做模具-三角函数计算方法及快速查询表
(完整word版)三角函数三角函数公式表

常见三角函数在平面直角坐标系x O y中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)。
在这个直角三角形中,y是θ的对边,x是θ的邻边,r是斜边,则可定义以下六种运算方法:基本函数英文表达式语言描述正弦函数Sine sin θ=y/r角α的对边比斜边余弦函数Cosine cos θ=x/r角α的邻边比斜边正切函数Tangent tan θ=y/x角α的对边比邻边余切函数Cotangentcot θ=x/y角α的邻边比对边正割函数Secant sec θ=r/x角α的斜边比邻边余割函数Cosecant csc θ=r/y角α的斜边比对边注:tan、cot曾被写作tg、ctg,现已不用这种写法。
非常见三角函数除了上述六个常见的函数,还有一些不常见的三角函数,这些运算已趋于淘汰:函数名与常见函数转化关系正矢函数versin θ=1—cos θ余矢函数covers θ=1-sin θ半正矢函数havers θ=(1-cos θ)/2半余矢函数hacovers θ=(1-sin θ)/2外正割函数exsec θ=sec θ—1外余割函数excsc θ=csc θ-1单位圆定义六个三角函数也可以依据半径为1中心为原点的单位圆来定义。
单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形.但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和π/2 弧度之间的角。
它也提供了一个图像,把所有重要的三角函数都包含了。
根据勾股定理,三角函数单位圆的方程是:x^2+y^2=1图像中给出了用弧度度量的一些常见的角。
逆时针方向的度量是正角,而顺时针的度量是负角。
设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。
这个交点的x和y坐标分别等于 cos θ和 sin θ.图像中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sin θ = y/1 和 cos θ = x/1.单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。
三角函数公式表(全)

三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα·cotα=1sinα·cscα=1 sinα/cosα=tanαsin2α+cos2α=11+tan2α=sec2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=———----———1-tanα·tanβtanα-tanβtan(α-β)=—————-------—1+tanα·tanβ2tan(α/2) sinα=——————1+tan2(α/2)1-tan2(α/2) cosα=——————1+tan2(α/2)2tan(α/2) tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式Sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]1sinα·cosβ=-[sin(α+β)+sin(α-β)]21cosα·sinβ=-[sin(α+β)-sin(α-β)]21cosα·cosβ=-[cos(α+β)+cos(α-β)]21sinα·sinβ=— -[cos(α+β)-cos(α-β)]2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)THANKS致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
三角函数公式大全(表格分类)

三角函数公式大全(表格分
类)
本页仅作为文档页封面,使用时可以删除
This document is for reference only-rar21year.March
sin sin 2sin
cos
22sin sin 2cos sin
22
cos cos 2cos cos
22cos cos 2sin sin
22
αβ
αβ
αβαβαβ
αβαβαβ
αβαβαβ
αβ+-+=⋅+--=⋅+-+=⋅+--=-⋅
[][]
[]
[]
1
sin cos sin()sin()21
cos sin sin()sin()2
1
cos cos cos()cos()21
sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=
++-⋅=+--⋅=++-⋅=-+--
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
22sin cos sin()a x b x a b x φ±=+±
其中φ角所在的象限由a 、b 的符号确定,φ角的值由tan b
a
φ
=
确定
六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”。
三角函数公式大全表格数学最全公式整理

