中考数学重难点突破专题十选择、填空小压轴题
中考数学选填题压轴题突破 重难点突破二 多结论选填题

称轴的距离,∴y3>y2,
∴y2<y3<y1,故④错误,∵方程|ax2+bx+c|=k (k≥0, k 为常数)的解,
是抛物线与直线 y=±k 的交点,当有 3 个交点时,方程|ax2+bx+c|=k
(k≥0,k 为常数)的所有根的和为 33 ,当有 4 个交点时,方程|ax2+bx
+c|=k (k≥0,k 为常数)的所有根的和为 44 ,当有 2 个交点时,方
①PA=PB;②OP⊥AB;③四边形 OAPB 有外接圆;④M 是△AOP 外接圆的
圆心.
其中正确说法的个数是
( C)
A.1
B.2
C.3
D.4
9.★(2022·扬州)如图,在△ABC 中,AB<AC,将△ABC 以点 A 为中心逆
时针旋转得到△ADE, 点 D 在 BC 边上,DE 交 AC 于点 F.下列结论:①△
14.★(2021·张家界)如图,在正方形 ABCD 外取一点 E,连接 DE,AE, CE,过点 D 作 DE 的垂线交 AE 于点 P,若 DE=DP=1,PC= 6.下列结论: ①△APD≌△CED;②AE⊥CE;③点 C 到直线 DE 的距离为 3;④S 正方形ABCD =5+2 2,其中正确结论的序号为①①②②④④.
(3,0),对称轴为直线 x=1,有下列四个结论:①abc>0;②a-b+c=0;
③y 的最大值为 3;④方程 ax2+bx+c+1=0 有实数根,其中正确结论的
序号是
( C)
A.①②
B.①③
C.②④
D.②③④
3.★(2022·毕节)在平面直角坐标系中,已知二次函数 y= ax2+bx+c
(a≠0)的图象如图所示,有下列 5 个结论:①abc>0;② 2a-b=0;③ 9a
中考数学总复型突破01选择、填空压轴题突破

B.2
C.3
D.4
C
)
图 Z1-1
2021/12/9
第二十页,共六十二页。
类型2 二次函数y=ax2+bx+c的图象(tú xiànɡ)与系数a,b,c之间的关系
2.抛物线 y=ax2+bx+c 的顶点为 D(-1,2),与 x 轴的一个交点 A 在点(-3,0)和(-2,0)之间,其部分图象如图 Z1-2
2021/12/9
第十九页,共六十二页。
类型2 二次函数(hánshù)y=ax2+bx+c的图象与系数a,b,c之间的关系
针 对 训 练
1.如图 Z1-1 为二次函数 y=ax2+bx+c 的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④当-1<x<3
时,y>0.其中正确的个数为 (
由题意得 a+ 3=4 3,
C.4 3
D.3 3
∴a=3 3.
故选 D.
2021/12/9
第九页,共六十二页。
c
类型1
含字母(zìmǔ)系数的一元二次方程根的判别式及根与系数的关系
5.如果关于 x 的一元二次方程 x2+3x-7=0 的两根分别为 α,β,那么
[答案] A
α2+4α+β= (
[解析] ∵关于 x 的一元二次方程 x2+3x-
∵α,β 是关于 x 的一元二次方程 x2+(2m+3)x+
c
m =0 的两个不相等的实数根,∴α+β=-2m2
1
1
+
中考数学选择、填空压轴题专题讲练(含答案)

. . ..“ . .初三中考数学压轴题专题选择题中的压轴题和一般选择题相比,具有综合性较强、数形兼备、解题方法多样化、充满思辨性等特点,要求学生综合运用多种知识解题,思维要有一定的广度和深度,并会运用多种不同的方法灵活解题.这类题目重点考察学生综合分析问题、解决问题的能力.解题方法:解答这类题目的方法除常用的直选法、观察法外,重点要掌握排除法和代入法根据题目条件从四个选项中逐次排除选项的方法,包括分析排除法和反例排除法两种若用一般方法不能 求解时,可采用代入法,就是根据题目的有关条件,采用某些特殊情况分析问题,或采用某些特殊值代入计算分析,或将题目中不易求解的字母用符合条件的某些具体的数字代入,化一般为特殊来分析问题,通常包括已知代入法、选项代入法和特殊值代入法等特别注意:这些方法在通常都是要 综合灵活运用,不能生搬硬套.填空题与选择题相比,没有选项,因此没有错误选项的干扰,但也就缺少了有关信息提示,给解题增加了一定难度,要求学生要有扎实、熟练的基础知识和基本技能还要灵活运用多种不同的解 题方法.解题方法:解答填空题常用的方法有直接求解法、数形结合法、构造法、分类讨论法与转化法等.直接求解法就是从已知出发,逐步计算推出未知的方法,或者说由 因”索“果”的方法.很多题目都需要将题目中的条件与相关图形或图象结合起来考察,这就是数形结合法有时在分析解题过程中所 需要或所缺少的有关条件可通过作辅助线或建立模型等方法来解决问题的方法就是构造法 .在题目的相关条件或信息不够明确具体时,则应分情况求解,也就是分类讨论法.把不易解决的问题或难点,通过第三个等价的量,转化为已知的或易于解决的问题来解题的方法就是转化法苏州市中考真题赏析1.(2014•苏州)如图,△AOB 为等腰三角形,顶点 A 的坐标(2,),底边 OB 在 x 轴上.将△AOB 绕点 B 按顺时针方向旋转一定角度后得△A ′O ′B ′,点 A 的对应点 A ′在 x 轴上,则点 O ′的坐标为()A . (,)B . (,)C . (,)D . (,4)(第 1 题)(第 2 题)2.(2015•苏州)如图,在一笔直的海岸线 l 上有 A 、B 两个观测站,AB =2km ,从 A 测得船 C 在北( )( )(偏东 45°的方向,从 B 测得船 C 在北偏东 22.5°的方向,则船 C 离海岸线 l 的距离(即 CD 的长)为()A . 4 kmB . 2 + 2 km C. 2 2 km D . 4 - 2 km3.(2016•苏州)9.矩形 OABC 在平面直角坐标系中的位置如图所示,点 B 的坐标为(3,4),D是 OA 的中点,点 E 在 AB 上,当△ CDE 的周长最小时,点 E 的坐标为()A .(3,1)B .(3, )C .(3, )D .(3,2)(第 3 题)(第 4 题)4.(2016•苏州)如图,在四边形 ABCD 中,∠ABC =90°,AB =BC =2,E 、F 分别是 AD 、CD 的中点,连接 BE 、BF 、EF .若四边形 ABCD 的面积为 6△,则BEF 的面积为()A .2B .C .D .35.如图,在矩形 ABCD 中,= ,以点 B 为圆心,BC 长为半径画弧,交边 AD 于点 E .若 AE •ED = ,则矩形 ABCD 的面积为.(第 5 题)(第 6 题)6.如图,直线 l 与半径为 4 的⊙O 相切于点 A ,P 是⊙O 上的一个动点(不与点 A 重合),过点 P作 PB ⊥l ,垂足为 B ,连接 P A .设 P A =x ,PB =y ,则(x ﹣y )的最大值是.7△.如图,在 ABC 中,CD 是高,CE 是中线,CE =CB ,点 A 、D 关于点 F 对称,过点 F 作 FG ∥CD ,交 AC 边于点 G ,连接 GE .若 AC =18,BC =12,则△CEG 的周长为.8. 3 分)(2015•苏州)如图,四边形 A BCD 为矩形,过点 D 作对角线 BD 的垂线,交 BC 的延长线于点 E ,取 BE 的中点 F ,连接 DF ,DF =4.设 AB =x ,AD =y ,则 x 2 + ( y - 4)2 的值为.B ⊥A3 x9.如图,在△ ABC 中,AB =10,∠B =60°,点 D 、E 分别在 AB 、BC 上,且 BD =BE =4△,将 BDE 沿DE 所在直线折叠得到△ B ′DE (点 B ′在四边形 ADEC 内),连接 AB ′,则 AB ′的长为.(第 9 题)(第 10 题)10.如图,在平面直角坐标系中,已知点 A 、B 的坐标分别为(8,0)、(0,2),C 是 AB 的中点,过点 C 作 y 轴的垂线,垂足为 D ,动点 P 从点 D 出发,沿 DC 向点 C 匀速运动,过点 P作 x 轴的垂线,垂足为 E ,连接 BP 、EC .当 BP 所在直线与 EC 所在直线第一次垂直时,点 P的坐标为.模拟试题演练:1. (蔡老师模拟)如图,反比例函数 y =kx(x >0)的图象经过矩形 OABC 对角线的交点 M ,分别与 AB 、BC 交于点 D 、E ,若四边形 ODBE 的面积为 9,则 k 的值为……………()A.1B.2C.3D.4yCEBMkD y= (x >0)xOA x(第 1 题) (第 2 题)32.(2016•太仓模拟)如图,点 A 在反比例函数 y = - ( x < 0) 的图像上移动,连接 OA ,作 O O x,并满足 ∠OAB = 30︒ .在点 A 的移动过程中,追踪点 B 形成的图像所对应的函数表达式为( )A. y = 3 1 1( x > 0) ; B. y = ( x > 0) ; C. y = ( x > 0) ; D. y = ( x > 0)x x 3x3. (2016•太仓模拟)如图,在 ∆ABC 中,AB =4, D 是 AB 上的一点(不与点 A 、B 重合),DE // BC ,交 AC 于点 E ,则SS∆DEC 的最大值为 .∆ABCA.-5.0<t≤5时,y=cos∠CBE=4(第3题)(第4题)4.(2016•苏州模拟)如图,OA在x轴上,OB在y轴上,OA=4,OB=3,点C在边OA上,kAC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)x的图象经过圆心P,则k的值是()55B.-C.