变电站电气主接线

合集下载

电站变电所电气主接线图(含说明)

电站变电所电气主接线图(含说明)
220kV I母220kV II母110kV套管CT:3(TMY-125X10)HY5WZ-17/45W110kV中性点设备:YH1.5W-72/186WLJW1-10W,400/1AGW13-63W/630LRB-110,200,400,600/1A,(两只)LRB-60,200,400,600/1A,(两只)LR-110,1200,1800,2400/1A,(一组)LRB-110,1200,1800,2400/1A,(两组)GW13-110W/630ALJW1-10W,200/1AYH1.5W-144/320W220kV中性点设备:110kV中性点套管CT:220kV中性点套管CT:2xLGJX-500/45YH10W-108/281WYH10W-204/532WLRB-220,800,1200,1600/1A,(两组)LR-220,800,1200,1600/1A,(一组)Uk1-2=14% Uk1-3=50% Uk2-3=35%220%%P8X1.5%/115/10.5kV#1主变压器容量比:180/180/90 接线组别:YN,Yno,dll220kV套管CT:SFSZ9-K-180000/2200.5/0.2S4000A,50kAGW16-220(W)2500A,50kAGW16-220D(W)断路器弹簧机构2x600/1A2500A,50kA5P30/5P30电流互感器GW7-220IID(W)5P30/5P30/5P30C备用一BA出线二BCLGJX-630/55A#1主变间隔C备用三变主2xLGJX-500/45YH10W-108/281WYH10W-204/532W#2主变压器#1同(预留)#3主变压器(预留)#4主变压器#3主变间隔#2主变间隔#4主变间隔备用四CBABALDRE-130/116LDRE-130/116变主#1同隔间母联2x(LGJX-630/55)5P30/5P30/5P305P30/5P30/0.52x1200/1A电流互感器弹簧机构4000A,50kA断路器GW16-220D(W)2500A,50kA氧化锌避雷器LGJX-400/352500A,50kAGW16-220D(W)YH10W-204/532WTYD-220/ 3-0.0075H电压互感器(三相)220/ 3:0.1/ 3:0.1/ 3:0.1/ 3:0.1一同出线出线一BCA5P30/5P30/5P300.5/0.2S4000A,50kAGW16-220(W)2500A,50kAGW16-220D(W)断路器弹簧机构2500A,50kA5P30/5P302x1200/1A电流互感器GW7-220IID(W)B、C相:OWF-220/ 3-0.005HA相:TYD-220/ 3-0.005HXZK-1600-1.0/40XZK-1600-0.5/402x(LGJX-400/35) I母母线设备II母母线设备设母同 I母线备SC11-400/11LGJX-300/40LDRE-130/116LDRE-130/1162000A,40kAGW4-126IID(W)GW16-126(W)GW16-126D(W)2000A,40kA5P30/0.5/0.2S5P30/5P30/5P302x400/1A电流互感器3150A,40kA弹簧机构TYD-110/ 3-0.01H断路器A相:ACBCBA出线二出线一#1主变一出同线一出同线一同出线TBB22-10-100205组/334M-2BLXGN2B-12(Z)XHDCB-500/11DKSC-500/11 500kVA,ZN#1接地变10kV I段 3(TMY-125X10)XGN2B-12(Z)XGN2B-12(Z)#1母设10回#1站用变XGN2B-12(Z)ABCBAC出线三出线四#2主变同一出同线变#1主CBA#3母设#4母设10kV IV段10kV III段#3接地变#4接地变母联 Ⅱ母母线设备 Ⅲ母母线设备110kV Ⅰ母110kV Ⅳ母110kV Ⅱ母110kV Ⅲ母分段10回TBB22-10-100205组/334M-2BLTBB22-10-80165组/334M-2BL Ⅳ母母线设备 Ⅰ母母线设备2000A,40kALGJX-240/30TYD-110/ 3-0.02HYH10W-108/281W0.1/ 3:0.1/ 3:0.1220/ 3:0.1/ 3:GW4-126D(W)设母同 I母线备2000A,40kAGW16-126D(W)断路器3150A,40kA5P30/0.5/0.2S5P30/5P302xLGJX-500/45弹簧机构2x600/1A电流互感器母联CBACBA出线五#3主变ABC出线六一同出线断路器2xLGJX-500/453150A,40kAGW4-126IID(W)2000A,40kA5P30/0.5/0.2S5P30/5P30/5P30弹簧机构2x600/1A电流互感器2000A,40kAGW16-126D(W)GW16-126(W)备用 CBA#4主变备用 CBA备用 CBA出线七CBA备用4回一同出线图中实线设备为本期建设部分,虚线设备为预留扩建部分。