高中数学复习专题讲座函数图像及图像性质的应用
高考数学《函数的图像》PPT复习课件

作出下列函数的图象: (1)y=12|x|;(2)y=|log2(x+1)|; (3)y=2xx--11;(4)y=x2-2|x|-1.
20
[解] (1)先作出 y=12x的图象,保留 y=12x图象中 x≥0 的部分, 再作出 y=12x的图象中 x>0 部分关于 y 轴的对称部分,即得 y=12|x| 的图象,如图①实线部分.
8
(4)翻转变换
①y=f(x)的图象―x―轴x―轴下―及方―上部―方分―部翻―分折――不到―变上―方→y= |f(x)|
的
图象;
②y=f(x)的图象―原―y轴y―轴左―右侧―侧―部部―分分―去翻―掉折―,―到右―左侧―侧不―变→y= f(|x|)
的图象.
9
[常用结论] 1.关于对称的三个重要结论 (1)函数 y=f(x)与 y=f(2a-x)的图象关于直线 x=a 对称. (2)函数 y=f(x)与 y=2b-f(2a-x)的图象关于点(a,b)中心对称. (3)若函数 y=f(x)的定义域内任意自变量 x 满足:f(a+x)=f(a-x), 则函数 y=f(x)的图象关于直线 x=a 对称.
A
B
C
D
29
(1)D
(2)B
(3)A
[(1)∵f(-x)
=cossi-n-x+x--xx2
=-csoins
x+x x+x2
=-f(x),
∴f(x)是奇函数.又∵f(π)=csoins ππ++ππ2=-1π+π2>0,∴选 D.
(2)当 x=0 时,-f(2-x)=-f(2)=-1;当 x=1 时,-f(2-x)=
高考数学《函数的图像》PPT复习 课件
[最新考纲] 1.在实际情境中,会根据不同的需要选择恰当的方 法(如图象法、列表法、解析法)表示函数.2.会运用基本初等函数的图 象分析函数的性质,并运用函数的图象解简单的方程(不等式)问题.
专题五+5.3三角函数的图像与性质课件——2023届高三数学一轮复习

标):ωx+φ=π+2kπ.(以上k∈Z)
例1
(2022重庆十一中月考,5)函数f(x)=Asin(ωx+φ)
A
0,
ω
0,
0
φ
2
的部分图象如图所示,将其向右平移 3 个单位长度后得到图象对应的函
数解析式为 ( )
A.y= 2 sin 2x
B.y=
2
sin
2x
3
C.y=
2
sin
2x
3
D.y=
5 3
, 13 6
⫋
3 2
, 5 2
,易知函数y=sin
x在
3 2
,
5 2
上单调递增,则函数f(x)=sin
2
x
3
在区间
,
5 4
上单调递增,故
D正确.故选BD.
答案 BD
考法三 三角函数的最值 求三角函数最值常见的函数形式
1.y=asin x+bcos x= a2 b2 sin(x+φ),其中cos φ= a ,sin φ= b .
2
,
0
,(π,-1),
3 2
,
0
,(2π,1).
