线性代数--第三章
线性代数第三章总结

第三章 几何空间一、 向量的运算1. 向量的数量积(1) 在仿射坐标系123{;,,}O e e e 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则112323(,,)y x x x A y y αβ⎛⎫ ⎪⋅= ⎪ ⎪⎝⎭,其中111213212223313233e e e e e e A e e e e e e e e e e e e ⋅⋅⋅⎛⎫ ⎪=⋅⋅⋅ ⎪ ⎪⋅⋅⋅⎝⎭. (2) 在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则131233213(,,)i i i y x x x I y x y y αβ=⎛⎫ ⎪⋅== ⎪ ⎪⎝⎭∑ ∙ =0αβαβ⊥⇔⋅2. 向量的向量积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则123123i jk x x x y y y αβ⨯=. ∙ //=0αβαβ⇔⨯3. 向量的混合积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,123(,,)z z z γ=则123123123(,,)x x x y y y z z z αβγ=. ∙ (,,)0αβγαβγ⇔=,,共面例:(1)设=αβγδ⨯⨯, =αγβδ⨯⨯,证明αδ-,βγ-共线.(2)设0αββγγα⨯+⨯+⨯=,证明αβγ,,共面.(3)证明()()βγααγβγ⋅-⋅⊥.证明:(1)因为()()αδβγ-⨯-=αβαγδβδγ⨯-⨯-⨯+⨯=αβγδαγ⨯-⨯-⨯+0βδ⨯=,所以αδ-,βγ-共线.(2)因为()αβγ=,,()αβγ⨯⋅=()βγγ-⨯⋅()γαγ-⨯⋅=()βγγ-,,()γαγ-,,0=,所以αβγ,,共面.(3) 因为(()βγα⋅())αγβγ-⋅⋅=()βγ⋅()αγ⋅()αγ-⋅()βγ⋅0=,所以()βγα⋅()αγβ-⋅γ⊥.二、 位置关系的判断1. 两个向量的共线;三个向量的共面.2. 两条直线异面,共面(相交、平行、重合)3. 两个平面相交、平行、重合4. 直线与平面相交、平行、直线在平面上.三、距离和垂线(在右手直角坐标系中讨论)1. 点到直线的距离,垂线方程垂线方程:设直线过已知点0000,,)P x y z (方向向量为0()X Y Z υ=,,,求过111(,,)P x y z 点直线的垂线方程。
线性代数第3章向量空间

表示, 又 m>n, 由表示不等式
r(Blm ) r( Aln ) n m 从而 B 必相关.
-26-
(6) “短的无关, 则长的也无关.等价地… ” P101推论3
无穷多种表示, 并求所有表示方法.
解 记 A [1,2 ,3 ] 只需讨论 Ax 解的情况.
具体解方程组过程略。
0 时,方程组无解, 不能由 A 表示. 0 且 3时, 方程组有唯一解, 可由 A 唯一表示.
-12-
3 时, 方程组有无穷多解, 可由 A 无穷多种表示.
1
1 2
,
2
3 4
是无关的.
1
3
n r( Amn ) r(Bln ) n
1 , 2 也是无关的.
2
4
r(Bln ) n
1
再如:1
2 0 0
,
0
2
101,
0
3
9 0 1
.
-27-
(7)含有n个向量的n元向量组线性相关(无关)
由它构成的n阶矩阵的行列式 | A | 0 (| A | 0) 例4 t 取何值时,下列向量组线性相关 ? P101推论2
(用矩阵的秩) r( A) n
把向量组排成矩阵,如果矩阵的秩等于向量的个数就线性 无关,否则如果矩还阵是的转秩换小!于转向换量线的性个无数关就…线性相关。
-18-
例1
1
0
2
1 1,2 2,3 4,
1
5
7
问向量组 {1,2 ,3 } 和 {1,2 }的线性相关性?
线性代数第三章