三角函数公式大全表格数学最全公式整理三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。
三角函数公式大全表格一、倍角公式1、Sin2A=2SinA*CosA2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-13、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A))二、降幂公式1、sin^2(α)=(1-cos(2α))/2=versin(2α)/22、2cos^2(α)=(1+cos(2α))/2=covers(2α)/23、tan^2(α)=(1-cos(2α))/(1+cos(2α))三、推导公式1、1tanα+cotα=2/sin2α2、tanα-cotα=-2cot2α3、1+cos2α=2cos^2α4、、4-cos2α=2sin^2α5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina四、两角和差1、1cos(α+β)=cosα·cosβ-sinα·sinβ2、cos(α-β)=cosα·cosβ+sinα·sinβ3、sin(α±β)=sinα·cosβ±cosα·sinβ4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、和差化积1、sinθ+sinφ =2 sin[(θ+φ)/2] cos[(θ-φ)/2]2、sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]3、cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]4、cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)六、积化和差1、sinαsinβ = [cos(α-β)-cos(α+β)] /22、sinαcosβ = [sin(α+β)+sin(α-β)]/23、cosαsinβ = [sin(α+β)-sin(α-β)]/2七、诱导公式1、(-α) = -sinα、cos(-α) = cosα2、tan (—a)=-tanα、sin(π/2-α) = cosα、cos(π/2-α) = sinα、sin(π/2+α) = cosα3、3cos(π/2+α) = -sinα4、(π-α) = sinα、cos(π-α) = -cosα5、5tanA= sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα6、tan(π-α)=-tanα、tan(π+α)=tanα八、锐角三角函数公式1、sin α=∠α的对边 / 斜边2、α=∠α的邻边 / 斜边3、tan α=∠α的对边/ ∠α的邻边4、cot α=∠α的邻边/ ∠α的对边高中数学最全公式1.几何与常用逻辑用语2.复数3.平面向量4.算法、推理与证明5.不等式、线性规划6.排列组合与二项式定理7.函数、基本初等函数的图像与性质8.函数与方程,函数模型及其应用9.导数及其应用10.三角函数的图形与性质11.三角恒等变化与解三角形12.等差数列、等比数列13.数列求和及数列的简单应用14.空间几何体15.空间点、直线、平面位置关系16.空间向量与立体几何17.直线与圆的方程18.圆锥曲线的定义、方程与性质19.圆锥曲线的热点问题20.概率21.离散型随机变量及其分布22.统计与统计案例23.函数与方程思想,数学结合思想24.分类与整合思想,化归与转化思想25.坐标系与参数方程26.不等式选讲。
完整三角函数公式表

完整三角函数公式表三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系: 平方关系:22tanα ?cotα,1 sinα,cosα,1 sinα/cosα,tanα,secα/cscα 22sinα ?cscα,1 1,tanα,secα cosα/sinα,cotα,cscα/secα22cosα ?secα,1 1,cotα,cscα(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(,α),,sinα cos(,α),cosα tan(,α),,tanα cot(,α),,cotα sin(2π,α),,sinα sin(π/2,α),cosα sin(3π/2,α),,cosαsin(π,α),sinαcos(2π,α),cosα cos(π/2,α),sinα cos(3π/2,α),,sinαcos(π,α),,cosαtan(2π,α),,tanα tan(π/2,α),cotα tan(3π/2,α),cotαtan(π,α),,tanαcot(2π,α),,cotα cot(π/2,α),tanα cot(3π/2,α),tanαcot(π,α),,cotαsin(2kπ,α),sinα sin(π,α),,sinα sin(π/2,α),cosαsin(3π/2,α),,cosαcos(2kπ,α),cosα cos(π,α),,cosα cos(π/2,α),,sinαcos(3π/2,α),sinαtan(2kπ,α),tanα tan(π,α),tanα tan(π/2,α),,cotαtan(3π/2,α),,cotαcot(2kπ,α),cotα cot(π,α),cotα cot(π/2,α),,tanαcot(3π/2,α),,tanα(其中k?Z)两角和与差的三角函数公式万能公式sin(α,β),sinαcosβ,cosαsinβ 2tan(α/2)sin(α,β),sinαcosβ,cosαsinβ sinα,——————cos(α,β),cosαcosβ,sinαsinβ 2 1,tan(α/2) cos(α,β),cosαcosβ,sinαsinβ2 1,tan(α/2) tanα,tanβ cosα,——————tan(α,β),—————— 2 1,tan(α/2) 1,tanα ?tanβ2tan(α/2) tanα,tanβ tanα,——————tan(α,β),—————— 2 1,tan(α/2) 1,tanα ?tanβ半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式3sin2α,2sinαcosα α sin3α,3sinα,4sin22223cos2α,cosα,sinα,2cosα,1,1,2sinα cos3α,4cosα,3cosα3 3tanα,tanα 2tanαtan3α,——————tan2α,—————22 1,3tanα 1,tanα三角函数的和差化积公式三角函数的积化和差公式α,β α,β 1sinα,sinβ,2sin———?cos———sinα ?cosβ,-[sin(α,β),sin(α,β)]2 2 2α,β α,β 1sinα,sinβ,2cos———?sin———cosα ?sinβ,-[sin(α,β),sin(α,β)]2 2 2α,β α,β 1cosα,cosβ,2cos———?cos———cosα ?cosβ,-[cos(α,β),cos(α,β)]2 2 2α,β α,β 1cosα,cosβ,,2sin———?sin———sinα ?sinβ,— -[cos(α,β),cos(α,β)]2 2 2化asinα ?bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)RAID0、RAID1、RAID0+1(又叫RAID10)、RAID5做服务器,选 REDHAT 或者 SUSE做开发,选 FEDORA做客户端,选 UBUNTU。
三角函数公式表(全)