2.用“五点法”画y=Asin(ωx+φ)(A,ω≠0)在一个周期内的简图 用五点法画y=Asin(ωx+φ)(A,ω≠0)在一个周期内的简图时,一般先列表,后 描点,连线,其中所列表如下:
ωx+φ
x
y=A· sin(ωx+φ)
0
π
2
-
π - + 2
左平移 个单位长度,得到曲线C2
12
高中数学竞赛专题讲座函数2:函数的图像和性质

f(998)-998,f(2000)=f(998)+1002=1002+1002=2004。
当 时,值域为 ;当 时,
值域为
例4.对函数y=f(x)定义域中任一个x的值均有f(x+a)=f(a-x),
(1)求证y=f(x)的图像关于直线x=a对称;
(2)若函数f(x)对一切实数x都有f(x+2)=f(2-x),且方程f(x)=0恰好有四个不同实根,求这些实根之和
命题意图 本题考查函数概念、图像对称问题以及求根问题
(1)求证g(x)是周期函数;
(2)如果f(998)=1002,求f(2000)的值。
解:本例的难度显然又有增加,主要是难以具体化。只能在抽象的层面来解决问题
(1)g(x)=f(x)-x,可得g(x+2)=f(x+2)-x-2,g(x+3)=f(x+3)-x-3,再以f(x+3)≤f(x)+3和f(x+2)≥f(x)+2代换,可得 ,① ,②由①可得g(x+4)≥f(x+2)-x-2≥f(x)+2-x-2=f(x)-x,g(x+6)≥f(x+2)-x-2≥f(x)-x。③由②可得g(x+6)≤f(x+3)-x-3≤f(x)-x,④ 由③、④知g(x+6)=f(x)-x=g(x)。
6、若f(x)满足f(a+x)+f(b-x)=c则f(x)的图象关于点 中心对称。
证明:设P(x,y)是图象上任一点,则y=f(x);由中点公式得P关于点 对称的点为Q(a+b-x,c-y).设t=b-x即x=b-t代入f(a+x)+f(b-x)=c得f(t)=c-f(a+b-t)即f(a+b-x) =c-f(x)=c-y,即Q在图象上。所以f(x)的图象象关于点 中心对称。
专题01函数的图象性质及综合应用ppt课件

3
(log1 0.5)-y,则实数x,y的关系是( )
3
A.x-y>0
B.x-y<0
C.x+y>0
D.x+y<0
主干回顾 ·夯基础 考点技法 ·全突破 学科素能 ·重培养
专题强化突破
数学(理用) 在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么
专题强化突破
数学(理用) 在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么
第二章 函数与基本初等函数
解析:选 C 由 f(t)=f(1-t)得 f(1+t)=f(-t)=-f(t), 所以 f(2+t)=-f(1+t)=f(t),所以 f(x)的周期为 2. 又 f(1)=f(1-1)=f(0)=0, 所以 f(3)+f-32=f(1)+f12=0-122=-14.故选 C.
5 . 图 象 的 三 种 变 换 : _平__移__变__换____ 、 __伸__缩__变__换___ 和 _对__称__变__换__.
6.函数的零点即为对应方程的__解__,也是函数图象与x 轴交点的__横__坐__标___.
主干回顾 ·夯基础 考点技法 ·全突破 学科素能 ·重培养
专题强化突破
数学(理用) 在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么
第二章 函数与基本初等函数
1.(2014·烟台诊断性测试)已知幂函数 y=f(x)的图象过点
12, 22,则 log2 f(2)=________.
解析:12 设 f(x)=xα,则 22=12α, 故 α=12,f(2)=212 ,
反比例函数图象性质及应用复习课件

04
反比例函数的实际应用案 例
电流与电阻的关系
总结词
电流与电阻成反比关系,当电阻增大时,电流减小;反之亦然。
详细描述
在电路中,电流与电阻之间的关系表现为反比例关系。当电路中的电压保持恒定时,电阻的阻值增大,会导致电 流减小;反之,如果电阻的阻值减小,电流则会增大。这一关系在电子设备和电路设计中具有重要应用。
答案解析
针对每个练习题,提供 详细的答案解析,帮助 学生理解解题思路和过
程。
感谢您的观看
THANKS
表达式
一般形式为 y = k/x,其中 k 是 常数且 k ≠ 0。
