2020年部编人教版广安市中考数学试题及答案

合集下载

2020年四川省广安市中考数学试卷(附解析)

2020年四川省广安市中考数学试卷(附解析)

2020年四川省广安市中考数学试卷1.−7的相反数是()A. 7B. −17C. 17D. −72.下列运算中,正确的是()A. x3+x4=x7B. 2x2⋅3x4=6x8C. (−3x2y)2=−9x4y2D. √5×√6=√303.如图所示的是由5个相同的小正方体搭成的几何体,则它的俯视图是()A.B.C.D.4.2020年我国武汉暴发新冠肺炎疫情,全国人民发扬“一方有难.八方支援”的精神,积极参与到武汉防疫抗疫保卫战中.据统计,参与到武汉防疫抗疫中的全国医护人员约为42000人,将42000这个数用科学记数法表示正确的是()A. 42×103B. 4.2×104C. 0.42×105D. 4.2×1035.要使√2x−6在实数范围内有意义,则x的取值范围是()A. x≤−3B. x>3C. x≥3D. x=36.一次函数y=−x−7的图象不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.下列说法正确的是()A. 端午节我们有吃棕子的习俗,为了保证大家吃上放心的棕子,质监部门对广安市市场上的棕子实行全面调查B. 一组数据−1,2,5,7,7,7,4的众数是7,中位数是7C. 海底捞月是必然事件D. 甲、乙两名同学各跳远10次,若他们跳远成绩的平均数相同,甲同学跳远成绩的方差为1.2,乙同学跳远成绩的方差为1.6,则甲同学发挥比乙同学稳定8.如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为()A. 210°B. 110°C. 150°D. 100°9.如图,点A,B,C,D四点均在⊙O上,∠AOD=68°,AO//DC,则∠B的度数为()A. 40°B. 60°C. 56°D. 68°10.二次函数y=ax2十bx+c(a,b,c为常数,a≠0)的部分图象如图所示,图象顶点的坐标为(2,1),与x轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:①abc<0;②a−b+c>0;③c−4a=1;④b2>4ac;⑤am2+bm+c≤1(m为任意实数).其中正确的有()A. 2个B. 3个C. 4个D. 5个11.因式分解:7a2−7b2=______.12.一次函数y=2x+b的图象过点(0,2),将函数y=2x+b的图象向上平移5个单位长度,所得函数的解析式为______.13.在平面直角坐标系中,点A(a,2)与点B(6,b)关于原点对称,则ab=______.14.已知三角形三条边的长分别是7cm,12cm,15cm,则连接三边中点所构成三角形的周长为______cm.15. 已知二次函数y =a(x −3)2+c(a,c 为常数,a <0),当自变量x 分别取√5,0,4时,所对应的函数值分别为y 1,y 2,y 3,则y 1,y 2,y 3的大小关系为______(用“<”连接).16. 如图,在平面直角坐标系中,边长为2的正方形OA 1B 1G 的两边在坐标轴上,以它的对角线OB 1为边作正方形OB 1B 2C 2,再以正方形OB 1B 2C 2的对角线OB 2为边作正方形OB 2B 3C 3…以此类推,则正方形OB 2020B 2021C 2021的顶点B 2021的坐标是______.17. 计算:(−1)2020+|1−√2|−2cos45°−(12)−1.18. 先化简,再求值:(1−1x+1)÷x 2x 2−1,其中x =2020.19. 如图,在▱ABCD 中,点E ,F 是对角线AC 上的两点,且AF =CE ,连接DE ,BF.求证:DE//BF .(k为常数,k≠0)交于A,D两点,与x轴、20.如图,直线y1=x+1与双曲线y2=kxy轴分别交于B,C两点,点A的坐标为(m,2).(1)求反比例函数的解析式.(2)结合图象直接写出当y1<y2时,x的取值范围.21.2020年6月26日是第33个国际禁毒日,为了解同学们对禁毒知识的掌握情况,从广安市某校800名学生中随机抽取部分学生进行调查,调查分为“不了解”“了解较少”“比较了解”“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有______人,估计该校800名学生中“比较了解”的学生有______人.(2)请补全条形统计图.(3)“不了解”的4人中有3名男生A1,A2,A3,1名女生B,为了提高学生对禁毒知识的了解,对这4人进行了培训,然后随机抽取2人对禁毒知识的掌握情况进行检测,请用画树状图或列表的方法,求恰好抽到2名男生的概率.22.某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗30棵,B种树苗15棵,共花费1350元;第二次购进A种树苗24棵,B种树苗10棵,共花费1060元.(两次购进的A,B两种树苗各自的单价均不变)(1)A,B两种树苗每棵的价格分别是多少元?(2)若购买A,B两种树苗共42棵,总费用为W元,购买A种树苗t棵,B种树苗的数量不超过A种树苗数量的2倍.求W与t的函数关系式.请设计出最省钱的购买方案,并求出此方案的总费用.23.如图所示的是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横断面⊙O的圆心,支架CD与水平线AE垂直,AB=154cm,∠A=30°,另一根辅助支架DE=78cm,∠E=60°.(1)求CD的长度.(结果保留根号)(2)求OD的长度.(结果保留一位小数.参考数据:√2≈1.414,√3≈1.732)24.如图,将等腰三角形纸片ABC沿底边BC上的高AD剪成两个三角形,AB=5个单位长度,BC=6个单位长度.用这两个三角形来拼成四边形,请在下列网格中画出你拼成的四边形(每个小正方形的边长均为1个单位长度,所画四边形全等视为同一种情况),并直接在对应的横线上写出该四边形两条对角线长度的和.25.如图,AB是⊙O的直径,点E在AB的延长线上,AC平分∠DAE交⊙O于点C,AD⊥DE于点D.(1)求证:直线DE是⊙O的切线.(2)如果BE=2,CE=4,求线段AD的长.26.如图,抛物线y=x2+bx+c与x轴交于A(−1,0),B(3,0)两点,过点A的直线l交抛物线于点C(2,m).(1)求抛物线的解析式.(2)点P是线段AC上一个动点,过点P作x轴的垂线交抛物线于点E,求线段PE最大时点P的坐标.(3)点F是抛物线上的动点,在x轴上是否存在点D,使得以点A,C,D,F为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的点D的坐标;如果不存在,请说明理由.答案和解析1.【答案】A【解析】解:−7的相反数是7,故选:A.根据只有符号不同的两个数互为相反数,可得答案.本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.2.【答案】D【解析】解:A、x3+x4无法合并,故此选项错误;B、2x2⋅3x4=6x6,故此选项错误;C、(−3x2y)2=9x4y2,故此选项错误;D、√5×√6=√30,故此选项正确.故选:D.直接利用合并同类项法则以及积的乘方运算法则、单项式乘单项式、二次根式的乘法运算法则分别计算得出答案.此题主要考查了合并同类项以及积的乘方运算、单项式乘单项式、二次根式的乘法运算,正确掌握相关运算法则是解题关键.3.【答案】C【解析】解:从上面看,是一行三个小正方形.故选:C.根据俯视图是从上面看到的图形结合几何体判定则可.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【答案】B【解析】解:42000=4.2×104,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】C【解析】解:∵√2x−6在实数范围内有意义,∴2x−6≥0,解得:x≥3,故选:C.根据二次根式有意义的条件得出不等式,求出不等式的解集即可.本题考查了二次根式有意义的条件和解一元一次不等式,能根据二次根式有意义的条件得出不等式是解此题的关键,注意:√a中a≥0.6.【答案】A【解析】解:∵k=−1<0,b=−7<0,∴一次函数y=−x−7的图象经过第二、三、四象限,∴一次函数y=−x−7的图象不经过第一象限.故选:A.由k=−1<0,b=−7<0,利用一次函数图象与系数的关系可得出一次函数y=−x−7的图象经过第二、三、四象限,进而可得出一次函数y=−x−7的图象不经过第一象限.本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.7.【答案】D【解析】【试题解析】解:A、端午节我们有吃棕子的习俗,为了保证大家吃上放心的棕子,质监部门对广安市市场上的棕子实行抽样调查,本选项说法错误,不符合题意;B、一组数据−1,2,5,7,7,7,4的众数是7,中位数是5,本选项说法错误,不符合题意;C、海底捞月是不可能事件,本选项说法错误,不符合题意;D、甲、乙两名同学各跳远10次,若他们跳远成绩的平均数相同,甲同学跳远成绩的方差为1.2,乙同学跳远成绩的方差为1.6,则甲同学发挥比乙同学稳定,本选项说法正确,符合题意;故选:D.根据全面调查和抽样调查、众数和中位数、随机事件、方差的概念和性质判断即可.本题考查的是全面调查和抽样调查、众数和中位数、随机事件、方差,掌握它们的概念和性质是解题的关键.8.【答案】A【解析】解:∵∠A+∠B+∠C+∠D+∠E=(5−2)×180°=540°,∠A=30°,∴∠B+∠C+∠D+∠E=510°,∵∠1+∠2+∠B+∠C+∠D+∠E=(6−2)×180°=720°,∴∠1+∠2=720°−510°=210°,故选:A.根据多变的内角和定理可求解∠B+∠C+∠D+∠E=510°,∠1+∠2+∠B+∠C+∠D+∠E=(6−2)×180°=720°,进而可求解.本题主要考查多边形的内角和外角,掌握多边形的内角和定理是解题的关键.9.【答案】C【解析】解:如图,连接OC,∵AO//DC,∴∠ODC=∠AOD=68°,∵OD=OC,∴∠ODC=∠OCD=68°,∴∠COD=34°,∴∠AOC=112°,∴∠B=1∠AOC=56°.2故选:C.连接OC,由AO//DC,得出∠ODC=∠AOD=70°,再由OD=OC,得出∠ODC=∠OCD=70°,求得∠COD=40°,进一步得出∠AOC,进一步利用圆周角定理得出∠B的度数即可.此题考查平行线的性质,等腰三角形的性质,三角形的内角和,圆周角定理,正确作出辅助线是解决问题的关键.10.【答案】B【解析】解:由图象可知,抛物线开口向下,对称轴在y轴的右侧,与y轴的交点在y 轴的负半轴,∴a<0,b>0,c<0,∴abc>0,故①错误;由图象可知,x=−1时,y<0,∴a−b+c<0,故②错误;∵抛物线的顶点坐标为(2,1),=2,b=−4a,∴−b2a∵4a+2b+c=1,∴4a−8a+c=1,即c−4a=1,故③正确;∵抛物线与x轴有两个交点,∴△>0,∴b2−4ac>0,即b2>4ac,故④正确.∵抛物线的开口向下,顶点坐标为(2,1),∴am2+bm+c≤1(m为任意实数),故⑤正确.故选:B.①抛物线的开口方向,对称轴以及与y轴的交点即可判断;②根据x=−1时,y<0,即可判断.=2,即可判断.③根据对称轴x=−b2a③根据抛物线与x轴有两个交点,可知△>0,即可判断.④根据抛物线的顶点坐标为(2,1),函数有最大值,由此即可判断.本题考查二次函数与x轴的交点、二次函数的图象与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.【答案】7(a+b)(a−b)【解析】解:7a2−7b2=7(a2−b2)=7(a+b)(a−b).故答案为:7(a+b)(a−b).直接提取公因式7,进而利用平方差公式分解因式.此题主要考查了提取公因式法、公式法分解因式,正确运用乘法公式是解题关键.12.【答案】y=2x+7【解析】解:∵一次函数y=2x+b的图象过点(0,2),∴b=2,∴一次函数为y=2x+2,将函数y=2x+2的图象向上平移5个单位长度,所得函数的解析式为y=2x+2+5,即y=2x+7.故答案为y=2x+7.