说 明:3(TMY-125X10)YH10W-108/281W10kV IIA段 3(TMY-125X10)线5回馈母同I#2A母设设母同#1#2接地变器同I母电容#2站用变变#1同接地变站同#1TBB22-10-100203组/334M-2BLTBB22-10-100202组/334M-2BL10kV IIB段 3(TMY-125X10)器同I母电容5P20/5P20/0.2S 15VA/15VA/15VA 3台ZN28-4000-50kA 1台GN30-10/4000A,40kA,1组LMZJ-10Q,4000/1/1/1 XGN2B-12(Z)GN30-10/4000A,1组LMZJ-10Q,4000/1/15P20/0.5,15VA/15VA 3台LZZBJ9-10Q,400~600~800/15P20/0.5/0.2S 15VA, 3台ZN28-1250-31.5kA 1台GN30-10D/1250A,31.5kA,1组GN30-10/1250A,31.5kA,1组HY5WZ-17/45 1组JN15-12,1组TY-LJK%%C160J,75/1A,5VA,1只LZZBJ9-10Q,800/1 ,5P20/0.5/0.2S 15VA 3台ZN28-1250-31.5kA 1台GN30-10D/1250A,31.5kA,1组GN30-10/1250A,31.5kA,1组HY5WZ-17/45 1组JN15-12,1组TY-LJK%%C160J,75/1A,5VA,1只XGN2B-12(Z)ZR-YJV22-8.7/15-1*400GN30-10D/1250A,31.5kA,1组10/√3:0.1/√3:0.1/√3:0.1kV0.2/0.5/3P 30/40/150VA HY5WZ-17/45 1组LZZBJ9-10Q,150/1 ,5P20பைடு நூலகம்0.5/0.2S 15VA 3台ZN28-1250-31.5kA 1台GN30-10D/1250A,31.5kA,1组GN30-10/1250A,31.5kA,1组HY5WZ-17/45 1组JN15-12,1组TY-LJK%%C160J,75/1A,5VA,1只XGN2B-12(Z)LZZBJ9-10Q,150/1 ,5P20/0.5/0.2S 15VA 3台ZN28-1250-31.5kA 1台GN30-10D/1250A,31.5kA,1组GN30-10/1250A,31.5kA,1组HY5WZ-17/45 1组JN15-12,1组TY-LJK%%C160J,75/1A,5VA,1只GN30-10/4000A,1组LMZJ-10Q,4000/1/1 15VA/15VA 3台5P20/0.5XGN2B-12(Z)GN30-10/4000A,1组LMZJ-10Q,4000/1/1 15VA/15VA 3台5P20/0.5XGN2B-12(Z)XGN2B-12(Z)ZN28-4000-50kAGN30-10/4000A, 1台50kA,1组ZR-YJV22-8.7/15-3*240ZR-YJV22-8.7/15-3*240XGN2B-12(Z)5P20/5P20/0.2S 15VA/15VA/15VA 3台ZN28-4000-50kA 1台GN30-10/4000A,40kA,1组LMZJ-10Q,4000/1/1/1 XGN2B-12(Z)GN30-10/4000A,1组LMZJ-10Q,4000/1/15P20/0.5,15VA/15VA 3台#2B母设设母同#1线5回馈母同IJW6-252W/630AJW6-252W/630A电流互感器2x600/1A5P30/5P305P30/0.5/0.2S断路器,弹簧机构3150A,40kAGW4-126D(W)2000A,40kAGW4-126D(W)2000A,40kA11%%P2X2.5%%%/0.4kV 400kVAUd=4%%%,D,yn11SC11-400/1111%%P2X2.5%%%/0.4kV 400kVAUd=4%%%,D,yn11设母同 I母线备设母同 I母线备母同 I母联C备用二BA2006.04.25例比APPROVED BY审 定AUDITED BY核 定设 计DESIGNED BYCHECKED BY校 核NO图 名图号TITLEPROJECT工程名施工时间TIME审 核AUDITED BY设计阶段220kV XX变电站 工程电气主接线图专业会签日期专业会签日期QQ:447255935Email:xingxinsucai@ TEL:星欣设计图库QQ:396271936