图像特点
双曲线
反比例函数的图像是双曲线,分布在两个象限内。
渐近线
图像分别渐近于 x 轴和 y 轴。
变化趋势
随着 x 的增大或减小,y 的值会无限接近于 0 但永远不会等于 0。
渐近线与对称性
渐近线
对于反比例函数 y = k/x (k > 0),其图像在第一象限和第三象限内,当 x 趋于正无穷 或负无穷时,y 值趋于 0,因此渐近于 x 轴;当 y 趋于正无穷或负无穷时,x 值趋于 0 ,因此渐近于 y 轴。对于 k < 0 的情况,图像在第二象限和第四象限内,渐近线为 y
反比例函数图象性质及 应用复习ppt课件
目录 CONTENT
• 反比例函数的基本性质 • 反比例函数的图像绘制 • 反比例函数的应用场景 • 反比例函数的实际应用案例 • 反比例函数与其他知识点的关联 • 复习与巩固
01
反比例函数的基本性质
定义与表达式
定义
反比例函数是指形如 y = k/x (k ≠ 0) 的函数,其中 x 是自变量, y 是因变量。
高三数学二轮复习讲义专题一函数性质与图象

专题一 集合,常用逻辑用语,不等式,函数与导数(讲案)第二讲 函数的基本性质与图象【最新考纲透析】预计时间:3.13---3.18函数与基本初等函数的主要考点是:函数的表示方法、分段函数、函数的定义域和值域、函数的单调性、函数的奇偶性、指数函数与对数函数的图象与性质、幂函数的图象与性质。
本部分一般以选择题或填空题的形式出现,考查的重点是函数的性质和图象的应用,重在检测对该部分的基础知识和基本方法的掌握程度。
复习该部分以基础知识为主,注意培养函数性质和函数图象分析问题和解决问题的能力。
【考点精析】题型一 函数的概念与表示例1 (1)函数21sin()(10)()0x x x f x e x π-⎧-<<=⎨≥⎩,若(1)()2f f a +=,则的所有可能值为( ) A .1,2- B.2- C .1,2- D .1,2(2)根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为 ⎪⎪⎩⎪⎪⎨⎧≥<=Ax A c A x x c x f ,,,)((A ,C 为常数)。
已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是A .75,25B .75,16C .60,25D .60,16(3)已知集合A 到集合{}0,1,2,3B =的映射1:1f x x →-,则集合A 中的元素最多有 个。
解析:1:1f x x →-是集合A 到集合B 的映射,∴A 中的每一个元素在集合B 中都应该有象。
令101x =-,该方程无解,所以0无原象,分别令11,2,3,1x =-解得:342,,23x x x =±=±=±。
故集合A 中的元素最多为6个。
(4)如图,已知底角为450的等腰梯形ABCD ,底边BC 长为7cm,腰长为cm ,当一条垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF x =,试写出左边部分的面积y 与x 的函数解析式。
届高考数学一轮复习讲义专题一函数图象与性质的综合应用PPT课件

对于②,m=1,n=2 时,
f(x)=ax(1-x)2=a(x3-2x2+x),
f′(x)=a(3x2-4x+1)=a(x-1)(3x-1), 令 f′(x)≥0,得 x≥1 或 x≤13, ∴f(x)在0,13上单调递增,符合题意. 对于③,m=2,n=1 时,f(x)=ax2(1-x)=a(x2-x3),
变式训练 3
函数 f(x)=axm(1-x)n 在区间[0,1]上的图象
如图所示,则 m,n 的值可能是________.
①m=1,n=1;
②m=1,n=2;
③m=2,n=1;
④m=3,n=1.
观察图象易知,a>0,f(x)在[0,1]上先增后减,但在 0,12上有增有减且不对称. 对于①,m=1,n=1 时,f(x)=ax(1-x)是二次函数,图象应 关于直线 x=12对称,不符合题意.
要点梳理
忆一忆知识要点
函数求值问题
例 1 设 f(x)=l2o×g3((tx+2+1)tx),,xx≥<00, 的值为________.
且 f(1)=6,则 f(f(-2))
首先根据 f(1)=6 求出 t 的取值,从而确定函数解析式,然后 由里到外逐层求解 f(f(-2))的值,并利用指数与对数的运算 规律求解函数值.