根据待定系数法求得b,然后根据函数图象平移的法则“上加下减”,就可以求出平移以后函数的解析式.本题考查了一次函数图象与几何变换,利用函数图象平移的规律是解题关键,注意求直线平移后的解析式时要注意平移时k的值不变.13.【答案】12【解析】解:∵点A(a,2)与点B(6,b)关于原点对称,∴a=−6,b=−2,∴ab=12,故答案为:12.根据两个点关于原点对称时,它们的横坐标与纵坐标均互为相反数,即可得到a,b的值,进而得出ab的值.此题主要考查了关于原点对称的点的坐标,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y).14.【答案】17【解析】解:∵D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=12BC=3.5(cm),同理,EF=12AB=6(cm),DE=12AC=7.5(cm),∴△DEF的周长=3.5+6+7.5=17(cm),故答案为:17.先依据题意作出简单的图形,进而结合图形、由中位线解答即可.本题主要考查的是中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.【答案】y2<y3<y1【解析】解:∵a<0,∴二次函数图象开口向下,又∵对称轴为直线x=3,∴自变量x分别取√5,0,4时,所对应的函数值y1最大,y2最小,∴y2<y3<y1.故答案为:y2<y3<y1.根据二次函数图象开口方向向下,对称轴为直线x=3,然后利用增减性和对称性解答即可.本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性和增减性,理解各点距离对称轴的远近是解题的关键.16.【答案】(−21010,−21010)【解析】解:观察,发现:B1(1,1),B2(0,2),B3(−2,2),B4(−4,0),B5(−4,−4),B6(0,−8),B7(8,−8),B8(16,0),B9(16,16),…,∴B8n+1(24n,24n)(n为自然数).∵2021=8×252+5,∴B2021的纵横坐标符号与点B5的相同,∴点B2020的坐标为(−21010,−21010).故答案为:(−21010,−21010).根据给定图形结合正方形的性质可得出,点B1、B2、B3、B4、B5、…、的坐标,观察点的坐标可得知,下标为奇数的点的坐标的横纵坐标的绝对值依此为前一个点的横纵坐标绝对值的2倍,且4次一循环,由此即可得出B8n+1(24n,24n)(n为自然数),依此规律即可得出结论.本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的√2倍.17.【答案】解:原式=1+√2−1−2×√22−2 =1+√2−1−√2−2=−2.【解析】直接利用特殊角的三角函数值以及负整数指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:(1−1x+1)÷x 2x 2−1 =x +1−1x +1⋅(x +1)(x −1)x 2 =x x +1⋅(x +1)(x −1)x 2 =x−1x ,当x =2020时,原式=2020−12020=20192020.【解析】先算括号内的减法,把除法变成乘法,算乘法,最后求出答案即可.本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.19.【答案】证明:在▱ABCD 中,AB =CD ,AB//CD ,∴∠BAF =∠DCE ,在△ABF 和△CDE 中,{AB =CD ∠BAF =∠DCE AF =CE,∴△ABF≌△CDE(SAS),∴∠DEF =∠BFA ,∴ED//BF .【解析】根据平行四边形的对边相等可得AB =CD ,对边平行可得AB//CD ,再根据两直线平行,内错角相等可得∠BAF =∠DCE ,然后利用“边角边”证明△ABF 和△CDE 全等,根据全等三角形对应角相等可得∠DEF =∠BFA ,进而得到DE//BF .此题主要考查了平行四边形的性质,关键是正确证明△DEC≌△BFA .20.【答案】解:(1)把A(m,2)代入直线y =x +1,可得2=m +1,解得m =1,∴A(1,2),把A(1,2)代入双曲线y 2=k x (k 为常数,k ≠0),可得k =2,∴双曲线的解析式为y =2x ;(2)解{y =x +1y =2x 得{x =1y =2或{x =−2y =−1, ∴D(−2,−1),由图象可知,当y 1<y 2时,x 的取值范围x <−2或0<x <1.【解析】(1)把点A 的坐标为(m,2)直线y =x +1,求得m ,然后再代入双曲线y 2=k x (k 为常数,k ≠0),根据待定系数法即可求得反比例函数的解析式;(2)解析式联立,解方程组求得就DB 的坐标,然后根据图象即可求得.本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点的坐标同时满足两个函数解析式. 21.【答案】40 320【解析】解:(1)本次调查的学生总人数为4÷10%=40(人);∵本次抽取调查的学生中,比较了解”的学生有:40−14−6−4=16(人), ∴估计该校800名学生中“比较了解”的学生有800×1640=320(人),故答案为:40,320;(2)补全条形统计图如图:(3)设有3名男生记为A ,画树状图如图:共有12个等可能的结果,恰好抽到2名男生的结果有6个,∴恰好抽到2名男生的概率为612=12.(1)用“不了解”类的人数除以它所占的百分比得到调查的总人数;(2)用8800乘以样本中“比较了解”的学生所占的百分比即可;(3)画树状图展示所有12种等可能的结果,找出恰好抽到2名男生的结果数,然后根据概率公式计算.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.也考查了统计图. 22.【答案】解:(1)设A 种树苗每棵的价格x 元,B 种树苗每棵的价格y 元,根据题意得:{30x +15y =135024x +10y =1060, 解得{x =40y =10, 答:A 种树苗每棵的价格40元,B 种树苗每棵的价格10元;(2)设A 种树苗的数量为t 棵,则B 种树苗的数量为(42−t)棵,∵B 种树苗的数量不超过A 种树苗数量的2倍,∴42−t ≤2t ,解得:t ≥14,∵t是正整数,∴t最小值=14,设购买树苗总费用为W=40t+10(42−t)=30t+420,∵k>0,∴W随t的减小而减小,当t=14时,W最小值=30×14+420=840(元).答:购进A种花草的数量为14棵、B种28棵,费用最省;最省费用是840元.【解析】(1)设A种树苗每棵的价格x元,B种树苗每棵的价格y元,根据第一次分别购进A、B两种花草30棵和15棵,共花费1350元;第二次分别购进A、B两种花草24棵和10棵,共花费1060元;列出方程组,即可解答.(2)设A种树苗的数量为t棵,则B种树苗的数量为(42−t)棵,根据B种树苗的数量不超过A种树苗数量的2倍,得出t的范围,设总费用为W元,根据总费用=两种树苗的费用之和建立函数关系式,由一次函数的性质就可以求出结论.本题考查了列二元一次方程组,一次函数的解析式的运用,一次函数的性质的运用,解答时根据总费用=两种树苗的费用之和建立函数关系式是关键.23.【答案】解:(1)∵DE=78厘米,∠CED=60°,∴sin60°=CDDE =CD78,∴CD=39√3(cm);(2)设水箱半径OD的长度为x厘米,则CO=(39√3+x)厘米,AO=(154+x)厘米,∵∠BAC=30°,∴CO=12AO,39√3+x=12(154+x),解得:x≈18.9(cm).∴OD=18.9m.【解析】(1)首先弄清题意,了解每条线段的长度与线段之间的关系,在△CDE中利用三角函数sin60°=CDDE,求出CD的长.(2)首先设出水箱半径OD的长度为x厘米,表示出CO,AO的长度,根据直角三角形AO,再代入数计算即可得到答案.的性质得到CO=12本题考查勾股定理的应用、解直角三角形、锐角三角函数、直角三角形30度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:如图,四边形即为所求.【解析】有三种情形,分别画出图形解决问题即可.本题考查作图−应用与设计,等腰三角形的性质,图形的拼剪等知识,解题的关键是理解题意,灵活运用所学知识解决问题.25.【答案】证明:(1)如图1,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAE,∴∠DAC=∠OAC,∴∠DAC=∠ACO,∴AD//OC,∵AD⊥DE,∴∠ADC=90°,∴∠OCE=∠ADC,∴∠OCE=90°,∴DE是⊙O的切线;(2)解:如图2,连接BC,∵∠OCE=90°,∴∠OCB+∠BCE=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠OBC=90°,∵OB=OC,∴∠OCB=∠OBC,∴∠BCE=∠CAB,∵∠CEB=∠AEC,∴△CBE∽△AEC,∴CBAC =BECE=CEAE=24=12,∴AE=8,∴AB=6,设CB=x,则AC=2x,∵AC2+BC2=AB2,∴x2+(2x)2=62,解得,x=6√55.∴AC=125√5,∵∠DAC =∠CAB ,∠D =∠ACB =90°,∴△DAC∽△CAB ,∴DA AC =AC AB ,∴125√5=125√56, ∴AD =245.【解析】(1)连接OC ,由角平分线的性质及等腰三角形的性质得出∠DAC =∠ACO ,则AD//OC ,证得∠OCE =90°,则可得出结论;(2)连接BC ,证明△CBE∽△AEC ,由相似三角形的性质得出CB AC =BE CE =CE AE =24=12,由勾股定理求出AC 的长,证明△DAC∽△CAB ,得出DA AC =AC AB ,则可求出答案.本题考查切线的判定和性质、相似三角形的判定与性质、切线的判定、勾股定理等知识,解题的关键是学会作常用辅助线,灵活运用所学知识解决问题,属于中考常考题型. 26.【答案】解:(1)将A(−1,0),B(3,0)代入y =x 2+bx +c ,得到{1−b +c =09+3b +c =0解得{b =−2c =−3, ∴y =x 2−2x −3.(2)将C 点的横坐标x =2代入y =x 2−2x −3,得y =−3,∴C(2,−3);∴直线AC 的函数解析式是y =−x −1.设P 点的横坐标为x(−1≤x ≤2),则P 、E 的坐标分别为:P(x,−x −1),E(x,x 2−2x −3);∵P 点在E 点的上方,PE =(−x −1)−(x 2−2x −3)=−x 2+x +2,=−(x −12)2+94,∵−1<0,∴当x =12时,PE 的最大值=94,此时P(12,−32).(3)存在.理由:如图,设抛物线与y 的交点为K ,由题意K(0,−3),∵C(2,−3),∴CK//x轴,CK=2,当AC是平行四边形ACF1D1的边时,可得D1(−3,0).当AC是平行四边形AF1CD2的对角线时,AD2=CK,可得D2(1,0),当点F在x轴的上方时,令y=3,3=x2−2x−3,解得x=1±√7,∴F3(1−√7,3),F4(1+√7,3),由平移的性质可知D3(5−√7,0),D4(5+√7,0).综上所述,满足条件的点D的坐标为(−3,0)或(1,0)或(5−√7,0)或(5+√7,0).【解析】(1)将A、B的坐标代入抛物线中,易求出抛物线的解析式;将C点横坐标代入抛物线的解析式中,即可求出C点的坐标,再由待定系数法可求出直线AC的解析式.(2)PE的长实际是直线AC与抛物线的函数值的差,可设P点的横坐标为x,用x分别表示出P、E的纵坐标,即可得到关于PE的长、x的函数关系式,根据所得函数的性质即可求得PE的最大值.(3)存在.如图,设抛物线与y的交点为K,由题意K(0,−3),可知CK//x轴,分图中四种情形,利用平行四边形的性质以及平移变换的性质求解即可.本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,平行四边形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