-D.-24325.(2016•苏州模拟)如图,∆ABC中,AB=2,AC=4,将∆ABC绕点C按逆时针方向旋转得到∆A'B'C,使AB//B'C,分别延长AB、CA'相交于点D,则线段BD的长为.6.(2016•苏州模拟)如图,CA⊥AB,DB⊥AB,己知AC=2,AB=6,点P射线BD上一动点,以CP为直径作⊙O,点P运动时,若⊙O与线段AB有公共点,则BP最大值为.7.(2016•苏州模拟)如图(1)所示,E为矩形ABCD的边AD上一点动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE-ED-DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,∆BPQ的面积为y cm2已知y与t的函数关系图象如图(2)(其中曲线O G为抛物线的一部分,其余各部分均为线段),则下列结论:①4t2;当t=6秒时,∆ABE≌∆PQB;5②29;当t=秒时,∆ABE∽∆QBP;52③段NF所在直线的函数关系式为:y=-4x+96.其中正确的是.(填序号)参考答案1.考点:坐标与图形变化---旋转.分析:过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.解答:解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选C.点评:本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.(第1题)(第2题)2.考点:解直角三角形的应用-方向角问题.分析:根据题意在CD上取一点E,使BD=DE,进而得出EC=BE=2,再利用勾股定理得出DE 的长,即可得出答案.解答:解:在CD上取一点E,使BD=DE,可得:∠EBD=45°,AD=DC,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC,∵AB=2,∴EC=BE=2,∴BD=ED=,∴DC=2+.故选:B.点评:此题主要考查了解直角三角形的应用,得出BE=EC=2是解题关键.3.【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.(第3题)(第4题)4.【考点】三角形的面积.【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG△和ADC 的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH△又是ACD以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥△AC,∴ABG△,BCG为等腰直角三角形,∴AG=BG=2。
2020-2021学年江苏省中考选择填空压轴题专题10:选择填空方法综述-(数学)

专题10 选择填空方法综述例1.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE-ED-DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y =110-5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是___________.同类题型1.1 如图,在四边形ABCD中,DC∥AB,AD=5,CD=3,sinA=sinB=13,动点P自A点出发,沿着边AB向点B匀速运动,同时动点Q自点A出发,沿着边AD-DC-CB匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(秒)时,△APQ的面积为s,则s关于t的函数图象是()A.B.C.D.同类题型1.2 如图1.在四边形ABCD中,AB∥CD,AB⊥BC,动点P从点B出发,沿B→C→D→A的方向运动,到达点A停止,设点P运动的路程为x,△ABP的面积为y,如果y与x的函数图象如图2所示,那么AB边的长度为____________.同类题型1.3 如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,⌒BD 表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x(m)时,相应影子的长度为y(m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C例2.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.72B.2 73C.3 55D.264同类题型2.1 如图,已知菱形OABC的边OA在x轴上,点B的坐标为(8,4),点P是对角线OB上的一个动点,点D(0,2)在y轴上,当CP+DP最短时,点P的坐标为____________.同类题型2.2 如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 2 B.10 C.2 26 D.2 29同类题型2.3例3.如图,正方形ABCD中.点E,F分别在BC,CD上,△AEF是等边三角形.连接AC交EF于点G.过点G作GH⊥CE于点H,若S△EGH =3,则S△ADF=()A.6 B.4 C.3 D.2同类题型3.1如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是___________(用含m的代数式表示).同类题型3.2 如图,在矩形ABCD中,AB=2,AD=2 2 ,点E是CD的中点,连接AE,将△ADE 沿直线AE折叠,使点D落在点F处,则线段CF的长度是()A.1 B.22C.23D.23同类题型3.3如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=__________.同类题型3.4 如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=56,则CE=_________.例4.如图,正方形ABCD的边长为4,点E、F分别从点A、点D以相同速度同时出发,点E从点A向点D运动,点F从点D向点C运动,点E运动到D点时,E、F停止运动.连接BE、AF相交于点G,连接CG.有下列结论:①AF⊥BE;②点G随着点E、F的运动而运动,且点G的运动路径的长度为π;③线段DG的最小值为2 5 -2;④当线段DG最小时,△BCG的面积S=8+855 .其中正确的命题有____________.(填序号)同类题型4.1 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连结DF,下列四个结论:①△AEF∽△CAB;②tan∠CAD= 2 ;③DF=DC;④CF=2AF,正确的是()A.①②③B.②③④C.①③④D.①②④同类题型4.2 点E、F分别在平行四边形ABCD的边BC、AD上,BE=DF,点P在边AB上,AP:PB=1:n(n>1),过点P且平行于AD的直线l将△ABE分成面积为S1、S2的两部分,将△CDF分成面积为S3、S4的两部分(如图),下列四个等式:①S1:S3=1:n②S1:S4=1:(2n+1)③(S1+S4):(S2+S3)=1:n④(S3-S1):(S2-S4)=n:(n+1)其中成立的有()A.①②④B.②③C.②③④D.③④同类题型4.3 如图,在矩形ABCD中,DE平分∠ADC交BC于点E,点F是CD边上一点(不与点D 重合).点P为DE上一动点,PE<PD,将∠DPF绕点P逆时针旋转90°后,角的两边交射线DA于H,G两点,有下列结论:①DH=DE;②DP=DG;③DG+DF= 2 DP;④DP﹒DE=DH﹒DC,其中一定正确的是()A.①②B.②③C.①④D.③④例5.如图,在平面直角坐标系中,经过点A的双曲线y=kx(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为 2 ,∠AOB=∠OBA=45°,则k的值为______________.同类题型5.1 如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.专题10 选择填空方法综述例1.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE-ED-DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y =110-5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是___________.解:由图象可以判定:BE=BC=10 cm.DE=4 cm,当点P在ED上运动时,S△BPQ =12BC﹒AB=40cm2,∴AB=8 cm,∴AE=6 cm,∴当0<t≤10时,点P在BE上运动,BP=BQ,∴△BPQ是等腰三角形,故①正确;S△ABE =12AB﹒AE=24 cm2,故②错误;当14<t<22时,点P在CD上运动,该段函数图象经过(14,40)和(22,0)两点,解析式为y =110-5t,故③正确;△ABP为等腰三角形需要分类讨论:当AB=AP时,ED上存在一个符号题意的P点,当BA=BO时,BE上存在一个符合同意的P点,当PA=PB时,点P在AB垂直平分线上,所以BE和CD上各存在一个符号题意的P点,共有4个点满足题意,故④错误;⑤△BPQ 与△ABE 相似时,只有;△BPQ ∽△BEA 这种情况,此时点Q 与点C 重合,即PC BC =AE AB =34 ,∴PC =7.5,即t =14.5. 