探究提高
解决抽象函数问题的关键是灵活利用抽象函数的性质,利用 函数的单调性去掉函数符号是解决问题的关键,由函数为奇 函数可知,不等式的解集关于原点对称,所以只需求解 x>0 时的解集即可.
变式训练 2
设函数 f(x)=log12x,x>0, log2(-x),x<0,
的取值范围是____________.
∵1>0,∴f(1)=2×(t+1)=6, 即 t+1=3,解得 t=2. 故 f(x)=l2o×g33(xx,2+2)x,≥x0<,0, 所以 f(-2)=log3[(-2)2+2]=log36>0. f(f(-2))=f(log36)=2×3log36=2×6=12.
届高三数学一轮复习-函数的图像及其应用(共58张PPT)

考点贯通
抓高考命题的“形”与“神”
作函数的图象
[例 1] 作出下列函数的图象: (1)y=12|x|; [解] 作出 y=12x 的图象,保留 y=12x 图 象中 x≥0 的部分,加上 y=12x 的图象中 x>0 部 分关于 y 轴的对称部分,即得 y=12|x|的图象, 如图中实线部分.
(2)y=|log2(x+1)|; (3)y=2xx--11; [解] (2)将函数 y=log2x 的图象向左平移 1 个 单位,再将 x 轴下方的部分沿 x 轴翻折上去,即可 得到函数 y=|log2(x+1)|的图象,如图. (3)因为 y=2xx--11=2+x-1 1,故函数图象可 由 y=1x的图象向右平移 1 个单位,再向上平移 2 个单位而得,如图.
(2)伸缩变换:
f(ωx) . y=f(x)―0―<AA>―<1―,1,―横横―坐坐―标―标不―不变―变,―,纵―纵―坐坐―标标―伸缩―长―短为―为原―原来―来的―的―AA倍―倍→ y= Af(x) .
(3)对称变换: y=f(x)―关―于―x―轴―对―称→y=-f(x) ; y=f(x)―关―于―y―轴―对―称→y= f(-x); y=f(x)―关―于―原――点―对―称→y= -f(-x) . (4)翻折变换: y=f(x)―去将―掉―y轴y―轴右―左边―边的―图―图, ―象―保翻―留折―y到轴―左―右边―边―去图→y= f(|x|) ; y=f(x)―将―x―轴―下―方保―的 留―图x―轴象―上翻―方―折图―到―上―方―去→y= |f(x)| .
⊥AB交AB于E,当l从左至右移动(与线段
AB有公共点)时,把四边形ABCD分成两部分,设AE=x,
左侧部分的面积为y,则y关于x的图象大致是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10、题目 高中数学复习专题讲座:函数图像及图像性质的应用 高考要求函数的图像与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用 因此,考生要掌握绘制函数图像的一般方法,掌握函数图像变化的一般规律,能利用函数的图像研究函数的性质 重难点归纳1 熟记基本函数的大致图像,掌握函数作图的基本方法 (1)描点法 列表、描点、连线;(2)图像变换法 平移变换、对称变换、伸缩变换等2 高考中总是以几类基本初等函数的图像为基础来考查函数图像的 题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视 典型题例示范讲解例1对函数y =f (x )定义域中任一个x 的值均有f (x +a )=f (a -x ), (1)求证y =f (x )的图像关于直线x =a 对称;(2)若函数f (x )对一切实数x 都有f (x +2)=f (2-x ),且方程f (x )=0恰好有四个不同实根,求这些实根之和命题意图本题考查函数概念、图像对称问题以及求根问题 知识依托把证明图像对称问题转化到点的对称问题错解分析找不到问题的突破口,对条件不能进行等价转化 技巧与方法 数形结合、等价转化(1)证明 设(x 0,y 0)是函数y =f (x )图像上任一点,则y 0=f (x 0),∵2)2(00x x a +-=a , ∴点(x 0,y 0)与(2a -x 0,y 0)关于直线x =a 对称,又f (a +x )=f (a -x ),∴f (2a -x 0)=f [a +(a -x 0)]=f [a -(a -x 0)]=f (x 0)=y 0, ∴(2a -x 0,y 0)也在函数的图像上, 故y =f (x )的图像关于直线x =a 对称(2)解 由f (2+x )=f (2-x )得y =f (x )的图像关于直线x =2对称, 若x 0是f (x )=0的根,则4-x 0也是f (x )=0的根, 若x 1是f (x )=0的根,则4-x 1也是f (x )=0的根, ∴x 0+(4-x 0)+ x 1+(4-x 1)=8 即f (x )=0的四根之和为8例2如图,点A 、B 、C 都在函数y =x 的图像上,它们的横坐标分别是a 、a +1、a +2 又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f (a ),△A ′BC ′的面积为g (a )(1)求函数f (a )和g (a )的表达式;(2)比较f (a )与g (a )的大小,并证明你的结论命题意图本题考查函数的解析式、函数图像、识图能力、图形的组合等知识依托充分借助图像信息,利用面积问题的拆拼以及等价变形找到问题的突破口 错解分析图形面积不会拆拼技巧与方法 数形结合、等价转化 解 (1)连结AA ′、BB ′、CC ′, 则f (a )=S △AB ′C =S 梯形AA ′C ′C -S △AA ′B ′-S △CC ′B =21(A ′A +C ′C )=21(2++a a ), g (a )=S △A ′BC ′=21A ′C ′·B ′B =B ′B =1(2)()()2f a g a -=12=-102=< ∴f (a )<g (a )例3已知函数f (x )=ax 3+bx 2+cx +d 的图像如图,求b 的范围解法一 观察f (x )的图像,可知函数f (x )的图像过原点,即f (0)=0,得d =0,又f (x )的图像过(1,0),∴f (x )=a +b +c ① 又有f (-1)<0,即-a +b -c <0 ② ①+②得b <0,故b 的范围是(-∞,0) 解法二 如图f (0)=0有三根0,1,2,∴f (x )=ax 3+bx 2+cx +d =ax (x -1)(x -2)=ax 3-3ax 2+2ax , ∴b =-3a ,∵当x>2时,f (x )>0,从而有a >0,∴b <0 学生巩固练习1 当a ≠0时,y =ax +b 和y =b ax 的图像只可能是( )2 某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y 轴表示离学校的距离,x 轴表示出发后的时间,则适合题意的图形是()3 已知函数f (x )=log 2(x +1),将y =f (x )的图像向左平移1个单位,再将图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y =g (x )的图像,则函数F (x )=f (x )-g (x )的最大值为_________三、解答题 4 如图,在函数y =lg x 的图像上有A 、B 、C 三点,它们的横坐标分别为m ,m +2,m +4(m >1) (1)若△ABC 面积为S ,求S =f (m ); (2)判断S =f (m )的增减性5 如图,函数y =23|x |在x ∈[-1,1]的图像上有两点A 、B ,AB ∥Ox 轴,点M (1,m )(m ∈R 且m >23)是△ABC 的BC 边的中点 (1)写出用B 点横坐标t 表示△ABC 面积S 的函数解析式S =f (t );(2)求函数S =f (t )的最大值,并求出相应的C 点坐标 6 已知函数f (x )是y =1102+x -1(x ∈R )的反函数,函数g (x )的图像与函数y =-21-x 的图像关于y 轴对称,设F (x )=f (x )+g (x ) (1)求函数F (x )的解析式及定义域;(2)试问在函数F (x )的图像上是否存在两个不同的点A 、B ,使直线AB 恰好与y 轴垂直?