广安市2020版中考数学试卷C卷

广安市2020版中考数学试卷C卷

广安市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分) (2017七上·宁波期中) 下列各对数是互为相反数的是()A . 与B . 与C . 与D . 与2. (2分)(2017·三亚模拟) 据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338600000亿次,数学338600000用科学记数法可表示为()A . 3.386×109B . 0.3386×109C . 33.86×107D . 3.386×1083. (2分)下列各式计算正确的是()A . =B . -=C . x3•x5=x15D . x11÷x6=x54. (2分)如图,四边形ABCD内接于⊙O,已知∠A=100°,则∠C的度数是()A . 50°B . 60°C . 80°D . 100°5. (2分)对于非零的两个实数a,b,规定,那么将结果再进行分解因式,则为()A . a(a+2)(a-2)B . a(a+4)(a-4)C . (a+4)(a-4)D . a(a2+4)6. (2分) (2019八上·利辛月考) 如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1 ,已知A(-3,5),B(-4,3),A1(3,3),则B1的坐标为()A . (1,2)B . (1,4)C . (2,1)D . (4,1)7. (2分)某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是()A . 平均数为30B . 众数为29C . 中位数为31D . 极差为58. (2分)(2019·包头) 下列命题:①若是完全平方式,则;②若三点在同一直线上,则;③等腰三角形一边上的中线所在的直线是它的对称轴;④一个多边形的内角和是它的外角和的倍,则这个多边形是六边形.其中真命题个数是()A .B .C .D .9. (2分)(2012·贵港) 如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方体的个数是()A . 2B . 3C . 4D . 510. (2分)(2019·九龙坡模拟) 将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依此规律,第9个图形的小圆个数是()A . 58B . 74C . 92D . 112二、填空题 (共5题;共5分)11. (1分) (2015八下·金乡期中) 已知y= + ﹣3,则2xy的值为________.12. (1分) (2017八下·秀屿期末) 一次函数y=﹣2x+3的图象不经过第________象限.13. (1分)如图,AB=AC,AD=AE,∠BAC=∠DAE,点D在线段BE上.若,∠2=30°,∠3=55°则∠1=________.14. (1分)(2019·荆州) 如图,灯塔在测绘船的正北方向,灯塔在测绘船的东北方向,测绘船向正东方向航行20海里后,恰好在灯塔的正南方向,此时测得灯塔在测绘船北偏西的方向上,则灯塔,间的距离为________海里(结果保留整数).(参考数据,,,).15. (1分)有甲、乙两张纸条,甲纸条的宽度是乙纸条宽的2倍,如图,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD.则AB与BC的数量关系为________ .三、解答题 (共7题;共58分)16. (5分) (2018七下·宝安月考) 先化简再求值:[(x+2y)2﹣(x+y)(x﹣y)]÷2y,其中x=﹣,y=2.17. (3分)(2018·武汉模拟) 两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序,两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车;而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆车的舒适程度比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请解决下面的问题:(1)三辆车按出现的先后顺序共有________种不同的可能.(2)你认为甲、乙两人所采用的方案中,不巧坐到下等车的可能性大小比较为:________(填“甲大”、“乙大”、“相同”).理由是:________.(要求通过计算概率比较)18. (10分)(2017·苏州模拟) 如图,在△ABC中,∠A=45°.以AB为直径的⊙O与BC相切于B,交AC于点D,CO的延长线交⊙O于点E,过点作弦EF⊥AB,垂足为点G.(1)求证:①EF∥CB,②AD=CD;(2)若AB=10,求EF的长.19. (10分) (2019八上·鄞州期末) 某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.20. (10分)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.21. (10分)(2016·湖州) 湖州市菱湖镇某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.(1)求鱼塘的长y(米)关于宽x(米)的函数表达式;(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米?22. (10分) (2019九上·海淀月考) 已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,过点(﹣4,0),(0,﹣2).(1)求抛物线的解析式和顶点坐标;(2)当﹣4<x<4时,求y的取值范围.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共7题;共58分)16-1、17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、。

2019-2020四川省广安市中考数学试题(含解析)

2019-2020四川省广安市中考数学试题(含解析)

【答案】 72
【知识点】 二次函数图象及其性质;抛物线与 x 轴的交点;二次函数图象与系数的关系
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分 )
11. ( 2019 四川广安, 11, 3 分) 点 M (x 1, 3) 在第四象限,则 x 的取值范围是

【答案】 x 1.
【解析】 解: Q 点 M (x 1, 3) 在第四象限,
故答案为: 3(a2 b 2 )( a b)( a b) . 【知识点】 提公因式法与公式法的综合运用
13. ( 2019 四川广安, 13, 3 分) 等腰三角形的两边长分别为 【答案】 32
【解析】 解:由题意知,应分两种情况:
6cm , 13cm ,其周长为
( 1)当腰长为 6cm 时,三角形三边长为 6, 6, 13, 6 6 13 ,不能构成三角形;
故答案为: 3(a2 b 2 )( a b)( a b) . 【知识点】 提公因式法与公式法的综合运用
13. ( 2019 四川广安, 13, 3 分) 等腰三角形的两边长分别为 【答案】 32
【解析】 解:由题意知,应分两种情况:
6cm , 13cm ,其周长为
( 1)当腰长为 6cm 时,三角形三边长为 6, 6, 13, 6 6 13 ,不能构成三角形;
【知识点】 二次函数图象及其性质;抛物线与 x 轴的交点;二次函数图象与系数的关系
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分 )
11. ( 2019 四川广安, 11, 3 分) 点 M (x 1, 3) 在第四象限,则 x 的取值范围是