变电站主接线的基本形式详解

变电站主接线的基本形式详解

变电站主接线的基本形式详解变电站是电力系统中不可或缺的一环,它起着输电、变电、配电、调节电压、保护及控制等功能。

主接线作为变电站工程的核心部分承担了能量传输的重要任务。

本文将对变电站主接线的基本形式进行详解。

一、主接线概述主接线是变电站中贯穿所有电气设备的主体架构,承担着输电、分配、开关等功能,将线路运行所需的电能有机结合在一起。

变电站主接线一般由下列几方面内容组成:•额定电压:主接线必须与变电站本身之间的额定电压匹配,一般是110kV、220kV、500kV、750kV等。

•输电容量:主接线将输电线路经变压器变成变电站本身所需的电能,因此主接线的损耗必须小,并且输电容量大小要相当,以确保变电站正常运行。

•形式多样:包括框架式、单汇流式、多汇流式等几种形式。

根据实际情况,选择合适的主接线形式,以达到最佳的输电效果。

二、主接线的形式主接线形式的选择是变电站设计与建设中较为重要的一环,同时也是最具挑战性的一部分。

不同的主接线形式根据变电站的实际情况选择不同的方案。

以下是三种常用的主接线形式。

1. 框架式框架式主接线通常适用于额定电压小于500kV的变电站,一般采用钢管框架结构。

框架结构坚固、耐腐蚀、重量轻,同时可以防止漏电,使系统运行更加可靠。

框架式主接线的使用成本低,同时操作简单容易维护。

2. 单汇流式单汇流式主接线通常适用于额定电压中、低压变电站。

单汇流式主接线由同一截面积的铝排制成,排杆的结合处用桥接片桥接起来。

排杆及连接器为轻型铝制材料,容易安装、操作、维护。

因为它仅有一汇流,所以在常规情况下的运行电流不宜过大,需尽可能减少汇流局部损耗。

3. 多汇流式多汇流式主接线常用于高压变电站中,由安装在水平排端点的二汇流接线排构成。

因为它有多个汇流结构,所以电流分解均匀,压降小,缺陷较易定位,同时机械强度也有所提高。

缺点是造价比较高,而且安装和维护的难度也较大。

三、主接线的故障处理变电站主接线故障的处理方式粗略地分为两类:一个是从故障点直接修理,使用锡焊接头连接、替换电气元件等方式进行紧急处理;另一个是采用绕行等措施,避免故障点对整个输电线路的影响。

变电站电气主接线

变电站电气主接线

施,确保设备在恶劣环境下的安全运行
04
设计应考虑设备的接地和绝缘措施,防
止触电和漏电事故的发生
可靠性
01 02 03 04
设计应保证变电站电气主接线的可靠性, 避免因故障导致系统瘫痪。
设计应考虑冗余措施,如双电源、双回 路等,以提高系统的可靠性。
设计应采用成熟的技术和设备,避免因 技术不成熟导致系统可靠性降低。
主接线可以灵活地切换电源,实现多电源供 电,提高供电可靠性。
主接线可以快速隔离故障,减少停电范围, 提高供电可靠性。
变电站电气主接线的类型
单母线接线
单母线接线是一种常 见的变电站电气主接 线方式,具有结构简 单、易于维护的特点。
单母线接线包括单母 线分段接线和单母线 不分段接线两种类型, 其中单母线分段接线 可以提高供电可靠性, 而单母线不分段接线 则具有较高的经济性。
降低运行维护成 本
变电站电气主接线的发展趋势
智能化
智能监控:实时监 测设备运行状态, 提高运维效率
智能诊断:实现设 备故障的自动诊断 和预警
智能调度:优化调 度策略,提高电网 运行效率
智能运维:降低运 维成本,提高设备 可靠性和可用性
环保化
减少能源消耗:采用高 效节能设备,降低能源 消耗
提高能源利用效率:采 用智能电网技术,提高 能源利用效率
单母线接线适用于负 荷分布较为均匀的变 电站,对于负荷分布 不均匀的变电站,可 以考虑采用其他类型 的主接线方式。
单母线接线在运行过 程中需要注意母线故 障问题,需要采取相 应的保护措施,如设 置母线差动保护等。
双母线接线
双母线接线是一种常 见的变电站电气主接 线方式,具有较高的
可靠性和灵活性。