故⑤正确.综上所述,正确的结论的序号是①③⑤.同类题型1.1 如图,在四边形ABCD 中,DC ∥AB ,AD =5,CD =3,sinA =sinB = 13 ,动点P 自A点出发,沿着边AB 向点B 匀速运动,同时动点Q 自点A 出发,沿着边AD -DC -CB 匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P 运动t (秒)时,△APQ 的面积为s ,则s 关于t 的函数图象是( )A .B .C .D .解:过点Q 做QM ⊥AB 于点M . 当点Q 在线段AD 上时,如图1所示,∵AP =AQ =t (0≤t ≤5),sinA =13,∴QM =13t ,∴s =12AP ﹒QM =16t 2;当点Q 在线段CD 上时,如图2所示,∵AP =t (5≤t ≤8),QM =AD ﹒sinA =53 ,∴s =12AP ﹒QM =56t ;当点Q 在线段CB 上时,如图3所示,∵AP =t (8≤t ≤2023 +3(利用解直角三角形求出AB =2023 +3),BQ =5+3+5-t =13-t ,sinB =13,∴QM =13(13-t ),∴s =12AP ﹒QM =-16(t 2-13t ),∴s =-16(t 2 -13t )的对称轴为直线x =132 .∵t <13, ∴s >0.综上观察函数图象可知B选项中的图象符合题意.选B.同类题型1.2 如图1.在四边形ABCD中,AB∥CD,AB⊥BC,动点P从点B出发,沿B→C→D→A 的方向运动,到达点A停止,设点P运动的路程为x,△ABP的面积为y,如果y与x的函数图象如图2所示,那么AB边的长度为____________.解:根据题意,当P在BC上时,三角形面积增大,结合图2可得,BC=4;当P在CD上时,三角形面积不变,结合图2可得,CD=3;当P在DA上时,三角形面积变小,结合图2可得,DA=5;过D作DE⊥AB于E,∵AB∥CD,AB⊥BC,∴四边形DEBC是矩形,∴EB=CD=3,DE=BC=4,AE=AD2-DE2=52-42=3,∴AB=AE+EB=3+3=6.同类题型1.3 如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,⌒BD 表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x(m)时,相应影子的长度为y(m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,故中间一段图象对应的路径为⌒BD ,又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),选D.同类题型1.4例2.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.72B.2 73C.3 55D.264解:如图,连接DP ,BD ,作DH ⊥BC 于H .∵四边形ABCD 是菱形,∴AC ⊥BD ,B 、D 关于AC 对称,∴PB +PM =PD +PM ,∴当D 、P 、M 共线时,P ′B +P ′M =DM 的值最小,∵CM =13BC =2, ∵∠ABC =120°,∴∠DBC =∠ABD =60°,∴△DBC 是等边三角形,∵BC =6,∴CM =2,HM =1,DH =3 3 ,在Rt △DMH 中,DM =DH 2+HM 2=(33)2+12=27 , ∵CM ∥AD ,∴P ′M DP ′=CM AD =26=13 ,∴P ′M =14DM =72. 选A .同类题型2.1 如图,已知菱形OABC 的边OA 在x 轴上,点B 的坐标为(8,4),点P 是对角线OB 上的一个动点,点D (0,2)在y 轴上,当CP +DP 最短时,点P 的坐标为____________.解:如图连接AC ,AD ,分别交OB 于G 、P ,作BK ⊥OA 于K .在Rt △OBK 中,OB =BK 2+OK 2=82+42=4 5 ,∵四边形OABC 是菱形,∴AC ⊥OB ,GC =AG ,OG =BG =2 5 ,设OA =AB =x ,在Rt △ABK 中,∵AB 2=AK 2+BK 2 ,∴x 2=(8-x )2+42 ,∴x =5,∴A (5,0),∵A 、C 关于直线OB 对称,∴PC +PD =PA +PD =DA ,∴此时PC +PD 最短,∵直线OB 解析式为y =12 x ,直线AD 解析式为y =-25x +2, 由⎩⎪⎨⎪⎧y =12x y =-25x +2 解得⎩⎪⎨⎪⎧x =209y =109, ∴点P 坐标(209 ,109).同类题型2.2 如图,在平面直角坐标系中,反比例函数y = k x(x >0)的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.△OMN 的面积为10.若动点P 在x 轴上,则PM +PN 的最小值是( )A .6 2B .10C .2 26D .2 29解:∵正方形OABC 的边长是6,∴点M 的横坐标和点N 的纵坐标为6,∴M (6,k 6 ),N (k 6,6), ∴BN =6-k 6 ,BM =6-k 6,∵△OMN 的面积为10,∴6×6-12×6×k 6-12×6×k 6-12×(6-k 6)2 =10, ∴k =24,∴M (6,4),N (4,6),作M 关于x 轴的对称点M ′,连接NM ′交x 轴于P ,则NM ′的长=PM +PN 的最小值,∵AM =AM ′=4,∴BM ′=10,BN =2,∴NM ′=BM ′2+BN 2=102+22=226 ,选C .同类题型2.3例3.如图,正方形ABCD 中.点E ,F 分别在BC ,CD 上,△AEF 是等边三角形.连接AC 交EF 于点G .过点G 作GH ⊥CE 于点H ,若S △EGH =3,则S △ADF =( )A .6B .4C .3D .2解:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°.∵△AEF 等边三角形,∴AE =EF =AF ,∠EAF =60°.∴∠BAE +∠DAF =30°.在Rt △ABE 和Rt △ADF 中,⎩⎪⎨⎪⎧AE =AF AB =AD, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE =DF ,∵BC =CD ,∴BC -BE =CD -DF ,即CE =CF ,∴△CEF 是等腰直角三角形,∵AE =AF ,∴AC 垂直平分EF ,∴EG =GF ,∵GH⊥CE,∴GH∥CF,∴△EGH∽△EFC,∵S△EGH=3,∴S△EFC=12,∴CF=2 6 ,EF=4 3 ,∴AF=4 3 ,设AD=x,则DF=x-2 6 ,∵AF2=AD2+DF2,∴(43)2=x2+(x-26)2,∴x=6+3 2 ,∴AD=6+3 2 ,DF=32- 6 ,∴S△ADF =12AD﹒DF=6.选A.同类题型3.1如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是___________(用含m的代数式表示).解:如图,连接BD ,在等腰Rt △ABC 中,点D 是AC 的中点,∴BD ⊥AC ,∴BD =AD =CD ,∠DBC =∠A =45°,∠ADB =90°,∵∠EDF =90°,∴∠ADE =∠BDF ,在△ADE 和△BDF 中,⎩⎪⎨⎪⎧∠A =∠DBFAD =BD ∠ADE =∠BDF, ∴△ADE ≌△BDF (ASA ),∴AE =BF ,DE =DF ,在Rt △DEF 中,DF =DE =m .∴EF =2DE = 2 m ,∴△BEF 的周长为BE +BF +EF =BE +AE +EF =AB +EF =2+ 2 m .同类题型3.2 如图,在矩形ABCD 中,AB =2,AD =2 2 ,点E 是CD 的中点,连接AE ,将△ADE 沿直线AE 折叠,使点D 落在点F 处,则线段CF 的长度是( )A .1B .22C .23D .23解:过点E 作EM ⊥CF 于点M ,如图所示.在Rt △ADE 中,AD =2 2 ,DE =12AB =1, ∴AE =AD 2+DE 2 =3.根据折叠的性质可知:ED =EF ,∠AED =∠AEF .∵点E 是CD 的中点,∴CE =DE =FE ,∴∠FEM =∠CEM ,CM =FM .∵∠DEA +∠AEF +∠FEM +∠MEC =180°,∴∠AEF +∠FEM =12×180°=90°. 又∵∠EAF +∠AEF =90°,∴∠EAF =∠FEM .∵∠AFE =∠EMF =90°,∴△AFE ∽△EMF ,∴MF FE =FE EA ,即MF 1=13 , ∴MF =13 ,CF =2MF =23. 选C .同类题型3.3如图,在矩形ABCD 中,BE ⊥AC 分别交AC 、AD 于点F 、E ,若AD =1,AB =CF ,则AE =__________.