【答案】 x 1.
【解析】 解: Q 点 M (x 1, 3) 在第四象限,

四川省广安市中考数学试卷及答案

四川省广安市中考数学试卷及答案

四川省广安市中考数学试卷及答案注意事项: 1.本试卷共8页,满分150分,考题时间120分钟.2.答卷前将密封线内的项目填写清楚.3.用蓝、黑墨水笔直接答在试题卷中.4.解答题要写出必要的文字说明、证明过程或演算步骤.一、选择题:每小题给出的四个选项中,只有一个选项符合题意要求,请将符合要求的选项的代号填入题后的括号内.(本大题共5个小题,每小题4分,共20分)1.2-的倒数是( )A . 12-B .2C . 2±D . 2-2.截止6月1日12时,我国各级政府共投入四川汶川救灾资金达22609000000元,这项资金用科学记数法表示为( )A .92.260910⨯元B . 102.260910⨯元C . 112.260910⨯元D .112.260910-⨯元3.一位卖“运动鞋”的经销商到一所学校对200名学生的鞋号进行了抽样调查,经销商最感兴趣的是这组鞋号的( )A . 中位数B .平均数C .众数D .方差4.下列图形中的曲线不表示y 是x 的函数的是( )5.下列说法中,正确的是( )A .等腰梯形既是中心对称图形又是轴对称图形.B .平行四边形的邻边相等.C .矩形是轴对称图形且有四条对称轴.D .菱形的面积等于两条对角线长乘积的一半.二、填空题:请把正确答案直接写在题后的横线上.(本大题共10小题,每小题4分,共40分)6.计算:36(2)x x ÷-= .7.若533m x y x y +与是同类项,则m = .8.如图1,在⊙O 中,AB 为⊙O 的直径,弦CD ⊥AB ,∠AOC =60º,则∠B = . 9.在平面直角坐标系中,将直线21y x =-向上平移动4个单位长度后,所得直线的解析式为 . 10.如图2,该圆锥的左视图是边长为2cm 的等边三角形,则此圆锥的侧面积为 cm 2. v x 0 D v x 0 A v x 0 C y O B x OD C B 图111.如图3,当输入5x=时,输出的y=.12.某初一2班举行“激情奥运”演讲比赛,共有甲、乙、丙三位选手,班主任让三位选手抽签决定演讲先后顺序,从先到后恰好是甲、乙、丙的概率是.13.若分式351xx+-无意义,当51322m x m x-=--时,则m=.14.在同一坐标系中,一次函数(1)21y k x k=-++与反比例函数kyx=的图象没有交点,则常数k的取值范围是.15.如图4,菱形ABCD中,∠BAD=60º,M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是3,则AB长为.三、解答题(本大题共3个小题,第16小题7分,第17、18小题各8分,共23分)16.计算:2313()|12-----.17.先化简再求值:244()33x xxx x---÷--,其中5x=.图2图318.“5.12”汶川地震发生后,某天广安先后有两批自愿者救援队分别乘客车和出租车沿相同路线从广安赶往重灾区平武救援,下图5表示其行驶过程中路程随时间的变化图象.(1)根据图象,请分别写出客车和出租车行驶过程中路程与时间之间的函数关系式(不写出自变量的取值范围);(2)写出客车和出租车行驶的速度分别是多少?(3)试求出出租车出发后多长时间赶上客车?四、解答题(本大题共2小题,每小题9分,共18分)19.如图6是华扬商场5月份销售A 、B 、C 、D 四种品牌的空调机销售统计图.(1)哪种品牌空调机销售量最多?其对应的扇形的圆心角为多少度?(2)若该月C 种品牌空调机的销售量为100台,那么其余三种品牌的空调机各销售多少台?(3)用条形图表示该月这四种空调机的销售情况.20.如图7,在梯形ABCD 中,AD ∥BC ,E 为CD 中点,连接AE并延长AE 交BC 的延长线于点F . (1)求证:CF =AD ;(2)若AD =2,AB =8,当BC 为多少时,点B 在线段AF 的垂直平分线上,为什么? 1 2 3 4 5 (小时)图5图6品牌 AEBC FD 图7五、解答题(本大题共3个小题,每小题9分,共27分)21.如图8,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由 (参照数据:2 1.414,3 1.732,6 2.449=== )22.在平面直角坐标系中,有A(2,3)、B(3,2)两点.(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.23.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元.(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围.(3)该经销商两次至少共捐助多少元?六、解答题(本大题满分10分)24.如图9,AB为⊙O的直径,OE交弦AC于点P,交于点M,且=,(1)求证:12OP BC=;AC DB30º图845ºAPOCB图9ME(2)如果2,AE EP EO =⋅且65,6AE BC ==,求⊙O 的半径.七、解答题(本大题满分12分)25.如图10,已知抛物线2y x bx c =++经过点(1,-5)和(-2,4)(1)求这条抛物线的解析式.(2)设此抛物线与直线y x =相交于点A ,B (点B 在点A 的右侧),平行于y 轴的直线()051x m m =<<+与抛物线交于点M ,与直线y x =交于点N ,交x 轴于点P ,求线段MN 的长(用含m 的代数式表示).(3)在条件(2)的情况下,连接OM 、BM ,是否存在m 的值,使△BOM 的面积S 最大?若存在,请求出m的值,若不存在,请说明理由.x O P N MB Ay y x x =m图10。