Am n 的各阶子式的总数:
min( m , n )
k 1
k k CmCn .
任意非零矩阵都至少有一个1阶非零子式(其每个非零元都可构成一个
1阶非零子式), 更高阶子式(如有)中还可能有非零的.
一个矩阵所具有的非零子式的最高阶数这一 数字与该矩阵的多方面性质有关, 将这一数字定
1 A 0 0 2 2 0 1 8 0 0 8 0
0
由此知A可逆, 故系数 行列式非零,于是克莱 默法则也适用本题.
3
行最简形矩阵
2
(29,16, 3)
1
x1 2 x2 x3 0 x2 4 x3 4 . 例3.4.2 求解线性方程组 4 x 5 x 8 x 9 1 2 3
由性质 5
ci c n i i 1, 2,, n
~
( A, B )
R ( A) R ( B ).
证毕.
例3.3.4 设A为n阶方阵,证明: R( A E) R( A E) n. 证明:
A E
ri ( 1) i 1, 2, , n
~
EA
练习 设A2=E,证明: R(A+E)+R(A-E)=n.
B的各非零行的首个非零元处在第1,2,3行、第1,2,4列, 分别对应于A 的第4,2,3行、第1,2,4列, 其交叉点处的元素构成的行列式
3 2 D 2 1 0 6
6 5 1
A的第2,3,4行、第1,3,4 列交叉点处的元素也可构成A 的最高阶非零子式.想想为什 么?还可以怎么取?
就是A的一个最高阶非零子式.
R( A) R( B) 3 .
例3.3.2 解:(2)求A的一个最高阶非零子式.事实上
线性代数 第三章

( b1 , b2 ,, bm 为不全为零的常数) (3-1-1)
在上一章知道,它的矩阵表达式为 常数项与未知阵。
a11 a 21 A , B 将系数矩阵与常数项矩阵放在一起构成的矩阵 ~ 称为方程组(3-1-1)的增广矩阵(也可记作 A )。 a m1
第三章 向量组与线性方程组
• 3.1 线性方程组及其矩阵表示
设非齐次线性方程组的一般形式为
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 a m1 x1 a m 2 x 2 a mn x n bm
Ax B与 Sx T 同解。(证)
证明 由于对矩阵作一次初等行变换等价于矩阵左乘一个初等矩阵,因此存在初等矩 阵 P 记 Pk Pk 1 P1 P 显然 P 可逆。 1, P 2 ,, P k 使得 P kP k 1 P 1 ( A, B) ( S , T )
x x1 为 Ax B 的解,即 Ax1 B Sx1 T 于是 x x1 为 Sx T 的解。
21 1
22
2
2n
n
x1 2 x 2 2 x3 x 4 1 【例1】把线性方程组 2 x1 x 2 2 x 2 5 x 4 2 表示为矩阵方程的形式。 x 3 x 7 x 4 x 0 2 3 4 1 x1 1 2 2 1 1 解 设 A x2 B 2 1 2 5 2 则原方程组可表示为 Ax B x 1 3 7 4 0 x3 x 4
Ax B 其中 A, B, x 分别是系数阵、
《线性代数》课件-第3章 矩阵

§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。
线性代数第三章向量组

4 5
是3个四维的列向量组.
4
5
6
1 T ( 1 , 2 , 3 ) , 2 T ( 2 , 3 , 4 ) , 3 T ( 3 , 4 , 5 ) , 4 T ( 4 , 5 , 6 )
是4个三维的行向量组。
4.向量组和矩阵的关系
对于列向量组
1 2 3
1
2 3
,2
3 4
,3
4 5
4
5
6
1
1,2,3
2 3
4
2 3 4 5
3
4
5
6
对于行向量组
T 1
(1,2 ,3 )
T 2
(2,3,4)
T 1 T 2
1
2
2 3
3
4
T 3
(3 ,4 ,5 )
T 4
(4 ,5 ,6 )
T 3 T 4
3 4 5
4
5
6
反过来看: 即矩阵的 特殊分块
1 k111 k212
2
k121
k22 2
l k1l1 k2l2
km1m , km2m ,
kmlm ,
即存在m l 矩阵 K ,使得
k11 k12
(1 , 2 ,
, l ) (1,2 ,
,m
)
k21
k22
km1
km2
k1l
k2l
kml
B AK
( K 称为系数矩阵)
齐次线性方程组的向量表示
a11 a12
a21
a22
am1 am2
a1n x1 0
a2n
x2
0
amn
xn
0
线性代数_第三章