三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 sinα/cosα=tanαsin2α+cos2α=11+tan2α=sec2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=co sαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=———----———1-tanα ·tanβtanα-tanβtan(α-β)=—————-------—1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2) cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式Sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2 ] 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=— -[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)。
三角函数计算表

三角函数表三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-t anαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=ta nαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2) sinα=——————1+tan2(α/2)1-tan2(α/2) cosα=——————1+tan2(α/2)2tan(α/2) tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin—--·cos—-—2 2α+βα-βsinα-sinβ=2cos—--·sin—-—2 2α+βα-βcosα+cosβ=2cos—--·cos—-—2 2α+βα-βcosα-cosβ=-2sin—--·sin—-—2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=- -[cos(α+β)-cos(α-β)]2 化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)【】【】■❤♠❀♡匚❀﹢↑↓←→↔°′″∪∩〇¥m³mm3cosφtgφ℅ηΦΩβψ+-×÷= ·70 mm2L最大长度= (△U全部最大-△U100-△Uyb)·D·V·S·η/ P·K αβγθΛΔδΨΩ±º²³¼½¾µ¥{ }′″℃‰﹪㎜㎝㎞㏎㎡㎏∵∴√㏑㏒≈∷※°《煤矿安全规程》(ˇˍˇ) 想~㎡m³№¥……& * ·~~ ` ~ ·~~~~ ! @ # $ % ^ [ ] { } < > ? “”‘’→副井→井底车场→2年月 1 日班(⊙o⊙) !╮# (⊙_⊙)?↑亅丨丿丶乛丅丄μ(ˇˍˇ) 想~1→2→3 上(∧)、下(∨)、左(<)、右(>)0.00秒安全帽、带自救器和矿灯~℃ηcosφ=0.75) φ30-φ73 ─Exd[ib]I UZ 3×2.5+1×2.5矿用电缆或U 3×1+1×1矿用电缆61#脚***显示屏下方有四个操作键:↑↓确定复位按▲▼键按确认键120KΩ—250MΩ一、概述 (2)3、KTC101系统主要设备----------------------------------------3.1--------------------------------------------------------3.2---------------------------------------------------------------------------------------------------------------------------------------------U1、V1、W1 第1回路接线柱;U2、V2、W2 第2回路接线柱;U3、V3、W3 第3回路接线柱;U4、V4、W4 第4回路接线柱;ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ←↑→↓∑√∝∞∠∧∨∩∪∫∮∴∵∶∷∽≈≌≠≤≥≮≯⊙⊥⌒‰※№℃—①②③④⑤⑥⑦⑧⑨⑩⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾⑿⒀⒁⒂⒃⒄⒅⒆⒇▲△◆◇○◎●★☆♀♂〈〉《》【】〓〔〕〖〗㈠㈡㈢㈣㈤㈥㈦㈧㈨㈩话❀✿﹖!﹊﹎﹉﹍\~˜﹌﹋﹏ ̄[]﹛﹜{}《》〈〉﹝﹞〔〕「」『』‹›«»〖〗【】—…〝〞~?└━╋┆┇┊┋┄┅┈┉△▽○◇□☆▷◁♤♡♢♧☼☺☏•▪• * ☉⊙⊕Θ◎❤¤✪の⊿☜☞▁▂▃▄▅▆▇█▉▊▋▌▍▎▏⊱⋛⋌⋚⊰⊹⌒®©¢℡™ª㈱卍♀※ #& ◤◥卐♂∷№ @ ◣◢░▬☌▧▤▨╱▁╲▏㊣▕╲▔╱↖↑↗←↔→↙↓↘。
三角函数常用公式表格