解:∵四边形ABCD 是矩形,∴BC =AD =1,∠BAF =∠ABC =90°,∴∠ABE +∠CBF =90°,∵BE ⊥AC ,∴∠BFC =90°,∴∠BCF +∠CBF =90°,∴∠ABE =∠FCB ,在△ABE 和△FCB 中,⎩⎪⎨⎪⎧∠EAB =∠BFC =90°AB =CF ∠ABE =∠FCB, ∴△ABE ≌△FCB ,∴BF =AE ,BE =BC =1,∵BE ⊥AC ,∴∠BAF +∠ABF =90°,∵∠ABF +∠AEB =90°,∴∠BAF =∠AEB ,∵∠BAE =∠AFB ,∴△ABE ∽△FBA ,∴AB BF =BE AB ,∴ABAE=1AB,∴AE=AB2,在Rt△ABE中,BE=1,根据勾股定理得,AB2+AE2=BE2=1,∴AE+AE2=1,∵AE>0,∴AE=5-12.同类题型3.4 如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=56,则CE=_________.解:如图,连接EF.∵四边形ABCD是正方形,∴AB=BC=CD=DA=2,∠DAB=90°,∠DCP=45°,∴AM=BM=1,在Rt △ADM 中,DM =AD 2+AM 2=22+12= 5 ,∵AM ∥CD ,∴AM DC =MP PD =12 , ∴DP =253 ,∵PF =56, ∴DF =DP -PF =52 , ∵∠EDF =∠PDC ,∠DFE =∠DCP ,∴△DEF ∽△DPC ,∴DF DC =DE DP, ∴522=DE253 , ∴DE =56, ∴CE =CD -DE =2-56=76.例4.如图,正方形ABCD 的边长为4,点E 、F 分别从点A 、点D 以相同速度同时出发,点E 从点A 向点D 运动,点F 从点D 向点C 运动,点E 运动到D 点时,E 、F 停止运动.连接BE 、AF 相交于点G ,连接CG .有下列结论:①AF ⊥BE ;②点G 随着点E 、F 的运动而运动,且点G 的运动路径的长度为π;③线段DG 的最小值为2 5 -2;④当线段DG 最小时,△BCG 的面积S =8+85 5 .其中正确的命题有____________.(填序号)解:∵点E 、F 分别同时从A 、D 出发以相同的速度运动,∴AE =DF ,∵四边形ABCD 是正方形,∴AB =DA ,∠BAE =∠D =90°,在△BAE 和△ADF 中,⎩⎪⎨⎪⎧AE =DE∠BAE =∠ADF =90°AB =AD, ∴△BAE ≌△ADF (SAS ),∴∠ABE =∠DAF ,∵∠DAF +∠BAG =90°,∴∠ABE +∠BAG =90°,即∠AGB =90°,∴AF ⊥BE .故①正确;∵∠AGB =90°,∴点G 的运动路径是以AB 为直径的圆所在的圆弧的一部分,由运动知,点E 运动到点D 时停止,同时点F 运动到点C ,∴点G 的运动路径是以AB 为直径的圆所在的圆弧所对的圆心角为90°,∴长度为90π×2180=π,故命题②正确;如图,设AB 的中点为点P ,连接PD ,∵点G 是以点P 为圆心AB 为直径的圆弧上一点,∴当点G 在PD 上时,DG 有最小值,在Rt △ADP 中,AP =12AB =2,AD =4,根据勾股定理得,PD =2 5 , ∴DG 的最小值为2gh(5) -2,故③正确;过点G 作BC 的垂线与AD 相交于点M ,与BC 相交于N ,∴GM ∥PA ,∴△DMG ∽△DAP ,∴GM AP =DG DP , ∴GM =10-255, ∴△BCG 的高GN =4-GM =10+255, ∴S △BCG =12×4×10+255=4+455,故④错误, ∴正确的有①②③.同类题型4.1 如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为F ,连结DF ,下列四个结论:①△AEF ∽△CAB ;②tan ∠CAD =2 ;③DF =DC ;④CF =2AF ,正确的是( ) A .①②③ B .②③④ C .①③④ D .①②④解:如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC =90°,AD =BC ,∵BE ⊥AC 于点F , ∴∠EAC =∠ACB ,∠ABC =∠AFE =90°,∴△AEF ∽△CAB ,故①正确; ∵AD ∥BC ,∴△AEF ∽△CBF , ∴AE BC =AF CF , ∵AE =12AD =12BC , ∴AF CF =12, ∴CF =2AF ,故④正确;∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC , ∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DM 垂直平分CF ,∴DF =DC ,故③正确;设AE =a ,AB =b ,则AD =2a ,由△BAE ∽△ADC ,有b a =2a b,即b = 2 a , ∴tan ∠CAD =DC AD =b 2a =22.故②不正确; 正确的有①③④,选C .同类题型4.2 点E 、F 分别在平行四边形ABCD 的边BC 、AD 上,BE =DF ,点P 在边AB 上,AP :PB =1:n (n >1),过点P 且平行于AD 的直线l 将△ABE 分成面积为S 1 、S 2的两部分,将△CDF 分成面积为S 3 、S 4的两部分(如图),下列四个等式: ①S 1 :S 3=1:n ②S 1 :S 4=1:(2n +1) ③(S 1+S 4 ):(S 2+S 3)=1:n④(S 3-S 1 ):(S 2-S 4)=n :(n +1) 其中成立的有( )A .①②④B .②③C .②③④D .③④解:由题意∵AP :PB =1:n (n >1),AD ∥l ∥BC , ∴S 1S 1+S 2=(1n +1)2 ,S 3=n 2S 1,S 3S 3+S 4=(n n +1)2, 整理得:S 2=n (n +2)S 1 ,S 4=(2n +1)S 1, ∴S 1 :S 4=1:(2n +1),故①错误,②正确, ∴(S 1+S 4 ):(S 2+S 3)=[S 1+(2n +1)S 1]:[n (n +2)S 1+n 2S 1]=1:n ,故③正确, ∴(S 3-S 1 ):(S 2-S 4)=[n 2S 1-S 1]:[n (n +2)S 1-(2n +1)S 1]=1:1,故④错误, 选B .同类题型4.3 如图,在矩形ABCD 中,DE 平分∠ADC 交BC 于点E ,点F 是CD 边上一点(不与点D 重合).点P 为DE 上一动点,PE <PD ,将∠DPF 绕点P 逆时针旋转90°后,角的两边交射线DA 于H ,G 两点,有下列结论:①DH =DE ;②DP =DG ;③DG +DF =2 DP ;④DP ﹒DE =DH ﹒DC ,其中一定正确的是( )A .①②B .②③C .①④D .③④解:∵∠GPF =∠HPD =90°,∠ADC =90°,∴∠GPH =∠FPD ,∵DE 平分∠ADC ,∴∠PDF =∠ADP =45°,∴△HPD 为等腰直角三角形,∴∠DHP =∠PDF =45°,在△HPG 和△DPF 中,∵⎩⎪⎨⎪⎧∠PHG =∠PDFPH =PD ∠GPH =∠FPD, ∴△HPG ≌△DPF (ASA ),∴PG =PF ;∵△HPD 为等腰直角三角形,∴HD = 2 DP ,HG =DF ,∴HD =HG +DG =DF +DG ,∴DG +DF = 2 DP ;故③正确,∵DP ﹒DE =22 DH ﹒DE ,DC =22 DE , ∴DP ﹒DE =DH ﹒DC ,故④正确,由此即可判断选项D 正确,选D .例5.如图,在平面直角坐标系中,经过点A 的双曲线y = k x(x >0)同时经过点B ,且点A 在点B 的左侧,点A 的横坐标为 2 ,∠AOB =∠OBA =45°,则k 的值为______________.解:过A 作AM ⊥y 轴于M ,过B 作BD 选择x 轴于D ,直线BD 与AM 交于点N ,如图所示:则OD =MN ,DN =OM ,∠AMO =∠BNA =90°,∴∠AOM +∠OAM =90°,∵∠AOB =∠OBA =45°,∴OA =BA ,∠OAB =90°,∴∠OAM +∠BAN =90°,∴∠AOM =∠BAN ,在△AOM 和△BAN 中,⎩⎪⎨⎪⎧∠AOM =∠BAN∠AMO =∠BNA OA =BA, ∴△AOM ≌△BAN (AAS ),∴AM =BN = 2 ,OM =AN =k 2 , ∴OD =k2+ 2 ,BD =k 2- 2 , ∴B (k2+ 2 ,k2- 2 ),∴双曲线y =k x(x >0)同时经过点A 和B , ∴(k2+2)﹒(k 2- 2 )=k , 整理得:k 2-2k -4=0,解得:k =1± 5 (负值舍去),∴k =1+ 5 .同类题型5.1 如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数y = 1x和y = 9x 在第一象限的图象于点A ,B ,过点B 作 BD ⊥x 轴于点D ,交y = 1x的图象于点C ,连结AC .若△ABC 是等腰三角形,则k 的值是________.解:∵点B 是y =kx 和y =9x 的交点,y =kx =9x,解得:x =3k ,y =3k ,∴点B 坐标为(3k,3gh(k) ), 点A 是y =kx 和y =1x 的交点,y =kx =1x, 解得:x =1k ,y =k ,∴点A 坐标为(1k,k ), ∵BD ⊥x 轴,∴点C 横坐标为3k ,纵坐标为13k =k 3, ∴点C 坐标为(3k ,k 3 ), ∴BA ≠AC ,若△ABC 是等腰三角形,①AB =BC ,则(3k -1k )2+(3k -k)2=3k -k 3 , 解得:k =377; ②AC =BC ,则(3k -1k )2+(k -k 3)2=3k -k 3 , 解得:k =155; 故k =377 或155.。