这与1,2, . . .,s与线性无关矛盾.
推论1 两个等价的且线性无关的向量组,含有相 同个数的向量。
推论2 等价的向量组有相同的秩。
推论3 向量组(I)的秩为r1,向量组(II)的秩为r2,且
组(I)可由组(II)线性表出,则r1≤r2。
lts ks 0
于是
1 , 2 ,
k1 k2 b1 , b 2 , , s ks
l11 l12 l21 l22 , bt lt1 lt 2
l1s k1 0 l2 s k 2 0
第三章 向量组与线性方程组
§3.1 向量组的线性相关性
2 x1 3 x2 3 x3 5 x1 2 x2 x3 2 7 x2 x3 1
2 3 3 5 1 2 1 2 0 7 1 1
显然第三行是前两行的代数和; 也就是说,第三个方程能由前两 个方程“表示”;
4, (III) 1, 2, 3, 5, 且向量组的秩分别
为R(I)=R(II)=3, R(III)=4. 证明:向量组1, 2, 3, 5-4的秩为4.
证明: 由R(I)=R(II)=3得知向量组(I)线性无关,向
量组(II)线性相关,且4可由1, 2, 3,线性表出,
lm m 0
定理3 设m≤n,则m个n维向量1 ,2 ,
,m 线性无关的充
分必要条件是,其组成的矩阵的秩R(A)=m.即A为列满秩。
证:必要性. 因为Q可逆,必有l1,l2,…,lm不全为零, 这与1,2,…,m线性无关矛盾。 因此,R(A)=m。
线性代数第三章