2024年四川省广安市中考数学试题+答案详解

2024年四川省广安市中考数学试题+答案详解

2024年四川省广安市中考数学试题+答案详解(试题部分)注意事项:1.本试卷分为试题卷(1-4页)和答题卡两部分.考试时间120分钟,满分120分.2.考生答题前,请先将姓名、准考证号等信息用黑色墨迹签字笔填写在答题卡上的指定位置,待监考教师粘贴条形码后,认真核对条形码上的姓名、准考证号与自己准考证上的信息是否一致.3.请将选择题答案用2B 铅笔填涂在答题卡上的相应位置,非选择题用0.5毫米黑色字迹签字笔答在答题卡上的相应位置.超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;作图题应先用铅笔画,确定不修改后,再用黑色字迹签字笔描黑.4.考试结束,监考人员必须将缺考学生和参考学生的答题卡、试题卷一并收回.一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡相应位置上.本大题共10个小题,每小题3分,共30分)1. 下列各数最大的是( ) A. 2−B. 12−C. 0D. 12. 代数式3x −的意义可以是( ) A. 3−与x 的和B. 3−与x 的差C. 3−与x 的积D. 3−与x 的商3. 下列运算中,正确的是( ) A. 235a a a +=B. ()32628a a −=− C. 22(1)1a a −=−D. 842a a a ÷=4. 将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是( )A. 校B. 安C. 平D. 园5. 如图,在ABC 中,点D ,E 分别是AC ,BC 的中点,若45A ∠=︒,70CED ∠=︒,则C ∠的度数为( )A. 45︒B.50︒C. 60︒D. 65︒6. 下列说法正确的是( )A. 将580000用科学记数法表示为:45.810⨯B. 在8,6,3,5,8,8这组数据中,中位数和众数都是8C. 甲乙两组同学参加“环保知识竞赛”,若甲乙两组同学的平均成绩相同,甲组同学成绩的方差21.2S =甲,乙组同学成绩的方差20.05S =乙,则甲组同学的成绩较稳定D. “五边形的内角和是540︒”是必然事件7. 若关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根,则m 的取值范围是( ) A. 0m <且1m ≠− B. 0m ≥ C. 0m ≤且1m ≠−D. 0m <8. 向如图所示的空容器内匀速注水,从水刚接触底部时开始计时,直至把容器注满.在注水过程中,设容器内底部所受水的压强为y (单位:帕),时间为x (单位:秒),则y 关于x 的函数图象大致为( )A. B.C. D.9. 如图,在等腰三角形ABC 中,10AB AC ==,70C ∠=︒,以AB 为直径作半圆,与AC ,BC 分别相交于点D ,E ,则DE 的长度为( )A.π9B.5π9C.10π9D.25π910. 如图,二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠)的图象与x 轴交于点3,02A ⎛⎫−⎪⎝⎭,对称轴是直线12x =−,有以下结论:①0abc <;②若点()11,y −和点()22,y 都在抛物线上,则12y y <;③21142am bm a b +≤−(m 为任意实数);④340a c +=.其中正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(请把最简答案填写在答题卡相应位置.本大题共6个小题,每小题3分,共18分)11. 3=______.12. 分解因式:39a a −=________________. 13. 若2230x x −−=,则2241x x −+=______.14. 如图,直线22y x =+与x 轴、y 轴分别相交于点A ,B ,将AOB 绕点A 逆时针方向旋转90︒得到ACD ,则点D 的坐标为______.15. 如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为______.16. 已知,直线:33l y x =−与x轴相交于点1A ,以1OA 为边作等边三角形11OA B ,点1B 在第一象限内,过点1B 作x 轴的平行线与直线l 交于点2A ,与y 轴交于点1C ,以12C A 为边作等边三角形122C A B (点2B 在点1B 的上方),以同样的方式依次作等边三角形233C A B ,等边三角形344C A B ,则点2024A 的横坐标为______.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17. 计算:01π132sin 60|2|22−⎛⎫⎛⎫−+︒+− ⎪ ⎪⎝⎭⎝⎭.18. 先化简2344111a a a a a ++⎛⎫+−÷⎪−−⎝⎭,再从2−,0,1,2中选取一个适合的数代入求值. 19. 如图,在菱形ABCD 中,点E ,F 分别是边AB 和BC 上的点,且BE =BF .求证:∠DEF =∠DFE .20. 如图,一次函数y ax b =+(a ,b 为常数,0a ≠)的图象与反比例函数ky x=(k 为常数,0k ≠)的图象交于(2,4)A ,(,2)B n −两点.(1)求一次函数和反比例函数的解析式.(2)直线AB 与x 轴交于点C ,点(,0)P m 是x 轴上的点,若PAC △的面积大于12,请直接写出m 的取值范围.四、实践应用题(本大题共4个小题,第21小题6分,第22、23、24小题各8分,共30分)21. 睡眠管理作为“五项管理”中的重要内容之一,也是学校教育重点关注的内容.某校为了解学生平均每天睡眠时间,随机抽取该校部分学生进行问卷调查,并将结果进行了统计和整理,绘制成如下统计表和不完整的统计图.(1)本次抽取调查的学生共有______人,扇形统计图中表示C 类学生平均每天睡眠时间的扇形的圆心角度数为______.(2)请补全条形统计图.(3)被抽取调查的E 类4名学生中有2名女生,2名男生.从这4人中随机抽取2人进行电话回访,请用画树状图或列表的方法,求恰好抽到2名男生的概率.22. 某小区物管中心计划采购A ,B 两种花卉用于美化环境.已知购买2株A 种花卉和3株B 种花卉共需要21元;购买4株A 种花卉和5株B 种花卉共需要37元. (1)求A ,B 两种花卉的单价.(2)该物管中心计划采购A ,B 两种花卉共计10000株,其中采购A 种花卉的株数不超过B 种花卉株数的4倍,当A ,B 两种花卉分别采购多少株时,总费用最少?并求出最少总费用.23. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在某地安装了一批风力发电机,如图(1)某校实践活动小组对其中一架风力发电机的塔杆高度进行了测量,图(2)为测量示意图(点A ,B ,C ,D 均在同一平面内,AB BC ⊥).已知斜坡CD 长为20米,斜坡CD 的坡角为60︒,在斜坡顶部D 处测得风力发电机塔杆顶端A 点的仰角为20︒,坡底与塔杆底的距离30BC =米,求该风力发电机塔杆AB 的高度.(结果精确到个位;参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈ 1.73≈)24. 如图,矩形纸片的长为4,宽为3,矩形内已用虚线画出网格线,每个小正方形的边长均为1,小正方形的顶点称为格点,现沿着网格线对矩形纸片进行剪裁,使其分成两块纸片.请在下列备用图中,用实线画出符合相应要求的剪裁线.注:①剪裁过程中,在格点处剪裁方向可发生改变但仍须沿着网格线剪裁; ②在各种剪法中,若剪裁线通过旋转、平移或翻折后能完全重合则视为同一情况.五、推理论证题(9分)25. 如图,点C 在以AB 为直径的O 上,点D 在BA 的延长线上,DCA CBA ∠=∠.(1)求证:DC 是O 的切线;(2)点G 是半径OB 上的点,过点G 作OB 的垂线与BC 交于点F ,与DC 的延长线交于点E ,若4sin 5D =,2DA FG ==,求CE 的长. 六、拓展探究题(10分)26. 如图,抛物线223y x bx c =−++与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)−,点B 坐标为(3,0).(1)求此抛物线的函数解析式.(2)点P 是直线BC 上方抛物线上一个动点,过点P 作x 轴的垂线交直线BC 于点D ,过点P 作y 轴的垂线,垂足为点E ,请探究2PD PE +是否有最大值?若有最大值,求出最大值及此时P 点的坐标;若没有最大值,请说明理由.(3)点M 为该抛物线上的点,当45∠=︒MCB 时,请直接写出所有满足条件的点M 的坐标.2024年四川省广安市中考数学试题+答案详解(答案详解)注意事项:1.本试卷分为试题卷(1-4页)和答题卡两部分.考试时间120分钟,满分120分.2.考生答题前,请先将姓名、准考证号等信息用黑色墨迹签字笔填写在答题卡上的指定位置,待监考教师粘贴条形码后,认真核对条形码上的姓名、准考证号与自己准考证上的信息是否一致.3.请将选择题答案用2B 铅笔填涂在答题卡上的相应位置,非选择题用0.5毫米黑色字迹签字笔答在答题卡上的相应位置.超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;作图题应先用铅笔画,确定不修改后,再用黑色字迹签字笔描黑.4.考试结束,监考人员必须将缺考学生和参考学生的答题卡、试题卷一并收回.一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡相应位置上.本大题共10个小题,每小题3分,共30分)1. 下列各数最大的是( ) A. 2− B. 12−C. 0D. 1【答案】D 【解析】【分析】本题考查了有理数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小.把选项中的4个数按从小到大排列,即可得出最大的数. 【详解】解:∵12012−<−<<, ∴最大的数是1 故选:D .2. 代数式3x −的意义可以是( ) A. 3−与x 的和 B. 3−与x 的差C. 3−与x 的积D. 3−与x 的商【答案】C 【解析】【分析】本题考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.根据3x −中的运算关系解答即可.【详解】解:代数式3x −的意义可以是3−与x 的积.故选C .3. 下列运算中,正确的是( ) A. 235a a a += B. ()32628a a −=− C. 22(1)1a a −=−D. 842a a a ÷=【答案】B 【解析】【分析】本题考查整式的运算,根据合并同类项法则、积的乘方运算法则、完全平方公式和同底数幂的除法运算法则逐项判断即可解答.【详解】解:A 、2a 和3a 不是同类项,不能加减,故原计算错误,不符合题意; B 、()32628a a −=−,计算正确,符合题意;C 、22(1)21a a a −=−+,故原计算错误,不符合题意;D 、844a a a ÷=,故原计算错误,不符合题意; 故选:B .4. 将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是( )A. 校B. 安C. 平D. 园【答案】A 【解析】【分析】此题考查正方体相对面上的字.根据正方体相对面之间间隔一个正方形解答. 【详解】解:与“共”字所在面相对面上的汉字是“校”, 故选:A .5. 如图,在ABC 中,点D ,E 分别是AC ,BC 的中点,若45A ∠=︒,70CED ∠=︒,则C ∠的度数为( )A. 45︒B. 50︒C. 60︒D. 65︒【答案】D【解析】 【分析】本题考查了三角形中位线定理、平行线的性质定理,三角形的内角和定理,熟记性质并准确识图是解题的关键.