中考数学选择填空压轴题专题10选择填空方法综述

2019年中考数学选择填空压轴题-专题10-选择填空方法综述专题10选择填空方法综述例1.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE-ED-DC运动到点C停止,点Q从点B 出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),2),已知y与t之间的函数图象△BPQ的面积为y(cm如图2所示.t BPQ≤10时,△给出以下结论:①当0<是等腰三角形;②S2;③当14<t<22时,y=110-5t;=48cm△ABE④在运动过程中,使得△ ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相像时,t=.此中正确结论的序号是___________.同类题型如图,在四边形ABCD中,DC∥AB,AD=5,1CD=3,sinA=sinB=3,动点P自A点出发,沿着边AB向点B匀速运动,同时动点Q自点A出发,沿着边AD-DC-CB匀速运动,速度均为每秒1个单位,当此中一个动点抵达终点时,它们同时停止运动,设点P运动t(秒)时,△APQ的面积为s,则s对于t的函数图象是()2A.B.C.D.同类题型如图1.在四边形ABCD中,AB∥CD,ABBC,动点P从点B出发,沿B→C→D→A的方向运动,抵达点A停止,设点P运动的行程为x,△ABP的面积为y,假如y与x的函数图象如图2所示,那么AB边的长度为____________.同类题型如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,⌒表示一条认为圆心,以BD A AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路漫步时,影子长度随行走路线的变化而变化,设他步行的行程为x(m)时,相应影子的长度为y(m),依据他步行的路线获得y与x之间关系的大概图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C例2.如图,菱形ABCD的边长为6,∠ABC=120°,M3是BC边的一个三均分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()7273526A.2B.3C.5D.4同类题型如图,已知菱形OABC的边OA在x轴上,点B的坐标为(8,4),点P是对角线OB上的一个动点,点D(0,2)在y轴上,当CP+DP最短时,点P的坐标为____________.同类题型如图,在平面直角坐标系中,反比率函数ky=x(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别订交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 2 B.10 C.2 26 D.2 29同类题型4例3.如图,正方形ABCD中.点E,F分别在BC,CD上,△AEF是等边三角形.连结AC交EF于点G.过点G作GH⊥CE于点H,若S△EGH=3,则S△ADF=()A.6B.4C.3D.2同类题型如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是___________(用含m的代数式表示).同类题型如图,在矩形ABCD中,AB=2,AD=22,点E是CD的中点,连结AE,将△ADE沿直线AE折叠,使点D落在点F处,则线段CF的长度是()222A.1B.2C.3D.3同类题型如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=__________.5同类题型如图,正方形ABCD中,BC=2,点M是边AB的中点,连结DM,DM与AC交于点P,点E在DC上,5点F在DP上,且∠DFE=45°.若PF=6,则CE=_________.例4.如图,正方形ABCD的边长为4,点E、F分别从点A、点D以同样速度同时出发,点E 从点A向点D运动,点F从点D向点C运动,点E运动到D点时,E、F停止运动.连结BE、AF订交于点G,连结CG.有以下结论:①AF⊥BE;②点G跟着点E、F的运动而运动,且点G的运动路径的长度为π;③线段DG的最小值为5-2;④当线段DG最小时,△BCG的面积8S=8+55.此中正确的命题有____________.(填序号)同类题型如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连结DF,以下四个结论:①△AEF∽△CAB;②tan∠CAD=2;③DF=DC;④CF=2AF,6正确的选项是()A.①②③B.②③④C.①③④D.①②④同类题型点E、F分别在平行四边形ABCD的边BC、AD上,BE=DF,点P在边AB上,AP:PB=1:n(n>1),过点P且平行于AD的直线l将△ABE分红面积为S1、S2的两部分,将△CDF分红面积为S3、S4的两部分(如图),以下四个等式:S1:S3=1:n②S1:S4=1:(2n+1)③(S1+S4):(S2+S3)=1:n④(S3-S1):(S2-S4)=n:(n+1)此中建立的有()A.①②④B.②③C.②③④D.③④同类题型如图,在矩形ABCD中,DE均分∠ADC交BC于点E,点F是CD边上一点(不与点D重合).点P为DE上一动点,PE<PD,将∠DPF绕点P逆时针旋转90°后,角的两边交射线DA于H,G两点,有以下结论:①DH=DE;②DP=DG;③DG+DF=2DP;④DP﹒DE7=DH﹒DC,此中必定正确的选项是()A.①②B.②③C.①④D.③④例5.如图,在平面直角坐标系中,经过点A的双曲线ky=x(x>0)同时经过点B,且点A在点B的左边,点A的横坐标为2,∠AOB=∠OBA=45°,则k的值为______________.同类题型如图,在平面直角坐标系xOy中,已知直1 9线y=kx(k>0)分别交反比率函数y=x和y=x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,1交y=x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.8专题10选择填空方法综述例1.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE-ED-DC运动到点C停止,点Q从点B 出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),2),已知y与t之间的函数图象△BPQ的面积为y(cm如图2所示.给出以下结论:①当0<t≤10时,△BPQ是等腰三角形;2;③当14<t<22时,y=110-5t;②S=48cm△ABE④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相像时,t=.此中正确结论的序号是___________.解:由图象能够判断:BE=BC=10cm.DE=4cm,当点P在ED上运动时,S12,=BC﹒AB=40cm△BPQ2∴AB=8cm,∴AE=6cm,∴当0<t≤10时,点P在BE上运动,BP=BQ,9∴△BPQ是等腰三角形,故①正确;S△ABE=12AB﹒AE=24cm2,故②错误;当14<t<22时,点P在CD上运动,该段函数图象经过(14,40)和(22,0)两点,分析式为y=110-5t,故③正确;△ABP为等腰三角形需要分类议论:当AB=AP时,ED上存在一个符号题意的P点,当BA=BO时,BE上存在一个切合赞同的P点,当PA=PB时,点P在AB垂直平分线上,因此BE和CD上各存在一个符号题意的P点,共有4个点知足题意,故④错误;⑤△BPQ与△ABE相像时,只有;△BPQ∽△BEA这类情PCAE 3况,此时点Q与点C重合,即==,BCAB4PC=,即t=.故⑤正确.综上所述,正确的结论的序号是①③⑤.同类题型如图,在四边形ABCD中,DC∥AB,AD=5,1CD=3,sinA=sinB=3,动点P自A点出发,沿着边AB向点B匀速运动,同时动点Q自点A出发,沿着边AD-DC-CB匀速运动,速度均为每秒1个单位,当此中一个动点抵达终点时,它们同时停止运动,设点P 运动10t(秒)时,△APQ的面积为s,则s对于t的函数图象是()A.B.C.D.解:过点Q做QM⊥AB于点M.当点Q在线段AD上时,如图1所示,1∵AP=AQ=t(0≤t≤5),sinA=3,1QM=3t,s=1AP﹒QM=1t2;26当点Q在线段CD上时,如图2所示,5∵AP=t(5≤t≤8),QM=AD﹒sinA=3,1 5s=2AP﹒QM=6t;当点Q在线段CB上时,如图3所示,11∵AP=t(8≤t≤202+3(利用解直角三角形求出32021AB=3+3),BQ=5+3+5-t=13-t,sinB=3,1QM=3(13-t),s=1AP﹒QM=-1(t2-13t),26s 1t2t x13=-6()的对称轴为直线=2.∴-13t<13,∴s>0.综上察看函数图象可知B选项中的图象切合题意.选B.同类题型如图1.在四边形ABCD中,AB∥CD,ABBC,动点P从点B出发,沿B→C→D→A的方向运动,抵达点A停止,设点P运动的行程为x,△ABP的面积为y,假如y与x的函数图象如图2所示,那么AB边的长度为____________.