例4 向量组 α1 , α 2 ,⋯ , α s 中的 任意一个向量 α j ( j = 1, 2,⋯ , s ) 都可 由该向量线性表示, 由该向量线性表示,因为 α j = 0α1 + ⋯+ 1α j + ⋯+ 0αs
例题4 例题 详见教材85页 详见教材 页
(例5 + 例6) )
定义3.3.2给定向量组 给定向量组 定义
例6
设有线性方程组
x1 + x2 − 2 x3 + 3x4 = 0 2 x + x − 6 x + 4 x = −1 1 2 3 4 3x1 + 2 x2 + ax3 + 7 x4 = −1 x1 − x2 − 6 x3 − x4 = b
讨论当 a , b 为何值时, 为何值时, 方程组有解?( ?(2 无解? (1) 方程组有解?(2)无解? (3)当有解时,试求出其解。 当有解时,试求出其解。
0 = (0, 0,⋯ , 0)
n维向量 α = (a1 , a2 ,⋯ , an ) 的各分量都取相反数组成的向 维向量 量称为的负向量, 量称为的负向量,记作
−α = (−a1 , −a2 ,⋯ , −an )
α 定义3.2.3 如果 维向量 = (a1 , a2 ,⋯ , an ) 如果n维向量 定义
3、仅含有两个向量的向量组线性相关的充分必要条件是这两个向量的 、 对应分量成比
定理3.3.1 向量组 A : α 1 , α 2 , ⋯ , α m 线性相关当且仅当以 A = (α1 , α 2 ,⋯ , α m ) 定理 为系数矩阵的齐次线性方程组 AX
=0
有非零解。 有非零解。
推论3.3.1向量组 A : α 1 , α 2 , ⋯ , α n 线性相关当且仅当矩阵 A = (α1 , α 2 ,⋯ , α n ) 向量组 推论 的行列式值为零。 的行列式值为零。 定理3.3.2向量组 A : α1 , α2 ,⋯, αm (m ≥ 2) 线性相关的充要条件是向量组A: α1,α2 ,⋯,αm 向量组 定理 中至少有一个向量可由其余向量线性表示。 中至少有一个向量可由其余向量线性表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
amn bm
问题: 如何利用系数矩阵 A 和增广矩阵 B 的秩, 讨论线性方程组 Ax b 的解.
3.1 消元法
例1 求解非齐次方程组的解
x1 - x2 - x3 x4 2
x1
x2
x3
- 3x4
1
x1
- x2
- 2x3
3x4
-1 2
解
x1 - x2 - x3 x4 2
其余n r个作为自由未知量,
并令 n r个自由未知量全取0,
即可得方程组的一个解.
证毕
定理3.1.2 n 元齐次线性方程组 Amn x 0
有非零解的充分必要条件是系数矩阵的秩 r A n, 仅有零解的充分必要条件是系数矩阵的秩 r A n.
证 必要性
设r A n,则在A中应有一个n阶非零子式Dn,从而
Dn所对应的 n个方程只有零解 根据克拉默定理 ,
这与原方程组有非零解相矛盾,
即 r A n.
充分性
设 r A r n,
则 A 的行阶梯形矩阵只含 r 个非零行,
从而知其有 n r 个自由未知量 . 任取一个自由未知量为1,其余自由未知量为0,
0 0
1 2
52
0
0
1 2
52
1 1 0 1 9 / 2 0 1 0 0 3
0
0
1 2
5
2
1 0 0 1 3 / 2 0 1 0 0 3
0
0
1
2
5
2
方程组有无穷多解,且有
rA 3,rB 3,
rA rB 4
例2 求解非齐次线性方程组
x1 3 x1
2
第三章 线性方程组
3.1 消元法 3.2 N维向量及其线性相关性 3.3 向量组的秩 3.4 线性方程组解的结构
线性方程组的矩阵表示
a11 x1 a21 x1
a12 x2 a22 x2
a1n xn a2n xn
b1 b2
am1 x1 am2 x2 amn xn bm
推论: 如果n元齐次线性方程组中,方程个数少于变量的个数 即m<n,则方程组必有非零解。
定理3.1.3 如果n元齐次线性方程组的系数矩阵A 是方阵,则方程组有非零解的充分必要条件为|A|=0。
定理3.1.1 n 元非齐次线性方程组 A x b 有解的
充分必要条件是系数矩阵 A 的秩等于增广矩阵 B A,b 的秩.
定理3.1.1 n 元非齐次线性方程组 A x b 有解的 充分必要条件是 r(A) r(B) r.
r(A) r(B) r n时, 唯一解 r(A) r(B) r n时, 无穷多解 r(A) r(B)时, 无解
定理3.1.2 n 元齐次线性方程组 A x 0
有非零解的充分必要条件是系数矩阵的秩 r A n, 仅有零解的充分必要条件是系数矩阵的秩 r A n.
证 必要性 设方程组 Ax b 有解,
设r A r、B,
则B的行阶梯形矩阵中最后一个非零行对应矛盾
方程0=1,
这与方程组有解相矛盾. 因此 r A r B.
充分性
设 r A r B,
设 r A r B rr n,
则 B 的行阶梯形矩阵中含 r 个非零行,
把这 r 行的第一个非零元所对应的未知量作为 非自由未知量,
3
x1
x2
2 -3
x4
x3
5 2
2x4
方程组有无穷多解,一般解(通解)为
x4 为自由变量
其它变量为非自由变量
x1
x2
x3
3
2 -3 5
2
C 2C
C为任意常数
x4 C
例1 求解非齐次方程组的解
x1 - x2 - x3 x4 2
x1
x2
x3
- 3x4
1
x1
a11
0
0
0
0
0
a12 a22 0 00 00
00
a 1,r a 2,r
0 0 0
0
a1,r 1 a 2,r 1
a r,r 1
0 0
0
a1n b1
a2n b1
a rn 0
br
br1
0
0
0 0
显然
非齐次线性方程组
无解 r(A) r(B ) 无穷多解 r(A) r(B ) n 唯一解 r(A) r(B ) n
2x2 2x3 - 4 x4 - 1
- x3
2x4
-5 2
x1 - x2 - x3 x4 2
x2
x3
- 2x4
-1 2
x3
- 2x4
5 2
x1
- x2
x2
9 x4 2
-3
x3 - 2x4
5 2
x1
x2
3 x4 2
-3
x3 - 2x4
5 2
x2 x2
3x3 5x3
x4 3 x4
1,
2,
2x1 x2 2x3 2x4 3.
解 对增广矩阵B进行初等变换,
1 2 3 1 1 B 3 1 5 3 2
2 1 2 2 3
1 2 3 1 1 0 5 4 0 1 0 5 4 0 1
1 2 3 1 1 0 5 4 0 1 0 0 0 0 2
方程组无解.
显然,r(A) 2, r(B ) 3, r(A) r(B )
非齐次线性方程组
a11 x1 a12 x2 a1n xn b1
a21 x1
a22 x2 a2n xn
b2
am1 x1 am2 x2 amn xn bm
a11Ba21Fra bibliotekam1
a12 a22 am2
Ax b
a11
若取A
a21 am1
a12 a22 am2
a1n
a2n amn
,
x1
X
x2
xn
b1
b
b2
bm
n 为线性方程组变量的个数
增广矩阵B(或者 A)=(A ¦B)
a11 a12
B
a21
a22
am1 am2
a1n b1
a2n b2
- x2
- 2x3
3x4
-1 2
解 对增广矩阵B进行初等行变换
1 1 1 1
B 1 1 1 3
2 1
1 0
1 2
1 2
1 4
2 1
1 1 2
3
1 2
0
0
1
2
5 2
1 1 1 1
2 1 1 1 1
2
0 1 1 2 1 / 2 0 1 1 2 1 / 2
a1n b1
a2n b2
amn
bm
a11
0
0 0
0
0
a12 a22 0 00 00
00
a 1,r a 2,r
0 0 0
0
a1,r 1 a 2,r 1
a r,r 1
0 0
0
a1n b1
a2n b1
a rn 0
br
br1
0
0
0 0