变电站电气主接线设计及主变压器的选择

变电站电气主接线设计及主变压器的选择

变电站电气主接线设计及主变压器的选择随着电力系统的不断发展和变化,变电站的设计和建设显得尤为重要。

变电站作为电力系统的重要组成部分,其电气主接线设计及主变压器的选择直接影响着电力系统的稳定运行和供电质量。

本文将从变电站电气主接线设计和主变压器选择两个方面进行探讨。

一、变电站电气主接线设计1.1 设计原则变电站电气主接线设计是指将变电站内各种电气设备按一定的规则、标准和要求连接起来,以满足系统运行的需要。

在进行电气主接线设计时,应遵循以下原则:(1)安全可靠:电气主接线设计必须保证变电站运行的安全可靠性,防止发生触电、火灾等事故。

(2)合理经济:在满足安全可靠的前提下,尽量采用合理经济的设计方案,减少成本开支。

(3)易于维护:电气主接线设计应使变电站设备易于维护和维修,提高设备的可操作性。

电气主接线设计的步骤一般包括以下几个方面:(1)了解变电站的供电要求和负荷情况,确定主要设备的容量和类型。

(2)进行电气设备的布置和布线设计,确定各个设备之间的连接方式和线路走向。

(4)进行配线导线的选择和计算,确定导线的截面积和敷设方式。

(5)进行电气设备的接地设计,确保设备的安全接地。

在进行电气主接线设计时,需要注意以下几个要点:(1)合理布置电气设备,尽量缩短线路长度,减小线路电阻。

(2)注意电气设备之间的绝缘和绝缘距离,避免发生相间短路和漏电现象。

(3)考虑未来的扩容和改造需求,预留一定的接线余量和设备位置。

(4)遵循国家和地方的相关标准和规范,确保设计方案符合要求。

二、主变压器的选择主变压器是变电站的核心设备之一,其选择直接关系到整个供电系统的稳定性和安全性。

在进行主变压器选择时,应遵循以下原则:(1)满足负荷需求:主变压器的容量应能满足变电站的负荷需求,同时考虑未来的负荷增长。

(2)适应运行环境:根据变电站所处的地理位置和气候特点,选择适合的主变压器型号和绝缘等级。

(3)可靠性与稳定性:主变压器应具备良好的运行可靠性和稳定性,确保变电站的供电质量。

变电站电气主接线设计及主变压器的选择

变电站电气主接线设计及主变压器的选择

变电站电气主接线设计及主变压器的选择一、引言变电站是电力系统中重要的组成部分,主要用于电能的传输、分配和转换。

在变电站中,电气主接线的设计和主变压器的选择是非常重要的,直接关系到变电站的安全运行以及供电质量。

为了确保变电站的电气设备运行可靠、经济高效,本文将对变电站电气主接线设计及主变压器的选择进行详细介绍和分析。

1. 电气主接线的概念电气主接线是指变电站内部的主要输电线路,其作用是将进出变电站的电能进行传输和分配。

电气主接线一般包括主变压器至母线的主干线路、主母线、联络母线等。

电气主接线的设计应充分考虑供电可靠性、运行安全性以及经济性等因素。

(1)可靠性原则。

电气主接线的设计应保证供电可靠,具备一定的备用能力,以应对突发情况。

(2)安全性原则。

电气主接线的设计应符合国家标准和规范,保证运行安全,预防火灾和事故的发生。

(3)经济性原则。

电气主接线的设计应尽量减少投资,降低运行成本,同时满足电能传输的需求。

电气主接线的布置应考虑到变电站的结构、地形、运行方式等因素,保证布线简洁、紧凑。

一般情况下,电气主接线应布置在变电站的主控室或者主控地下室,方便集中监控和运维。

电气主接线的布置应充分考虑通风、绝缘、防火等要求,避免电气设备之间的相互干扰。

电气主接线的容量计算应根据变电站的负荷需求、母线电流容量、短路电流容量等参数进行综合考虑。

通常情况下,电气主接线的容量应略大于母线电流容量,以确保电能传输的稳定和可靠。

电气主接线的保护是保证变电站安全运行的重要环节,保护措施主要包括过流保护、短路保护、接地保护等。

保护设备的选择应根据具体情况,确保设备的可靠演示,提高设备的操作可靠性。

三、主变压器的选择1. 主变压器的基本要求主变压器是变电站的重要设备,其主要功能是进行电压等级的变换和电能的传输。

主变压器的选择应符合变电站建设的要求,具备可靠性高、技术先进、运行稳定、经济性好等特点。

主变压器的类型主要包括油浸式变压器、干式变压器、整流变压器等。

变电站的电气主接线

变电站的电气主接线

主变压器中性点应通过隔离开关接地。
隔离开关配置原则2
接地刀闸配置原则
母线设备隔离开关配单接地刀闸。
每段母线根据长度配置1~2独立的接地刀闸,以保证母线及电器的检修安全。
出线间隔断路器两侧隔离开关均配置接地刀闸,其中:母线侧为单接地刀闸,线路侧为双接地刀闸。
母联间隔断路器两侧隔离开关配置单接地刀闸。
主变进线间隔断路器两侧隔离开关均配置接地刀闸,其中:母线侧为单接地刀闸,变压器侧为双接地刀闸。
01
电压互感器配置原则
03
出线的A相装设单相电压互感器,以监视和检测线路侧有无电压。
02
每组主母线装设三相电压互感器,以满足测量、保护装置的要求。
电流互感器配置原则
变压器出口处装设三相电流互感器。
凡装有断路器的地方均装设电流互感器,其二次绕组的个数按满足测量、计量和保护要求进线配置。
2、变电站的电气主接线
CLICK TO ADD TITLE
单/击/此/处/添/加/副/标/题
汇报人姓名
2.1 什么是电气主接线
01
变电站的电气主接线是表明变电站内的变压器、各电压等级的线路、无功补偿设备与电力系统连接,同时也表明在变电站内各种电气设备之间的连接方式。为了清晰和方便,通常将三相电路图描绘成单线图。
主变进线间隔
出线间隔
站用变出线间隔
电容器出线间隔
母线分段间隔
母线设备间隔
35kV(10kV)通常采用单母线分段接线,该接线中,仅设一组母线,母线分成若干段,母线之间通过母线联络断路器连接。
隔离开关配置原则1
接在母线上的避雷器和电压互感器可合用一组隔离开关。
断路器两侧均应配置隔离开关,以便断路器检修时隔离电源。