先证明DE AB ∥,可得45CDE A ∠=∠=︒,再利用三角形的内角和定理可得答案.【详解】解:∵点D ,E 分别是AC ,BC 的中点,∴DE AB ∥,∵45A ∠=︒,∴45CDE A ∠=∠=︒,∵70CED ∠=︒,∴180457065C ∠=︒−︒−︒=︒,故选D6. 下列说法正确的是( )A. 将580000用科学记数法表示为:45.810⨯B. 在8,6,3,5,8,8这组数据中,中位数和众数都是8C. 甲乙两组同学参加“环保知识竞赛”,若甲乙两组同学的平均成绩相同,甲组同学成绩的方差21.2S =甲,乙组同学成绩的方差20.05S =乙,则甲组同学的成绩较稳定 D. “五边形的内角和是540︒”是必然事件【答案】D【解析】【分析】本题考查了多角形的内角和定理,科学记数法,众数和中位数的定义,方差的意义等知识.根据多角形的内角和定理,科学记数法,众数和中位数的定义,方差的意义判断即可.【详解】解:A 、将580000用科学记数法表示为:55.810⨯,故本选项不符合题意;B 、这列数据从小到大排列为3,5,6,8,8,8中,8出现了3次,故众数是8,中位数是6872+=,故本选项不符合题意; C 、0.05 1.2<,则22S S <乙甲,则乙组同学的成绩较稳定,故本选项不符合题意;D 、“五边形的内角和是540︒”是必然事件,故本选项符合题意.故选:D .7. 若关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根,则m 的取值范围是( )A. 0m <且1m ≠−B. 0m ≥C. 0m ≤且1m ≠−D. 0m <【答案】A【解析】【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.由关于x 的一元二次方程2(1)210m x x +−+=两个不相等的实数根,可得0∆>且10m +≠,解此不等式组即可求得答案. 【详解】解:关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根,∴()()22410m ∆=−−+>,解得:0m <, 10m +≠,1m ∴≠−,m ∴的取值范围是:0m <且1m ≠−.故选:A .8. 向如图所示的空容器内匀速注水,从水刚接触底部时开始计时,直至把容器注满.在注水过程中,设容器内底部所受水的压强为y (单位:帕),时间为x (单位:秒),则y 关于x 的函数图象大致为( )A. B.C. D.【答案】B【解析】【分析】此题主要考查了函数图象.由于压强与水面的高度成正比,而上下两个容器粗细不同,那么水面高度h 随时间x 变化而分两个阶段.【详解】解:最下面的容器较粗,那么第一个阶段的函数图象水面高度h 随时间x 的增大而增长缓慢,用时较长,即压强y 随时间x 的增大而增长缓慢,用时较长,最上面容器最小,则压强y 随时间x 的增大而增长变快,用时最短.故选:B .9. 如图,在等腰三角形ABC 中,10AB AC ==,70C ∠=︒,以AB 为直径作半圆,与AC ,BC 分别相交于点D ,E ,则DE 的长度为( )A. π9B. 5π9C. 10π9D. 25π9【答案】C【解析】【分析】本题考查了求弧长.根据等腰三角形的性质和三角形的内角和定理求得A ∠的度数,证明OE AC ∥,再由OA OD =,再由等腰三角形的性质和平行线的性质求得DOE ∠的度数,利用弧长公式即可求解.【详解】解:连接OD ,OE ,∵AB AC =,∴70ABC C ∠=∠=︒,∵OE OB =,∴70OEB B ∠=∠=︒,∴70OEB C ∠=∠=︒∴OE AC ∥,在ABC 中,180A ABC C ∠+∠+∠=︒,∴180180707040A ABC C ∠=︒−∠−∠=︒−︒−︒=︒, 又152OA OD AB ===, ∵OE AC∴40A ADO DOE ∠=∠=︒=∠,∴DE 的长度为40π510π1809⨯=, 故选:C .10. 如图,二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠)的图象与x 轴交于点3,02A ⎛⎫− ⎪⎝⎭,对称轴是直线12x =−,有以下结论:①0abc <;②若点()11,y −和点()22,y 都在抛物线上,则12y y <;③21142am bm a b +≤−(m 为任意实数);④340a c +=.其中正确的有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与x 轴交点问题逐项分析判断即可.【详解】解:由图可知,二次函数开口方向向下,与y 轴正半轴交于一点,<0a ∴,>0c . <02b a−, <0b ∴.>0abc ∴.故①错误;对称轴是直线12x =−,点()11,y −和点()22,y 都在抛物线上, 而()11111112222222⎛⎫−−−=−+=<−−= ⎪⎝⎭, 12y y ∴>.故②错误;当x m =时,2y am bm c =++,当12x =−时,函数取最大值21142a b c −+, ∴对于任意实数m 有:221142am bm c a b c ++≤−+, ∴21142am bm a b +≤−,故③正确; 122b a −=−, b a ∴=.当32x =−时,0y =, 93042a b c ∴−+=. 9640a b c ∴−+=,即340a c +=,故④正确.综上所述,正确的有③④.故选:B.【点睛】本题考查了二次函数图像与系数之间的关系,解题的关键在于通过图像判断对称轴,开口方向以及与坐标轴的交点.二、填空题(请把最简答案填写在答题卡相应位置.本大题共6个小题,每小题3分,共18分)11. 3=______.【答案】0【解析】【分析】本题考查的是实数的混合运算,先计算算术平方根,再计算减法运算即可.【详解】解:3330=−=,故答案为:012. 分解因式:39a a −=________________.【答案】()()33a a a +−【解析】【分析】本题主要考查了分解因式,先提取公因式a 再利用公式法即可得到答案.【详解】解:()()3933a a a a a −=+−, 故答案为:()()33a a a +−.13. 若2230x x −−=,则2241x x −+=______.【答案】7【解析】【分析】本题考查了求代数式的值.对已知等式变形得到2246x x −=,再整体代入计算求解即可.【详解】解:∵2230x x −−=,∴223x x −=,∴2246x x −=,∴2241617x x −+=+=,故答案为:7.14. 如图,直线22y x =+与x 轴、y 轴分别相交于点A ,B ,将AOB 绕点A 逆时针方向旋转90︒得到ACD ,则点D 的坐标为______.【答案】(3,1)−【解析】【分析】本题考查一次函数图象与坐标轴的交点,旋转的性质,正方形的判定和性质等,延长DC 交y 轴于点E ,先求出点A 和点B 的坐标,再根据旋转的性质证明四边形OACE 是正方形,进而求出DE 和OE 的长度即可求解.【详解】解:如图,延长DC 交y 轴于点E ,22y x =+中,令0x =,则2y =,令220y x =+=,解得=1x −,∴(1,0)A −,(0,2)B ,∴1OA =,2OB =, AOB 绕点A 逆时针方向旋转90︒得到ACD ,∴90ACD AOB OAC ∠=∠=∠=︒,1OA OC ==,2OB CD ==,∴四边形OACE 是正方形.∴1CE OE OA ===,∴213DE CD CE =+=+=,∴点D 的坐标为(3,1)−.故答案为:(3,1)−.15. 如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为______.【解析】【分析】如图,作A 关于直线BC 的对称点A ',连接A D '交BC 于M ',则AH A H '=,AH BC ⊥,AM A M '''=,当,M M '重合时,MA MD +最小,最小值为A D ',再进一步结合勾股定理求解即可.【详解】解:如图,作A 关于直线BC 的对称点A ',连接A D '交BC 于M ',则AH A H '=,AH BC ⊥,AM A M '''=,∴当,M M '重合时,MA MD +最小,最小值为A D ',∵4AB =,30ABC ∠=︒,在ABCD Y 中, ∴122AH AB ==,AD BC ∥, ∴24AA AH '==,AA AD '⊥,∵5AD =,∴A D '==【点睛】此题考查了平行四边形的性质,勾股定理,轴对称的性质,求最小值问题,正确理解各性质及掌握各知识点是解题的关键.16. 已知,直线:l y x =与x 轴相交于点1A ,以1OA 为边作等边三角形11OA B ,点1B 在第一象限内,过点1B 作x 轴的平行线与直线l 交于点2A ,与y 轴交于点1C ,以12C A 为边作等边三角形122C A B (点2B 在点1B 的上方),以同样的方式依次作等边三角形233C A B ,等边三角形344C A B ,则点2024A 的横坐标为______.【答案】202352⎛⎫ ⎪⎝⎭【解析】【分析】直线直线:33l y x =−可知,点1A 坐标为()1,0,可得11OA =,由于11OA B 是等边三角形,可得点112B ⎛ ⎝⎭,把2y =代入直线解析式即可求得2A 的横坐标,可得2152A C =,由于221B A B 是等边三角形,可得点252A ⎛ ⎝⎭;同理,3254A ⎛ ⎝⎭,发现规律即可得解,准确发现坐标与字母的序号之间的规律是解题的关键.【详解】解:∵直线l ::l y x =与x 轴负半轴交于点1A , ∴点1A 坐标为()1,0, ∴11OA =,过1B ,2B ,作1B M x ⊥轴交x 轴于点M ,2B N x ⊥轴交21A B 于点D ,交x 轴于点N ,∵11A BO 为等边三角形,∴130OB M ∠=︒∴11122MO AO ==,∴12B M === ∴1122B ⎛⎫ ⎪ ⎪⎝⎭,,当2y =时,233x =−,解得:52x =,∴2152A C =,252A ⎛ ⎝⎭, ∴1211524C CD A ==,∴2B D ===∴2B N ==,∴当4y =时,343x =−,解得:254x =,∴32544A ⎛⎫ ⎪ ⎪⎝⎭,; 而225542⎛⎫= ⎪⎝⎭, 同理可得:4A 的横坐标为3512528⎛⎫= ⎪⎝⎭, ∴点2024A 的横坐标为202352⎛⎫ ⎪⎝⎭, 故答案为:202352⎛⎫ ⎪⎝⎭.【点睛】本题主要考查了一次函数图象上点的坐标的特征,勾股定理的应用,等边三角形的性质,特殊图形点的坐标的规律,掌握探究的方法是解本题的关键.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17. 计算:01π132sin 60|2|22−⎛⎫⎛⎫−+︒+− ⎪ ⎪⎝⎭⎝⎭.【答案】1【解析】【分析】先计算零次幂,代入特殊角的三角函数值,化简绝对值,计算负整数指数幂,再合并即可.【详解】解:01π132sin 60|2|22−⎛⎫⎛⎫−+︒+−− ⎪ ⎪⎝⎭⎝⎭1222=+−122=1=【点睛】本题考查的是含特殊角的三角函数值的混合运算,零次幂,负整数指数幂的含义,化简绝对值,掌握相应的运算法则是解本题的关键.18. 先化简2344111a a a a a ++⎛⎫+−÷ ⎪−−⎝⎭,再从2−,0,1,2中选取一个适合的数代入求值. 【答案】22a a −+,0a =时,原式1=−,2a =时,原式0=. 【解析】【分析】本题考查的是分式的化简求值,先计算括号内分式的加减运算,再计算分式的除法运算,再结合分式有意义的条件代入计算即可. 