若存在,求出A 、B 的坐标;若不存在,说明理由7 已知函数f 1(x )=21x -,f 2(x )=x +2,(1)设y =f (x )=⎩⎨⎧∈--∈]1,0[ ),(3)0,1[ ),(21x x f x x f ,试画出y =f (x )的图像并求y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积;(2)若方程f 1(x +a )=f 2(x )有两个不等的实根,求实数a 的范围(3)若f 1(x )>f 2(x -b )的解集为[-1,21],求b 的值 8 设函数f (x )=x +x1的图像为C 1,C 1关于点A (2,1)对称的图像为C 2,C 2对应的函数为g (x )(1)求g (x )的解析表达式;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点坐标;(3)解不等式log a g (x )<log a29(0<a <1) 参考答案1 解析 ∵y =b ax =(b a )x ,∴这是以b a 为底的指数函数 仔细观察题目中的直线方程可知 在选择支B 中a >0,b >1,∴b a >1,C 中a <0,b >1,∴0<b a <1,D 中a <0,0<b <1,∴b a >1 故选择支B 、C 、D 均与指数函数y =(b a )x 的图像不符合答案 A2 解析 由题意可知,当x =0时,y 最大,所以排除A 、C 又一开始跑步,所以直线随着x 的增大而急剧下降答案 D3 解析 g (x )=2log 2(x +2)(x >-2)F (x )=f (x )-g (x )=log 2(x +1)-2log 2(x +2) =log 21441log 441log )2(122222+++=+++=++x x x x x x x x )1(21111log 2->++++=x x x∵x +1>0,∴F (x )≤41log 211)1(21log 22=++⋅+x x =-2 当且仅当x +1=11+x ,即x =0时取等号 ∴F (x )max =F (0)=-2 答案 -24 解 (1)S △ABC =S 梯形AA ′B ′B +S 梯形BB ′C ′C -S 梯形AA ′C ′C (2)S =f (m )为减函数5 解 (1)依题意,设B (t ,23 t ),A (-t , 23t )(t >0),C (x 0,y 0)∵M 是BC 的中点 ∴2x t +=1,223y t + =m∴x 0=2-t ,y 0=2m -23t 在△ABC 中,|AB |=2t ,AB 边上的高h AB =y 0-23t =2m -3t ∴S =21|AB |·h AB = 21·2t ·(2m -3t ),即f (t )=-3t 2+2mt ,t ∈(0,1) (2)∵S =-3t 2+2mt =-3(t -3m )2+32m ,t ∈(0,1],若⎪⎪⎩⎪⎪⎨⎧>≤<23130m m ,即23<m ≤3, 当t =3m 时,S max =32m ,相应的C 点坐标是(2-3m , 23m ),若3m>1,即m >3 S =f (t )在区间(0,1]上是增函数, ∴S max =f (1)=2m -3,相应的C 点坐标是(1,2m -3)6 解 (1)y =1102+x -1的反函数为f (x )=lg x x+-11(-1<x <1)由已知得g (x )=21+x ,∴F (x )=lg x x +-11+21+x ,定义域为(-1,1)(2)用定义可证明函数u =x x +-11=-1+12+x 是(-1,1)上的减函数,且y =lg u 是增函数 ∴f (x )是(-1,1)上的减函数,故不存在符合条件的点A 、B7 解 (1)y =f (x )=⎪⎩⎪⎨⎧∈+--∈-]1,0[,1)0,1[,12x x x x 的图像如图所示y =f (x )的曲线绕x 轴旋转一周所得几何体是由一个半径为1的半球及底面半径和高均为1的圆锥体组成,其表面积为(2+2)π(2)当f 1(x +a )=f 2(x )有两个不等实根时,a 的取值范围为2-2<a ≤1(3)若f 1(x )>f 2(x -b )的解集为[-1,21],则可解得b =235-8 (1)g (x )=x -41-x (2)b =4时,交点为(5,4);b =0时,交点为(3,0)(3)不等式的解集为{x |4<x <29或x >6}。