变电站电气主接线设计及主变压器的选择

变电站电气主接线设计及主变压器的选择

变电站电气主接线设计及主变压器的选择变电站作为输电系统的重要组成部分,其电气主接线设计和主变压器的选择对于输电系统的稳定运行至关重要。

在进行变电站电气主接线设计和主变压器选择时,需要考虑多种因素,包括电气负荷、电网运行方式、变电站规模等。

本文将从这些方面详细介绍变电站电气主接线设计和主变压器的选择。

一、变电站电气主接线设计电气主接线是变电站的重要组成部分,其设计影响着变电站的运行效率和安全性。

在进行电气主接线设计时,需要考虑以下几个方面的因素:1. 电气负荷电气负荷是进行电气主接线设计的重要依据之一。

根据变电站所承担的电力负荷大小,可以确定电气主接线的截面积和电缆型号,以确保电气主接线在承受电流负荷时不产生过热或过载现象。

2. 电网运行方式根据电网的运行方式(如单回路、双回路、多回路等),需要确定电气主接线的布置方式和连接方式,以确保变电站的供电可靠性和运行安全。

3. 变电站规模根据变电站的规模大小和布置结构,需要合理确定电气主接线的长度、布局和间距,以减小电阻损耗和电磁干扰,提高变电站的运行效率。

在进行电气主接线设计时,需要考虑以上因素,并结合电气设备的选型参数和技术要求,进行合理布置和设计,以确保电气主接线的安全可靠运行。

二、主变压器的选择1. 电气负荷主变压器的容量需要与变电站承担的电气负荷相匹配,以确保主变压器在正常运行时不发生过载或电压不稳现象。

2. 运行方式根据电网运行方式和负荷特性,需要选择合适的主变压器类型和工作方式(如晶闸管整流变压器、无油变压器等),以提高主变压器的运行效率和电能质量。

3. 技术参数根据主变压器的技术参数和性能指标,需要进行合理选择和比较,以确保主变压器在运行时具有良好的稳定性和可靠性。

变电站电气主接线

变电站电气主接线

变电站电气主接线变电站的电气主接线又称一次接线,它是汇集和分配电能的通路。

电气主接线的选择应充分考虑供电可靠性、运行灵活性、操作简便性,经济性以及便于扩建等基本条件。

目前,110kV配电装置的接线按有无母线分为有母线和无母线两种类型,其发展过程如下:有母线类:单母线—单母线分段—双母线—双母线带旁路—双母线分段带旁路。

无母线类:变压器线路接线(线路变压器组)—桥形接线(内桥、外桥)—多角形接线。

一、单母线接线单母线接线如图5—1所示。

这种接线的特点是接线简单清晰,操作方便、使用设备少,投资省,但可靠性差。

在母线或母线隔离开关检修、故障时会造成大面积停电。

因此,这种接线方式适用于一般的工厂、企业及对用电可靠性要求不高、容量不大的变电站。

二、单母线分段接线单母线分段接线如图5—2所示。

用断路器把母线分段,可以提高供电可靠性和灵活性,对重要用户可以从不同段引出两回馈线路由双电源供电。

当一段母线检修或故障时,分段开关自动将故障切除,保证正常段母线不间断供电和不致使重要用户停电,且接线简单、设备少、投资小、运行操作方便,不易发生误操作事故。

但是单母线分段接线也有诸多缺点,如当一段母线或母线隔离开关故障或检修时,该段母线的回路都将在检修期内停电;当出线为双回路时,常使架空线路出线交叉跨越;扩建需两方向均衡发展。