三角函数常用公式表格三角函数是数学中非常重要的一个部分,它在几何、物理、工程等多个领域都有广泛的应用。
为了更好地理解和运用三角函数,我们需要熟悉一些常用的公式。
以下是为大家整理的三角函数常用公式表格:一、基本关系1、平方关系sin²α +cos²α = 11 +tan²α =sec²α1 +cot²α =csc²α2、商数关系tanα =sinα /cosαcotα =cosα /sinα3、倒数关系sinα · cscα = 1cosα · secα = 1tanα · cotα = 1二、诱导公式1、终边相同的角的三角函数值相等sin(2kπ +α) =sinαcos(2kπ +α) =cosαtan(2kπ +α) =tanα2、关于 x 轴对称的角的三角函数值sin(α) =sinαcos(α) =cosαtan(α) =tanα3、关于 y 轴对称的角的三角函数值sin(π α) =sinαcos(π α) =cosαtan(π α) =tanα4、关于原点对称的角的三角函数值sin(π +α) =sinαcos(π +α) =cosαtan(π +α) =tanα5、函数名改变的诱导公式sin(π/2 α) =cosαcos(π/2 α) =sinαsin(π/2 +α) =cosαcos(π/2 +α) =sinα三、两角和与差的三角函数公式1、两角和的正弦公式sin(α +β) =sinαcosβ +cosαsinβ2、两角差的正弦公式sin(α β) =sinαcosβ cosαsinβ3、两角和的余弦公式cos(α +β) =cosαcosβ sinαsinβ4、两角差的余弦公式cos(α β) =cosαcosβ +sinαsinβ5、两角和的正切公式tan(α +β) =(tanα +tanβ) /(1 tanαtanβ) 6、两角差的正切公式tan(α β) =(tanα tanβ) /(1 +tanαtanβ)四、二倍角公式1、二倍角的正弦公式sin2α =2sinαcosα2、二倍角的余弦公式cos2α =cos²α sin²α =2cos²α 1 =1 2sin²α3、二倍角的正切公式tan2α =2tanα /(1 tan²α)五、半角公式1、半角的正弦公式sin(α/2) =±√(1 cosα) / 22、半角的余弦公式cos(α/2) =±√(1 +cosα) / 23、半角的正切公式tan(α/2) =±√(1 cosα) /(1 +cosα) =sinα /(1 +cosα) =(1 cosα) /sinα六、万能公式1、万能公式的正弦sinα =2tan(α/2) / 1 +tan²(α/2)2、万能公式的余弦cosα =1 tan²(α/2) / 1 +tan²(α/2)3、万能公式的正切tanα =2tan(α/2) /1 tan²(α/2)七、积化和差公式1、sinαcosβ =(1/2)sin(α +β) +sin(α β)2、cosαsinβ =(1/2)sin(α +β) sin(α β)3、cosαcosβ =(1/2)cos(α +β) +cos(α β)4、sinαsinβ =(1/2)cos(α +β) cos(α β)八、和差化积公式1、sinα +sinβ =2sin(α +β) /2cos(α β) / 22、sinα sinβ =2cos(α +β) /2sin(α β) / 23、cosα +cosβ =2cos(α +β) /2cos(α β) / 24、cosα cosβ =2sin(α +β) /2sin(α β) / 2这些三角函数公式在解决各种数学问题和实际应用中都非常重要。