【详解】解:2344111a a a a a ++⎛⎫+−÷ ⎪−−⎝⎭ 2213(2)111a a a a a ⎛⎫−+=−÷ ⎪−−−⎝⎭ 2(2)(2)11(2)a a a a a +−−=⋅−+ 22a a −=+ 1a ≠且2a ≠−∴当0a =时,原式1=−;当2a =时,原式0=.19. 如图,在菱形ABCD 中,点E ,F 分别是边AB 和BC 上的点,且BE =BF .求证:∠DEF =∠DFE .【答案】见解析【解析】【分析】根据菱形的性质可得AB =BC =CD =AD ,∠A =∠C ,再由BE =BF ,可推出AE =CF ,即可利用SAS 证明△ADE ≌△CDF 得到DE =DF ,则∠DEF =∠DFE .【详解】解:∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∠A =∠C ,∵BE =BF ,∴AB -BE =BC -BF ,即AE =CF ,∴△ADE ≌△CDF (SAS ),∴DE =DF ,∴∠DEF =∠DFE .【点睛】本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质.20. 如图,一次函数y ax b =+(a ,b 为常数,0a ≠)的图象与反比例函数k y x=(k 为常数,0k ≠)的图象交于(2,4)A ,(,2)B n −两点.(1)求一次函数和反比例函数的解析式.(2)直线AB 与x 轴交于点C ,点(,0)P m 是x 轴上的点,若PAC △的面积大于12,请直接写出m 的取值范围.【答案】(1)2y x =+,8y x =(2)4m >或8m <−【解析】【分析】(1)将A 点坐标代入反比例函数解析式求得反比例函数,再把B 点坐标代入所求得的反比例函数解析式,求得m ,进而把A 、B 的坐标代入一次函数解析式便可求得一次函数的解析式;(2)由一次函数的解析式求得与x 轴的交点C 的坐标,然后PAC △的面积大于12,再建立不等式即可求解.【小问1详解】解:∵(2,4)A 在反比例函数()0k y k x =≠的图象上, ∴248k =⨯=,∴反比例函数的解析式为:8y x =, 把(,2)B n −代入8y x=,得n =−4, ∴()4,2B −−, 把(2,4)A ,()4,2B −−都代入一次函数y ax b =+,得2442a b a b +=⎧⎨−+=−⎩ , 解得12a b =⎧⎨=⎩, ∴一次函数的解析式为:2y x =+;【小问2详解】解:如图,对于2y x =+,当20y x =+=,解得=2x −,∴()2,0C −,∵(,0)P m , ∴2CP m =+,∵PAC △的面积大于12, ∴142122m ⨯+>,即26m +>, 当2m ≥−时,则26m +>,解得:4m >,当2m <−时,则26m −−>,解得:8m <−;∴4m >或8m <−.【点睛】本题考查了一次函数和反比例函数的交点问题,反比例函数图象上点的坐标特征,三角形的面积等,求得交点坐标是解题的关键.四、实践应用题(本大题共4个小题,第21小题6分,第22、23、24小题各8分,共30分)21. 睡眠管理作为“五项管理”中的重要内容之一,也是学校教育重点关注的内容.某校为了解学生平均每天睡眠时间,随机抽取该校部分学生进行问卷调查,并将结果进行了统计和整理,绘制成如下统计表和不完整的统计图.(1)本次抽取调查的学生共有______人,扇形统计图中表示C类学生平均每天睡眠时间的扇形的圆心角度数为______.(2)请补全条形统计图.(3)被抽取调查的E类4名学生中有2名女生,2名男生.从这4人中随机抽取2人进行电话回访,请用画树状图或列表的方法,求恰好抽到2名男生的概率.【答案】(1)50;144︒(2)见解析(3)1 6【解析】【分析】本题主要考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适用于两步完成是事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.也考查了条形统计图和扇形统计图.(1)根据B类人数和人数占比即可求出本次被调查的学生人数;用360度乘以C类的人数占比即可求出C类学生平均每天睡眠时间的扇形的圆心角度数;(2)根据(1)所求,求出D类的人数即可补全统计图;(3)先画出树状图得到所有的等可能性的结果数,再找到所选的2人恰好都是男生的结果数,最后依据概率计算公式求解即可.【小问1详解】解:1428%50÷=(人);2036014450⨯=︒︒; 故答案为:50;144︒;【小问2详解】解:D 类的人数为506142046−−−−=(人),补全条形统计图,如图,【小问3详解】解:画树状图如下:共有12种等可能结果,其中两人恰好是2名男生的结果有2种.()221126P ∴==抽到男. 22. 某小区物管中心计划采购A ,B 两种花卉用于美化环境.已知购买2株A 种花卉和3株B 种花卉共需要21元;购买4株A 种花卉和5株B 种花卉共需要37元.(1)求A ,B 两种花卉的单价.(2)该物管中心计划采购A ,B 两种花卉共计10000株,其中采购A 种花卉的株数不超过B 种花卉株数的4倍,当A ,B 两种花卉分别采购多少株时,总费用最少?并求出最少总费用.【答案】(1)A 种花卉的单价为3元/株,B 种花卉的单价为5元/株(2)当购进A 种花卉8000株,B 种花卉2000株时,总费用最少,最少费用为34000元【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出方程组,不等式以及一次函数关系式是解题的关键.(1)设A 种花卉的单价为x 元/株,B 种花卉的单价为y 元/株,根据题意列出二元一次方程组,解方程组即可求解;(2)设采购A 种花卉m 株,则B 种花卉(10000)m −株,总费用为W 元,根据题意列出不等式,得出8000m ≤,进而根据题意,得到35(10000)W m m =+−,根据一次函数的性质即可求解.【小问1详解】解:设A 种花卉的单价为x 元/株,B 种花卉的单价为y 元/株,由题意得:23214537x y x y +=⎧⎨+=⎩, 解得:35x y =⎧⎨=⎩, 答:A 种花卉的单价为3元/株,B 种花卉的单价为5元/株.【小问2详解】解:设采购A 种花卉m 株,则B 种花卉(10000)m −株,总费用为W 元,由题意得:35(10000)250000W m m m =+−=−+,4(10000)m m ≤−,解得:8000m ≤,在250000W m =−+中,20−<,∴W 随m 的增大而减小,∴当8000m =时W 的值最小,280005000034000W =−⨯+=最小,此时100002000m −=.答:当购进A 种花卉8000株,B 种花卉2000株时,总费用最少,最少费用为34000元.23. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在某地安装了一批风力发电机,如图(1)某校实践活动小组对其中一架风力发电机的塔杆高度进行了测量,图(2)为测量示意图(点A ,B ,C ,D 均在同一平面内,AB BC ⊥).已知斜坡CD 长为20米,斜坡CD 的坡角为60︒,在斜坡顶部D 处测得风力发电机塔杆顶端A 点的仰角为20︒,坡底与塔杆底的距离30BC =米,求该风力发电机塔杆AB 的高度.(结果精确到个位;参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈ 1.73≈)【答案】32m【解析】【分析】本题考查的是矩形的判定与性质,解直角三角形的实际应用,过点D 作DF AB ⊥于点F ,作DH BE ⊥于点H ,先求解cos6010m CH CD =⋅︒=,sin 6017.3m DH CD =︒≈,再证明40m BH BC CH =+=,再利用锐角的正切可得tan 2014.4m AF FD =⋅︒=,从而可得答案.【详解】解:过点D 作DF AB ⊥于点F ,作DH BE ⊥于点H由题意得:20m DC =,60DCH ∠=︒在Rt DCH △中,cos 60CHCD ︒=,sin 60DH CD︒= ∴cos6010m CH CD =⋅︒=,sin6017.3m DH CD =︒=≈90DFB B DHB ∠=∠=∠=︒,∴四边形DFBH 为矩形,∴BH FD =,BF DH =,(3010)m 40m BH BC CH =+=+=,∴40m FD =在AFD △中.tan 20AF FD=︒, tan 20400.3614.4m AF FD ∴=⋅︒≈⨯=(17.314.4)m 31.7m 32m AB AF BF ∴=+≈+=≈答:该风力发电机塔杆AB 的高度为32m .24. 如图,矩形纸片的长为4,宽为3,矩形内已用虚线画出网格线,每个小正方形的边长均为1,小正方形的顶点称为格点,现沿着网格线对矩形纸片进行剪裁,使其分成两块纸片.请在下列备用图中,用实线画出符合相应要求的剪裁线.注:①剪裁过程中,在格点处剪裁方向可发生改变但仍须沿着网格线剪裁;②在各种剪法中,若剪裁线通过旋转、平移或翻折后能完全重合则视为同一情况.【答案】见解析【解析】【分析】本题考查的是矩形的性质,全等图形的定义与性质,同时考查了学生实际的动手操作能力,根据全等图形的性质分别画出符合题意的图形即可.【详解】解:如图,五、推理论证题(9分)25. 如图,点C 在以AB 为直径的O 上,点D 在BA 的延长线上,DCA CBA ∠=∠.(1)求证:DC 是O 的切线;(2)点G 是半径OB 上的点,过点G 作OB 的垂线与BC 交于点F ,与DC 的延长线交于点E ,若4sin 5D =,2DA FG ==,求CE 的长.【答案】(1)见解析 (2)14【解析】【分析】(1)连接OC ,由圆周角定理求得90ACB ∠=︒,再利用等角的余角相等求得90OCD ∠=︒,据此即可证明DC 是O 的切线;(2)利用三角函数的定义求得8OC OA ==,在Rt OCD △中,利用勾股定理求得6CD =,再证明DOC DEG △△∽,利用相似三角形的性质列式计算即可求解.【小问1详解】证明:连接OC ,OB OC =,OBC OCB ∴∠=∠,DCA OBC ∠=∠,DCA OCB ∴∠=∠,而AB 是O 的直径,90ACB ∴∠=︒,90DCA OCA OCA OCB ∴∠+∠=∠+∠=︒,90OCD ∴∠=︒,∴DC 是O 的切线;【小问2详解】解:设OC OA r ==,4sin 5OC D OD ==, 425r r ∴=+, 8r ∴=,8OC OA ∴==,在Rt OCD △中,6CD ===,90DCA ECF BFG CBA ∠+∠=∠+∠=︒,∴ECF BFG ∠=∠, 又BFG EFC ∠=∠,∴ECF EFC ∠=∠,EC EF ∴=,设EC EF x ==,D D ∠=∠,DCO DGE ∠=∠,∴DOC DEG △△∽, ∴DO OC DE EG =,则10862x x =++, 解得:14x =经检验14x =是所列方程的解,∴14CE =.【点睛】本题考查了切线的判定与相似三角形的判定与性质,三角函数的定义,勾股定理.正确证明DOC DEG △△∽是解决本题的关键.六、拓展探究题(10分)26. 如图,抛物线223y x bx c =−++与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)−,点B 坐标为(3,0).(1)求此抛物线的函数解析式.(2)点P 是直线BC 上方抛物线上一个动点,过点P 作x 轴的垂线交直线BC 于点D ,过点P 作y 轴的垂线,垂足为点E ,请探究2PD PE +是否有最大值?若有最大值,求出最大值及此时P 点的坐标;若没有最大值,请说明理由.(3)点M 为该抛物线上的点,当45∠=︒MCB 时,请直接写出所有满足条件的点M 的坐标.【答案】(1)224233y x x =−++。