解:依据题意,12当P在BC上时,三角形面积增大,联合图2可得,BC=4;当P在CD上时,三角形面积不变,联合图2可得,CD =3;当P在DA上时,三角形面积变小,联合图2可得,DA =5;过D作DE⊥AB于E,∵AB∥CD,AB⊥BC,∴四边形DEBC是矩形,∴EB=CD=3,DE=BC=4,AE=2222 AD-DE=5-4=3,∴AB=AE+EB=3+3=6.同类题型如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,⌒表示一条认为圆心,以BD A AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路漫步时,影子长度随行走路线的变化而变化,设他步行的行程为x(m)时,相应影子的长度为y(m),依据他步行的路线获得y与x之间关系的大概图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B13→F D.A→B→D→C解:依据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,由于函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,⌒故中间一段图象对应的路径为BD,又由于第一段和第三段图象都从左往右上涨,因此第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),选D.同类题型例2.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三均分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()7273526A.2B.3C.5D.4解:如图,连结DP,BD,作DH⊥BC于H.14∵四边形ABCD是菱形,AC⊥BD,B、D对于AC对称,PB+PM=PD+PM,∴当D、P、M共线时,P′B+P′M=DM的值最小,1∵CM=3BC=2,∵∠ABC=120°,∴∠DBC=∠ABD=60°,∴△DBC是等边三角形,∵BC=6,CM=2,HM=1,DH=33,在Rt△DMH中,DM=22(33)227,DH+HM=+1=2∵CM∥AD,∴P′M CM21,DP′===3AD617∴P′M=4DM=2.选A.同类题型如图,已知菱形OABC的边OA在x轴上,点B的坐标为(8,4),点P是对角线OB上的一个动点,点D(0,2)在y轴上,当CP+DP最短时,点P的坐标为____________.15解:如图连结AC,AD,分别交OB于G、P,作BK⊥OA于K.22225,在Rt△OBK中,OB=BK+OK=8+4=4∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=25,222,设OA=AB=x,在Rt△ABK中,∵AB=AK+BK∴x2=(8-x)2+42,∴x=5,∴A(5,0),A、C对于直线OB对称,∴PC+PD=PA+PD=DA,∴此时PC+PD最短,1 2∵直线OB分析式为y=2x,直线AD分析式为y=-5x2,120由y=2x解得x=9,210y=-5x+2y=9162010∴点P坐标(9,9).同类题型如图,在平面直角坐标系中,反比率函数ky=x(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别订交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 2 B.10 C.2 26 D.2 29解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,k k∴M(6,6),N(6,6),k kBN=6-6,BM=6-6,∵△OMN的面积为10,6×6-1×6×k-1×6×k-1×(6-k)2=10,262626k=24,M(6,4),N(4,6),作M对于x轴的对称点M′,连结NM′交x轴于P,则NM′的长=PM+PN的最小值,17AM=AM′=4,∴BM′=10,BN=2,2222∴NM′=BM′+BN=10+2=226,选C.同类题型例3.如图,正方形ABCD中.点E,F分别在BC,CD上,△AEF是等边三角形.连结AC交EF于点G.过点G作GH⊥CE于点H,若S△EGH=3,则S△ADF=()A.6B.4C.3D.2解:∵四边形ABCD是正方形,AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.18在Rt△ABE和Rt△ADF中,AE=AFAB=AD,Rt△ABE≌Rt△ADF(HL),BE=DF,BC=CD,BC-BE=CD-DF,即CE=CF,∴△CEF是等腰直角三角形,∵AE=AF,AC垂直均分EF,EG=GF,GH⊥CE,∴GH∥CF,∴△EGH∽△EFC,S△EGH=3,∴S△EFC=12,∴CF=26,EF=43,∴AF=43,设AD=x,则DF=x-26,222∵AF=AD+DF,∴(4 3)2=x2+(x-2 6)2,x=6+32,AD=6+32,DF=32-6,1S△ADF=2AD﹒DF=6.选A.19同类题型如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是___________(用含m的代数式表示).解:如图,连结BD,在等腰Rt△ABC中,点D是AC的中点,BD⊥AC,BD=AD=CD,∠DBC=∠A=45°,∠ADB=90°,∵∠EDF=90°,∴∠ADE=∠BDF,∠A=∠DBF在△ADE和△BDF中,AD=BD ,∠ADE=∠BDF∴△ADE≌△BDF(ASA),AE=BF,DE=DF,在Rt△DEF中,DF=DE=m.EF=2DE=2m,∴△BEF 的周长为BE+BF+EF=BE+AE+EF=AB+EF=2+2m.同类题型如图,在矩形ABCD中,AB=2,AD=22,点E是CD的中点,连结AE,将△ADE沿直线AE折叠,使点D落在点F处,则线段CF的长度是()20222 A.1B.2C.3D.3解:过点E作EM⊥CF于点M,如下图.1在Rt△ADE中,AD=2 2,DE=2AB=1,∴AE=22=3.AD+DE依据折叠的性质可知:ED=EF,∠AED=∠AEF.∵点E是CD的中点,CE=DE=FE,∴∠FEM=∠CEM,CM=FM.∵∠DEA+∠AEF+∠FEM+∠MEC=180°,1∴∠AEF+∠FEM=2×180°=90°.又∵∠EAF+∠AEF=90°,∴∠EAF=∠FEM.∵∠AFE=∠EMF=90°,∴△AFE∽△EMF,MFFE MF1∴FE=EA,即1=3,1 2∴MF=3,CF=2MF=3.21选C.同类题型如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=__________.解:∵四边形ABCD是矩形,BC=AD=1,∠BAF=∠ABC=90°,∴∠ABE+∠CBF=90°,∵BE⊥AC,∴∠BFC=90°,∴∠BCF+∠CBF=90°,∴∠ABE=∠FCB,∠EAB=∠BFC=90°在△ABE和△FCB中,AB=CF ,∠ABE=∠FCB∴△ABE≌△FCB,BF=AE,BE=BC=1,∵BE⊥AC,∴∠BAF+∠ABF=90°,∵∠ABF+∠AEB=90°,∴∠BAF=∠AEB,∵∠BAE=∠AFB,∴△ABE∽△FBA,∴ABBEBF=AB,22AB 1∴=AEAB∴=2 AEAB ,,2 2 2=在Rt△ABE中,BE=1,依据勾股定理得,AB+AE=BE 1,∴AE+AE2=1,AE>0,∴AE=5-1.2同类题型如图,正方形ABCD中,BC=2,点M是边AB的中点,连结DM,DM与AC交于点P,点E在DC上,5点F在DP上,且∠DFE=45°.若PF=6,则CE=_________.解:如图,连结EF.∴∵四边形ABCD是正方形,AB=BC=CD=DA=2,∠DAB=90°,∠DCP=45°,AM=BM=1,23在Rt△ADM中,DM=22225,AD+AM=2+1=∵AM∥CD,AMMP1,∴==2DCPD255∴DP=3,∵PF=6,5∴DF=DP-PF=2,∵∠EDF=∠PDC,∠DFE=∠DCP,∴△DEF∽△DPC,DFDE∴=,DCDP52DE∴2=25,35∴DE=6,57CE=CD-DE=2-6=6.例4.如图,正方形ABCD的边长为4,点E、F分别从点A、点D以同样速度同时出发,点E从点A向点D 运动,点F从点D向点C运动,点E运动到D点时,E、F停止运动.连结BE、AF订交于点G,连结CG.有以下结论:①AF⊥BE;②点G跟着点E、F的运动而运动,且点G的运动路径的长度为π;③线段DG的最小值为245-2;④当线段DG最小时,△BCG的面积8S=8+55.此中正确的命题有____________.(填序号)∴解:∵点E、F分别同时从A、D出发以同样的速度运动,AE=DF,∵四边形ABCD是正方形,AB=DA,∠BAE=∠D=90°,在△BAE和△ADF中,AE=DE∠BAE=∠ADF=90°,AB=AD∴△BAE≌△ADF(SAS),∴∠ABE=∠DAF,∵∠DAF+∠BAG=90°,∴∠ABE+∠BAG=90°,即∠AGB=90°,AF⊥BE.