三、双母线每一回路都是通过一台断路器和两组隔离开关连接到两组母线上。

如图5—3所示。

两组母线都是工作母线,同时工作线、电源线和出线适当地分配在两组母线上,可以通过母联断路器并列运行。

与单母线相比,它的优点是供电可靠性高,可以轮流检修母线而不使供电中断。

当一组母线出现故障时,只要将故障母线上的回路倒换到另一组母线上,即可迅速恢复供电,另外还具有调度、扩建、检修方便的优点。

它的缺点是(与单母线相比)每个回路增加了一组母线隔离开关,使配电装置的构架及其占地面积、投资费用都相应增加,在改变运行方式倒闸操作时容易发生误操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变电站电气主接线
优点:它是母线制接线中最简单、清晰,采 用设备少、造价低、操作方便、扩建容易。
缺点:可靠性不高。
变电站电气主接线
三 高压配电装置基本接线
4. 单母线分段接线 用断路器将母线分段,分段后的母线和母线
隔离开关可分段轮流检修。
变电站电气主接线
优点:具有单母线接线的简单、清晰,采用 设备少、操作方便、扩建容易等优点外,增 加分段断路器后,提高了可靠性。
变电站电气主接线
旁母的三种接线方式
1)有专用旁路断路器的旁母接线 2)母联兼作旁断路器的旁母接线 3)用分段断路器兼作旁路断路器的旁母接
线
变电站电气主接线
旁路母线的负面影响
1)旁路母线、旁路断路器及在各回路的旁路 隔离开关,增加了配电装置的设备,增加了 占地,也增加了工程投资。
2)旁路断路器代替各回路断路器的倒闸操作 复杂,容易产生误操作,酿成事故。
变电站电气主接线
缺点:
双母线接线与单母线接线相比 1)增加了一条母线和母线隔离开关,增加了
设备及相应的构支架,加大了配电装置的占 地和工程投资。 2)当母线或母线隔离开关故障时,倒闸操作 复杂,容易发生误操作。 3)隔离开关操作闭锁接线复杂。 4)电压回路接线复杂。
变电站电气主接线
三 高压配电装置基本接线
变电站电气主接线
二 主接线的设计原则
1、主接线设计依据 变电站在电力系统中的地位 分期和最终建设规模 负荷大小和重要性 系统对主接线提供的资料
变电站电气主接线
二 主接线的设计原则
2、主接线设计的基本要求 可靠性:指主接线能可靠的工作,以保证对
用户不间断的供电。 灵活性:主要体现在正常运行或故障情况下
变电站电气主接线
变电站电气主接线
一、变电站电气主接线概述 二、主接线的设计原则 三、高压配电装置基本接线 四、变电站电气主接线 五、中性点接地方式 六、主接线中的设备配置
变电站电气主接线
一 变电所电气主接线概述
是变电所电气设计的首要部分,也是构成电 力系统的重要环节。主接线的确定对电力系 统及变电所本身运行的可靠性、灵活性、经 济性密切相关,并且对电气设备的选择、配 电装置的布置、继电保护和控制方式的的拟 定有较大影响。因此,必须处理好各方面关 系,全面分析有关影响,通过技术经济比较, 合理确定主接线方案。
变电站电气主接线
2) 外桥接线 外桥接线是桥断路器接在外侧,另外两台断
路器接在变压器回路。 当线路发生故障时,需动作与之相连的两台
断路器,从而影响一台未发生故障的变压器 运行,因此,外桥接线只能用于线路短、检 修和故障少的线路中;主要用在变压器投入 和切除操作比较频繁、通过桥断路器有穿越 功率的情况下。
变电站电气主接线
三 高压配电装置基本接线
