器和通用变频器的区别目录1 .前言 (1)2 .矢量专用变频器 (1)3 .通用变频器 (2)4.矢量专用变频器和通用变频器的区别 (2)4. 1.定义和概述 (2)5. 2.控制方式 (2)6. 3.响应时间 (3)7. 4.适用范围 (3)8. 5.性能优势 (3)9. 6.价格和稳定性 (3)10. 7.宗金 (4)5.变频器的正确选择 (4)11. L恒转矩负载: (4)5.2. 恒功率负载: (4)5.3. 风机、泵类负载: (4)1.前言矢量专用变频器和通用变频器是用于驱动电机的两种不同类型的变频器。
虽然它们都可以控制电机的电压和频率,但在其功能、性能和适用范围方面存在着一些差异。
变频器主要作用通过改变电机工作电源频率方式来控制交流电动机的电力控制设备,而对于变频器的种类大家知道吗?变频器有矢量专用变频器和通用变频器两种,而对于这两种的区别有哪些呢?今天变频器厂家就详细的介绍一下:2.矢量专用变频器矢量变频器跟普通变频主要有两种其别,第一是控制精度高,二就是低转速输出转矩大。
矢量专用变频器工作原理是先通过进行整流,然后再进行逆变,逆变之后得到自己所要的频率电压。
矢量控制技术通过坐标变换,将三相系统等效变换为M-T两相系统,将交流电机定子电流矢量分解成两个直流分量(即磁通分量和转矩分量),从而达到分别控制交流电动机的磁通和转矩的目的,因而可获得与直流调速系统同样好的控制效果。
矢量控制又称为“速度控制”,从字面上就可以看出几分区别。
V/F控制方式:就像开车时你脚上的油门开度是保持不变的,而这时车子的速度肯定是在变化的!因为车子行走的道路是不平的,道路的阻力也是在变化的,上坡时速度就会慢下来,下坡时速度就会加快,对吧?对变频器来说,这时你的频率设定值就是相当于你开车时脚上油门的开度,V/F控制时油门开度是固定的。
矢量控制方式:可以控制车子在路况变化、阻力变化、上坡、下坡等变化情况下,尽量让车速保持恒定不变,提高速度控制精度。
变频器种类、特点、应用场合、选型

常用的变频器有哪几种?它们各自有什么特点及其应用场合?常用的变频器有交一直一交电压型变频器、交一直一交电流型变频器、交一交变频器和脉宽调制( PWM)变频器。
(1)交一交变频器是直接将电网的交流电变换为电压和频率都可调的交流电,电路构成简单,效率高,低速大容量时经济,最高频率一般只能达到电源频率的1/2—1/3,适用于低频大容量的调速系统。
(2)交一直一交电流型变频器的特点是在逆变器的直流侧串联平波电抗器,使直流电平直,形成电流源,可以方便地实现负载能量向电网回馈,可以快速、频繁地实现四象限运行,同时可以实现电流的闭环控制,提高了装置的可靠性。
适用于单机快速调速系统。
(3)交一直一交电压型变频器在直流侧并联大客量滤波电容以缓冲无功功率,直流电源阻抗小,形成电压源;能量回馈电网较难,只能能耗制动,适用于小容量和频率不高的调速系统。
(4) PWM变频器的特点是调频和调压都由逆变器完成,二极管整流提供恒定的直流电压;变频功率因数高,调节速度快;输出电压和电流波形接近正弦波,改善了由矩形波引起的电动机发热、转矩降低等电动机运行性能,适用于单台或多台电动机并联运行,动态性能要求高的调速系统。
变频器选型应从以下几个方面考虑:(一)变频器类型选择变频器可分为通用型和专用型,一般的机械负载和要求高过载情况,选择通用型变频器。
专用型变频器又可分为风泵专用型、电梯专用型、张力控制专用型等。
根据自身应用环境加以选择。
(二)变频器容量选择变频器的容量选择是最重要的,应从负载的实际负荷电流、启动转矩、控制方式来合理选择。
如负载是风机、水泵,则选择风泵专用型与电机同功率即可;对罗茨风机和深井泵应选择风泵专用型比电机功率大一档的变频器。
启动转矩是容易忽视的选项,对大的惯量负载,变频器可能要比电机功率加大数档。
(三) 变频器性价比选择变频器的性价比是仁者见仁,智者见智。
在这里不多说了(四)变频器售后服务选择变频器的售后服务是选择品牌的关键,进口品牌质量可靠,价格高,售后服务好,但是过了保修期,维修的价格非常高。
变频器的分类与特点

变频器的技术规范
根据系统应用分类
2. 输出侧的额定数据
变频器输出侧的额定数据包括以下内容:
(1)额定电压U(N)因为变频器的输出电压要随频率而变,所以,U(N)定义为输出的最 大电压。通常它总是和输入电压U(IN)相等的。
(2)额定电流I(N)变频器允许长时间输出的最大电流。
( 3 ) 额 定 容 量 S(N) 由 额 定 线 电 压 U(N) 和 额 定 线 电 流 I(N) 的 乘 积 决 定 : S(N)=1.732U(N)I(N)
载能力规定为:150%,1min。可见,变频器的允许过载时间与电机的允许过载时间相比,是微不足道的。10变频器的个性化特点
发展:
交流变频器自20世纪60年代左右在西方工业化国家问世以来,到 现在已经在中国得到了大面积的普及,并业已形成60亿元以上的 年销售规模。根据变频器在不同行业的应用特点,很多厂家都推 出非常新颖的变频器,并将个性化发挥得淋漓尽致。所谓变频器 个性化,就是指变频器本体按照各自特定的方式发展自己的风格, 并完善变频器本体,从而形成相对稳定而独特的变频器特性。
(2)单进三出变频器 变频器的输入侧为单相交流电,输出侧是三相交流电,俗称“单 相变频器”。该类变频器通常容量较小,且适合在单相电源情况 下使用,如家用电器里的变频器均属此类。
5
变频器的分类与特点
根据负载转矩特性分类
(1)P型机变频器 适用于变转矩负载的变频器。 (2)G型机变频器 适用于恒转矩负载的变频器。 (3)P/G合一型变频器 同一种机型既可以使用变转矩负载,又可以适用于恒转矩负载; 同时在变转矩方式下,其标称功率大一档。
(4)容量P(N)在连续不变负载中,允许配用的最大电机容量。必须注意:在生产机械 中,电机的容量主要是根据发热状况来定的。在变动负载、断续负载及短时负载中, 只要温升不超过允许值,电机是允许短时间(几分钟或几十分钟)过载的,而变频器 则不允许。所以,在选用变频器时,应充分考虑负载的工况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通用变频器和专用变频器的区别
对于用户来说,为关心的是的用途。
根据用途的不同,变频器可分为通用变频器和专用变频器。
1.通用变频器
通用变频器是变频器家族中数量多、应用为广泛的一种。
顾名思义,通用变频器的特点是通用性。
随着变频技术的发展和市场需求的不断扩大,通用变频器正在朝着两个方向发展:一是以节能为主要目的而简化了一些系统功能的低成本简易型通用变频器,它主要应用于水泵、风扇、鼓风机等对于系统调速性能要求不高的场合,并具有体积小、价格低等方面的优势;二是在设计过程中充分考虑了应用中各种需要的高性能、多功能通用变频器,在使用时,用户可以根据负载的特性选择算法对变频器的各种参数进行设定,也可以根据系统的需要选择厂家所提供的各种备用选件来满足系统的特殊需要。
高性能的多功能通用变频器除了可以应用于简易型变频器的所有应用领域外,还可以广泛应用于、、电动车辆等对调速系统的性能有较高要求的场合。
过去,通用变频器基本上采用的是电路结构比较简单的U/f控制方式,与VC 方式相比,在转矩控制性能方面要差一些。
但是,随着变频技术的发展,目前一些厂家已经推出采用VC的通用变频器,以适应竞争日趋激烈的变频器市场的需求。
这种多功能通用变频器可以根据用户需要切换为“U/f控制运行”或“VC运行”方式,但价格方面却与U/f方式的通用变频器持平。
因此,随着技术和计算机技术的发展,今后变频器的性价比将不断提高。
2.专用变频器
(1)高性能专用变频器。
随着控制理论、交流调速理论和电力电子的发展,异步的VC得到发展,VC 变频器及其专用电动机构成的交流伺服系统已经达到并超过了直流伺服系统。
此外,由于还具有环境适应性强、维护简单等许多直流伺服所不具备的优点,在要求高速、高精度的控制中,这种高性能交流伺服变频器正在逐步取代直流伺服系统。
(2)高频变频器。
在超精密机械加工中常采用高速电动机。
为了满足其驱动要求的需要,出现了采用PAM控制的高频变频器,其输出主频高达3kHz,驱动两极异步电动机时的转速
为18000r/min。
(3)高压变频器。
高压变频器一般是大容量的变频器,功率可达5000kW,电压等级为3kV、6kV 和10kV。
标签:
通用变频器
专用变频器。