故①正确;∵∠AGB=90°,∴点G的运动路径是以AB为直径的圆所在的圆弧的一部分,由运动知,点E运动到点D时停止,同时点F运动到点C,∴点G的运动路径是以AB为直径的圆所在的圆弧所对的圆心角为90°,2590π×2∴长度为=π,故命题②正确;180如图,设AB的中点为点P,连结PD,∵点G是以点P为圆心AB为直径的圆弧上一点,∴当点G在PD上时,DG有最小值,1在Rt△ADP中,AP=2AB=2,AD=4,依据勾股定理得,PD=2 5,∴DG的最小值为2gh(5) -2,故③正确;过点G作BC的垂线与AD订交于点M,与BC订交于N,GM∥PA,∴△DMG∽△DAP,GMDG∴=,APDPGM=10-25,5∴△BCG的高GN=4-GM=10+255,∴S 110+2545,故④错误,=×4×5=4+5△BCG226∴正确的有①②③.同类题型如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连结DF,以下四个结论:①△AEF ∽△CAB;②tan∠CAD=2;③DF=DC;④CF=2AF,正确的选项是()A.①②③B.②③④C.①③④D.①②④解:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,AEAF∴=,BCCF1 1∵AE=2AD=2BC,27AF 1∴=,CF2CF=2AF,故④正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,1BM=DE=2BC,BM=CM,CN=NF,BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直均分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,b 2a由△BAE∽△ADC,有a=b,即b=2a,DC b 2∴tan∠CAD===.故②不正确;AD2a 2正确的有①③④,选C.同类题型点E、F分别在平行四边形ABCD的边BC、AD上,BE=DF,点P在边AB上,AP:PB=1:n(n>1),过点P且平行于AD的直线l将△ABE分红面积为S1、S2的两部分,将△CDF分红面积为S3、S4的两部分(如图),以下四个等式:①S1:S3=1:n28②S1:S4=1:(2n+1)③(S1+S4):(S2+S3)=1:n④(S3-S1):(S2-S4)=n:(n+1)此中建立的有()A.①②④B.②③C.②③④D.③④解:由题意∵AP:PB=1:n(n>1),AD∥l∥BC,∴S1=(1,S3=n2S1,S1+S2)2n+1S3=(n)2,S3+S4 n+1整理得:S2=n(n+2)S1,S4=(2n+1)S1,∴S1:S4=1:(2n+1),故①错误,②正确,∴(S1+S4):(S2+S3)=[S1+(2n+1)S1]:[n(n+2)S1+n2S1]=1:n,故③正确,∴(S3-S1):(S2-S4)=[n2S1-S1]:[n(n+2)S1-(2n+1)S1]=1:1,故④错误,选B.同类题型如图,在矩形ABCD中,DE均分∠ADC交BC于点E,点F是CD边上一点(不与点D重合).点P 为DE上一动点,PE<PD,将∠DPF绕点P逆时针旋转2990°后,角的两边交射线DA于H,G两点,有以下结论:①DH=DE;②DP=DG;③DG+DF=2DP;④DP﹒DE=DH﹒DC,此中必定正确的选项是()A.①②B.②③C.①④D.③④解:∵∠GPF=∠HPD=90°,∠ADC=90°,∴∴∠GPH=∠FPD,DE均分∠ADC,∴∠PDF=∠ADP=45°,∴△HPD为等腰直角三角形,∴∠DHP=∠PDF=45°,在△HPG和△DPF中,∠PHG=∠PDF∵PH=PD ,∠GPH=∠FPD∴△HPG≌△DPF(ASA),PG=PF;∵△HPD为等腰直角三角形,HD=2DP,HG=DF,HD=HG+DG=DF+DG,DG+DF=2DP;故③正确,302 2DP﹒DE=2DH﹒DE,DC=2DE,∴DP﹒DE=DH﹒DC,故④正确,由此即可判断选项D正确,选D.例5.如图,在平面直角坐标系中,经过点A的双曲线ky=x(x>0)同时经过点B,且点A在点B的左边,点A的横坐标为2,∠AOB=∠OBA=45°,则k的值为______________.解:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,如下图:则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,31∠AOM=∠BAN在△AOM和△BAN中,∠AMO=∠BNA,OA=BA ∴△AOM≌△BAN(AAS),∴AM=BN=k,2,OM=AN=2k k∴OD=+2,BD=-2,22k2,k∴B(+-2),22k∴双曲线y=x(x>0)同时经过点A和B,k k∴(+2)﹒(-2)=k,2 2整理得:k2-2k-4=0,解得:k=1±5(负值舍去),∴k=1+5.同类题型如图,在平面直角坐标系xOy中,已知直1 9线y=kx(k>0)分别交反比率函数y=x和y=x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,1交y=x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.3299解:∵点B是y=kx和y=x的交点,y=kx=x,3解得:x=k,y=3k,∴点B坐标为(3),,3gh(k)k11点A是y=kx和y=x的交点,y=kx=x,解得:x=1,y=k,k1∴点A坐标为(k,k),∵BD⊥x轴,∴点C横坐标为31kk,纵坐标为3=3,k∴点C坐标为(3kk,3),∴BA≠AC,若△ABC是等腰三角形,①AB=BC,则33312k-2k(k-k)+(3k)=3k-3,解得:k=37;7②AC=BC,则312k2k(k-k)+(k-3)=3k-3,解得:k=15;53715故k=7或5.34。
中考数学选择、填空压轴题

中考数学:选择、填空压轴题
百题冲刺
编辑:XXXX(不告诉你)
花了很长时间整理的
肯定要卖贵点
嘿嘿嘿
目录:
专题一数与式
专题二方程、不等式与函数
专题三图形的性质与变换
专题四圆
专题五点的运动路径
专题六几何最值问题
专题七探究型几何问题
专题一数与式【定义新运算】
【定义新运算:与高中知识有关】
【定义新概念】
【流程图】
【等差数列】
【等差数列求和】
【等比数列】
【等比数列求和】
【二阶等差数列】
【循环型规律】
【递进型规律】
专题二方程、不等式与函数
专题三图形的性质与变换
专题四圆。
中考数学选择、填空压轴题

中考数学:选择、填空压轴题
百题冲刺
编辑:XXXX(不告诉你)
花了很长时间整理的
肯定要卖贵点
嘿嘿嘿
目录:
专题一数与式
专题二方程、不等式与函数
专题三图形的性质与变换
专题四圆
专题五点的运动路径
专题六几何最值问题
专题七探究型几何问题
专题一数与式
【定义新运算】
【定义新运算:与高中知识有关】
【定义新概念】
【流程图】
【等差数列】
【等差数列求和】
【等比数列】
【等比数列求和】
【二阶等差数列】
【循环型规律】
【递进型规律】
专题二方程、不等式与函数专题三图形的性质与变换
专题四圆
专题五点的运动路径专题六几何最值问题专题七探究型几何问题。
中考数学选择题、填空题压轴题总结

中考数学选择填空压轴中考的选择、填空主要题型:1.因式分解因式分解的几种方法:2.整式的加减乘除、乘方、开方等运算3.一次函数恒过象限的问题4.二次函数的最值问题5.几何的折叠问题6.三角形的三边关系、勾股定理及其逆定理7.非负数的性质8.方差问题9.工程问题10.几何证明,相似三角形11.动点问题12.找规律问题一、几何中的动点问题1. 如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB 上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是( A)2.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为 (C)(A )(0,0) (B )(22,22) (C )(-21,-21) (D )(-22,-22)3.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( B )yxOBA(第2题图)GDCEFABba(第3题图)stOA .stOB .C .s tOD .stO4.矩形ABCD 中,8cm 6cm AD AB ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:2cm ),则y 与x 之间的函数关系用图象表示大致是下图中的( A )5.在Rt △ABC 中,︒=∠90C ,4,3==BC AC ,D 是AB 上一动点(不与A 、B 重合),AC DE ⊥于点E ,BC DF ⊥于点F ,点D 由A 向B 移动时,矩形DECF 的周长变化情况是( B )A .逐渐增大B .逐渐减小C .先增大后减小D .先减小后增大6.在ABC △中,12cm 6cm AB AC BC D ===,,为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B A C →→的方向运动.设运动时间为t ,那么当t = 15 秒时,过D 、P 两点的直线将ABC △的周长分成两个部分,使其中一部分是另一部分的2倍.AD F CEHB (第4题图)Oy (cm 2)x (s)48 164 6 A .Oy (cm 2)x (s)48 16 4 6B .Oy (cm 2)x (s)48 16 4 6C .Oy (cm 2)x (s)48 164 6 D .