2. 桥接线 桥接线又分为内桥接线、外桥接线 和扩
大桥接线。
变电站电气主接线
1) 内桥接线 内桥接线是桥断路器接在线路断路器内侧。
优点:线路的投入和切除操作方便,线路故障 时,仅故障线路断路器断开,其他线路和变压 器不受影响。
缺点:桥断路器检修停运,两回路需解列运行。 变压器的投入和切除操作需要动作两台断路器, 操作较复杂。当变压器故障时,两台断路器动 作,致使一回无故障线路停电,扩大了故障切 除范围。
变电站电气主接线
三 高压配电装置基本接线
1. 变压器—线路组接线 变压器—线路组接线是一台变压器与一条
线路构成一个接线单元。
变电站电气主接线
变电站电气主接线
优点:设备少、高压配电装置简单、 占地面积小、本回路故障对其他回路 没有影响。
缺点:可ቤተ መጻሕፍቲ ባይዱ性不高。线路故障或检修 时,变压器停运;变压器故障或检修 时,线路停运。
都能迅速改变接线方式。 经济性:主要是投资省、占地面积小、能量
损失小。
变电站电气主接线
三 高压配电装置基本接线
1.变压器—线路组接线 2.桥接线 3.单母线接线 4.单母线分段接线 5.双母线接线 6.双母线分段接线
变电站电气主接线
三 高压配电装置基本接线
7.带旁路母线的母线制接线 8. 3/2断路器接线 9.双母线双断路器接线 10.变压器—母线接线 11. 4/3断路器接线
变电站电气主接线
三 高压配电装置基本接线
7. 带旁路母线的接线 带旁路母线的接线可分为单母线带旁路、单 母线分段带旁路、双母线带旁路、双母线分 段(单分、双分)带旁路等接线方式。
加旁路母线及旁路断路器的目的是利用一套 公用的母线、公用的断路器和公用的保护装 置。在母线引出各元件的断路器、保护装置 需停电检修时。通过旁路母线由旁路断路器 及其保护代替,而引出元件可不停电。
缺点:当分段断路器故障时,整个配电装置 会全停;母线和母线隔离开关检修时,该段 母线上连接的元件都要在检修期间停电。
变电站电气主接线
三 高压配电装置基本接线
5. 双母线接线 每一元件通过一台断路器和两组隔离开
关连接到两组母线上,两组母线间通过母 线联络断路器连接。
变电站电气主接线
优点:
双母线接线与单母线接线相比,具 有较高的可靠性和灵活性。
3)保护及二次回路接线复杂。 4)用旁路代替各回路断路器的倒闸操作,需
要人来完成,因此带旁路母线的接线不利于 实现变电所的无人值班。
变电站电气主接线
采用旁路母线的环境主要发生了 以下几个方面变化
1)电力系统接线的可靠性有了较大提高。 2)由于设备制造水平的提高,高质量的断路
变电站电气主接线
3)扩大桥接线
其接线特点与内桥接线或外桥接线基本相 同。
因该种接线需用的断路器数量与单母线接线 相同,所以在实际工程中采用得较少。
变电站电气主接线
三 高压配电装置基本接线
3. 单母线接线 特点是整个配电装置只有一组母线,所有
电源和出线都接在同一组母线上。
变电站电气主接线
图1-3 单母线接线
6. 双母线分段接线 在双母线中的一条或两条母线上加分段断
路器,形成双母线单分段接线或双母线双分 段接线。
变电站电气主接线
双母线单分段或双分段接线克服了双母线接 线存在全停可能性的缺点,缩小了故障停电 范围,提高了接线的可靠性。
特别是双母线双分段接线,比双母线单分段 接线只多一台分段断路器和一组母线电压互 感器和避雷针,占地面积相同,但可靠性提 高明显。
相关文档
最新文档