(第5题图)二、几何中常利用相似三角形、折叠的问题 1. 如图,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG⊥AE,垂足为G ,BG=24,则ΔCEF 的周长为( A )(A )8 (B )9.5 (C )10 (D )11.52、如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为(C ) A .1 B .34 C .23 D .2 解:先利用相似三角形联立方程组可求得相似4'''=+=∆∆BG G A G A ADBG BD BG A ABD 3.如图,在等腰梯形ABCD 中,AD BC ∥,对角线AC BD ⊥于点O ,AE BC DF BC ⊥⊥,,垂足分别为E 、F ,设AD =a ,BC =b ,则四边形AEFD的周长是( A )A .3a b +B .2()a b +C .2b a +D .4a b +A ′G DB CA图 DC ABE FO(第3题图)4.已知⊙O 是ABC △的外接圆,若AB =AC =5,BC =6,则⊙O 的半径为( C )A .4B .3.25C .3.125D .2.255.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则CD 的长为( D )A .32 B .23 C .12 D .346.如图,在梯形ABCD 中,AB//DC ,∠D=90o ,AD=DC=4,AB=1,F 为 AD 的中点,则点F 到BC 的距离是(A) A.2 B.4 C.8 D.17.如图5,在ABCD 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD 的周长为( A )A .422+B .1262+C .222+D .221262++或8.如图,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为 423-π .(结果保留π)C AB8图AD CPB(第5题图)60°A DCE B三、找规律的问题1.下面是按一定规律排列的一列数:第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; 第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭. 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( A )A .第10个数B .第11个数C .第12个数D .第13个数解析:21112141.32131.221-21.1-+--n2.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,,()()()()1331;g a b b a g =如②,=,.,,,()()()()1313h a b a b h --=--如③,=,.,,,. 按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( B )A .()53--,B .()53,C .()53-,D .()53-, 3.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式....., 如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++; ③222a b b c c a ++.其中是完全对称式的是( D )A .①② B.①③ C . ②③ D.①②③ 四、已知定量关系或图像求函数解析式1.如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:可求解析式:s=
4.如图,抛物线y=-2x2+8x-6与x轴交于点A,B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是(D)
中考数学重难点突破专题十-选择、填空小压轴题
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
专题十选择、填空小压轴题
类型1选择题
1.(2017·无锡)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于( C)
10.如图,在平面直角坐标系中,已知点A,B的坐标分别为(8,0),(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP,EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为__(1, )__.
6.(2017·苏州)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A′E′F′.设P、P′分别是EF、E′F′的中点,当点A′与点B重合时,四边形PP′CD的面积为(A)
A.28B.24
C.32D.32 -8
解析:如图,连接BD,DF,DF交PP′于H.可证△ABD是等边三角形,∵AF=FB,∴DF⊥AB,DF⊥PP′,在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,∴AE=2,EF=2 ,∴PE=PF=,在Rt△PHF中,∵∠FPH=30°,PF= ,∴HF=PF= ,∵DF=4,∴DH=4 - =,
C.①②③④D.②③④
解:①设D(x, ),则F(x,0),△DEF的面积是:×||×|x|=2,同理△CEF的面积是2,①正确;②正确;③∵C、D是y=x+3与y= 的图象的交点,∴x+3= ,解得:x=-4或1,∴D(1,4),C(-4,-1),∴DF=4,CE=4,∴A(-3,0),B(0,3),∴∠ABO=∠BAO=45°,∵DF∥BO,AO∥CE,∴∠BCE=∠BAO=45°,∠FDA=∠OBA=45°,∴∠DCE=∠FDA=45°,∴△DCE≌△CDF(SAS),故③正确;④∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=AC,∴AC=BD,故④正确;
A.5B.6C.2 D.3
解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB·DH=32O,∴DH=16,在Rt△ADH中,AH= =12,∴HB=AB-AH=8,在Rt△BDH中,BD==8 ,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴ = ,∴ = ,∴OF=2.
∴平行四边形PP′CD的面积= ×8=28 .
类型2填空题
7.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=__75°__.
,第7题图) ,第8题图)
8.如图所示,正方形ABCD对角线AC所在直线上有一点O,OA=AC=2,将正方形绕O点顺时针旋转60°,在旋转过程中,正方形扫过的面积是__2π+2__.
解析:当以点C为圆心,1.5cm为半径的圆与直线EF相切时,此时,CF=1.5,∵AC=2t,BD=t,∴OC=8-2t,OD=6- t,∵点E是OC的中点,∴CE=OC=4-t,∵∠EFC=∠O=90°,∠FCE=∠DCO,∴△EFC∽△DCO,∴ =,∴EF= == ,由勾股定理可知:CE2=CF2+EF2,∴(4-t)2=()2+( )2,解得:t=或t= ,∵0≤t≤4,∴t=.
5.(2017·呼和浩特)函数y= 的大致图象是(B)
解析:①∵|x|为分母,∴|x|≠0,即|x|>0,∴A错误;②∵x2+1>0,|x|>0,∴y=>0,∴D错误;③∵当直线经过(0,0)和(1, )时,直线解析式为y=x,当y=x= 时,x= ,∴y= x与y= 有交点,∴C错误;
④∵当直线经过(0,0)和(1,1)时,直线为y=x,当y=x=时,x无解,∴y=x与y= 没有有交点,∴B正确.
A.-2<m< B.-3<m<-
C.-3<m<-2D.-3<m<-
解析:D令y=-2x2+8x-6=0,即x2-4x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=-2(x-4)2+2(3≤x≤5);当y=x+m1与C2相切时,令x+m1=-2(x-4)2+2,即2x2-15x+30+m1=0,Δ=-8m1-15=0,解得m1=-,当y=x+m2过点B时,即0=3+m2,m2=-3.当-3<m<-时,直线y=x+m与C1,C2共有3个不同的交点,故选D
9.如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了____s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.
2.如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数y=的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:
①△CEF与△DEF的面积相等;
②△AOB∽△
其中正确的结论是(C)
A.①②B.①②③