2020年四川省广安市中考数学试卷题与及答案

2020年四川省广安市中考数学试卷题与及答案

2020年四川省广安市中考数学试卷题一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡上.本大题共10个小题,每小题3分,共30分)1.(3分)﹣2019的绝对值是()A.﹣2019B.2019C .﹣D .2.(3分)下列运算正确的是()A.a2+a3=a5B.3a2•4a3=12a6C.5﹣=5D .×=3.(3分)第二届“一带一路”国际合作高峰论坛于2019年4月25日至27日在北京召开,“一带一路”建设进行5年多来,中资金融机构为“一带一路”相关国家累计发放贷款250000000000元,重点支持了基础设施、社会民生等项目.数字250000000000用科学记数法表示,正确的是()A.0.25×1011B.2.5×1011C.2.5×1010D.25×1010 4.(3分)如图所示的几何体是由一个圆锥和一个长方体组成的,则它的俯视图是()A .B .C .D .5.(3分)下列说法正确的是()A.“367人中必有2人的生日是同一天”是必然事件B.了解一批灯泡的使用寿命采用全面调查C.一组数据6,5,3,5,4的众数是5,中位数是3D.一组数据10,11,12,9,8的平均数是10,方差是1.56.(3分)一次函数y=2x﹣3的图象经过的象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四7.(3分)若m>n,下列不等式不一定成立的是()A.m+3>n+3B.﹣3m<﹣3n C .>D.m2>n2 8.(3分)下列命题是假命题的是()A.函数y=3x+5的图象可以看作由函数y=3x﹣1的图象向上平移6个单位长度而得到B.抛物线y=x2﹣3x﹣4与x轴有两个交点C.对角线互相垂直且相等的四边形是正方形D.垂直于弦的直径平分这条弦9.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB于点D,则图中阴影部分的面积为()A .π﹣B .π﹣C .π﹣D .π﹣10.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:①abc<0;②b<c;③3a+c=0;④当y>0时,﹣1<x<3其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(请把最简答案填写在答题卡相应位置.本大题共6个小题,每小题3分,共18分)11.(3分)点M(x﹣1,﹣3)在第四象限,则x 的取值范围是.12.(3分)因式分解:3a4﹣3b4=.13.(3分)等腰三角形的两边长分别为6cm,13cm,其周长为cm.14.(3分)如图,正五边形ABCDE中,对角线AC与BE相交于点F,则∠AFE=度.15.(3分)在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=﹣x2+x+,由此可知该生此次实心球训练的成绩为米.16.(3分)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt △OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17.(5分)计算:(﹣1)4﹣|1﹣|+6tan30°﹣(3﹣)0.18.(6分)解分式方程:﹣1=.19.(6分)如图,点E是▱ABCD的CD边的中点,AE、BC的延长线交于点F,CF=3,CE=2,求▱ABCD的周长.20.(6分)如图,已知A(n,﹣2),B(﹣1,4)是一次函数y=kx+b和反比例函数y =的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.四、实践应用题(本大题共4个小题,第21题6分,第22、23、24题各8分,共30分)21.(6分)为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了名学生,两幅统计图中的m=,n=.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.22.(8分)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B 型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.23.(8分)如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH上,再向前走10米到达B处,又测得教学楼顶端G的仰角∠GED为60°,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.(参考数据:=1.4,=1.7)24.(8分)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)五、推理论证题(9分)25.(9分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD 平分∠BAC,AD交BC于点D,ED⊥AD交AB于点E,△ADE的外接圆⊙O交AC于点F,连接EF.(1)求证:BC是⊙O的切线;(2)求⊙O的半径r及∠3的正切值.六、拓展探索题(10分)26.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B 的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l 于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.2019年四川省广安市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡上.本大题共10个小题,每小题3分,共30分)1.(3分)﹣2019的绝对值是()A.﹣2019B.2019C .﹣D .【分析】直接利用绝对值的定义进而得出答案.【解答】解:﹣2019的绝对值是:2019.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(3分)下列运算正确的是()A.a2+a3=a5B.3a2•4a3=12a6C.5﹣=5D .×=【分析】根据合并同类项和二次根式混合运算的法则就是即可.【解答】解:A、a2+a3不是同类项不能合并;故A错误;B、3a2•4a3=12a5故B错误;C、5﹣=4,故C错误;D 、,故D正确;故选:D.【点评】本题考查了合并同类项和二次根式混合运算的法则,熟记法则是解题的关键.3.(3分)第二届“一带一路”国际合作高峰论坛于2019年4月25日至27日在北京召开,“一带一路”建设进行5年多来,中资金融机构为“一带一路”相关国家累计发放贷款250000000000元,重点支持了基础设施、社会民生等项目.数字250000000000用科学记数法表示,正确的是()A.0.25×1011B.2.5×1011C.2.5×1010D.25×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字2500 0000 0000用科学记数法表示,正确的是2.5×1011.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图所示的几何体是由一个圆锥和一个长方体组成的,则它的俯视图是()A .B .C .D .【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:该组合体的俯视图为故选:A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(3分)下列说法正确的是()A.“367人中必有2人的生日是同一天”是必然事件B.了解一批灯泡的使用寿命采用全面调查C.一组数据6,5,3,5,4的众数是5,中位数是3D.一组数据10,11,12,9,8的平均数是10,方差是1.5【分析】根据必然事件、抽样调查、众数、中位数以及方差的概念进行判断即可.【解答】解:A.“367人中必有2人的生日是同一天”是必然事件,故本选项正确;B.了解一批灯泡的使用寿命采用抽样调查,故本选项错误;C.一组数据6,5,3,5,4的众数是5,中位数是5,故本选项错误;D.一组数据10,11,12,9,8的平均数是10,方差是2,故本选项错误;故选:A.【点评】本题主要考查了必然事件、抽样调查、众数、中位数以及方差,在一定条件下,可能发生也可能不发生的事件,称为随机事件.6.(3分)一次函数y=2x﹣3的图象经过的象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四【分析】根据题目中的函数解析式和一次函数的性质可以解答本题.【解答】解:∵一次函数y=2x﹣3,∴该函数经过第一、三、四象限,故选:C.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.7.(3分)若m>n,下列不等式不一定成立的是()A.m+3>n+3B.﹣3m<﹣3n C .>D.m2>n2【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A、不等式的两边都加3,不等号的方向不变,故A错误;B、不等式的两边都乘以﹣3,不等号的方向改变,故B错误;C、不等式的两边都除以3,不等号的方向不变,故C错误;D、如m=2,n=﹣3,m>n,m2<n2;故D正确;故选:D.【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.8.(3分)下列命题是假命题的是()A.函数y=3x+5的图象可以看作由函数y=3x﹣1的图象向上平移6个单位长度而得到B.抛物线y=x2﹣3x﹣4与x轴有两个交点C.对角线互相垂直且相等的四边形是正方形D.垂直于弦的直径平分这条弦【分析】利用一次函数的平移、抛物线与坐标轴的交点、正方形的判定及垂径定理分别判断后即可确定正确的选项.【解答】解:A、函数y=3x+5的图象可以看作由函数y=3x﹣1的图象向上平移6个单位长度而得到,正确,是真命题;B、抛物线y=x2﹣3x﹣4中△=b2﹣4ac=25>0,与x轴有两个交点,正确,是真命题;C、对角线互相垂直且相等的平行四边形是正方形,故错误,是假命题;D、垂直与弦的直径平分这条弦,正确,是真命题,故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解一次函数的平移、抛物线与坐标轴的交点、正方形的判定及垂径定理的知识,难度不大.9.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB于点D,则图中阴影部分的面积为()A .π﹣B .π﹣C .π﹣D .π﹣【分析】根据三角形的内角和得到∠B=60°,根据圆周角定理得到∠COD=120°,∠CDB=90°,根据扇形和三角形的面积公式即可得到结论.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∴∠COD=120°,∵BC=4,BC为半圆O的直径,∴∠CDB=90°,∴OC=OD=2,∴CD =BC=2,图中阴影部分的面积=S扇形COD﹣S△COD =﹣2×1=﹣,故选:A.【点评】本题考查扇形面积公式、直角三角形的性质、解题的关键是学会分割法求面积,属于中考常考题型.10.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:①abc<0;②b<c;③3a+c=0;④当y>0时,﹣1<x<3其中正确的结论有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①对称轴位于x轴的右侧,则a,b异号,即ab<0.抛物线与y轴交于正半轴,则c>0.∴abc<0.故①正确;②∵抛物线开口向下,∴a<0.∵抛物线的对称轴为直线x =﹣=1,∴b=﹣2a.∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,故②正确;③∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴3a+c=0.故③正确;④由抛物线的对称性质得到:抛物线与x轴的另一交点坐标是(3,0).∴当y>0时,﹣1<x<3故④正确.综上所述,正确的结论有4个.故选:D.【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号的确定由抛物线开口方向、对称轴、与y轴的交点有关.二、填空题(请把最简答案填写在答题卡相应位置.本大题共6个小题,每小题3分,共18分)11.(3分)点M(x﹣1,﹣3)在第四象限,则x的取值范围是x>1.【分析】根据第四象限的点的横坐标是正数列出不等式求解即可.【解答】解:∵点M(x﹣1,﹣3)在第四象限,∴x﹣1>0解得x>1,即x的取值范围是x>1.故答案为x>1.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.(3分)因式分解:3a4﹣3b4=3(a2+b2)(a+b)(a﹣b).【分析】首先提取公因式3,进而利用平方差公式分解因式即可.【解答】解:3a4﹣3b4=3(a2+b2)(a2﹣b2)=3(a2+b2)(a+b)(a﹣b).故答案为:3(a2+b2)(a+b)(a﹣b).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.13.(3分)等腰三角形的两边长分别为6cm,13cm,其周长为32cm.【分析】题目给出等腰三角形有两条边长为6cm和13cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:由题意知,应分两种情况:(1)当腰长为6cm时,三角形三边长为6,6,13,6+6<13,不能构成三角形;(2)当腰长为13cm时,三角形三边长为6,13,13,周长=2×13+6=32cm.故答案为32.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.(3分)如图,正五边形ABCDE中,对角线AC与BE相交于点F,则∠AFE =72度.【分析】根据五边形的内角和公式求出∠EAB,根据等腰三角形的性质,三角形外角的性质计算即可.【解答】解:∵五边形ABCDE是正五边形,∴∠EAB=∠ABC=,∵BA=BC,∴∠BAC=∠BCA=36°,同理∠ABE=36°,∴∠AFE=∠ABF+∠BAF=36°+36°=72°.故答案为:72【点评】本题考查的是正多边形的内角与外角,掌握正多边形的内角的计算公式、等腰三角形的性质是解题的关键.15.(3分)在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=﹣x2+x+,由此可知该生此次实心球训练的成绩为10米.【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.【解答】解:当y=0时,y=﹣x2+x+=0,解得,x=2(舍去),x=10.故答案为:10.【点评】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.16.(3分)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt △OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为(﹣22017,22017).【分析】通过解直角三角形,依次求A1,A2,A3,A4,…各点的坐标,再从其中找出规律,便可得结论.【解答】解:由题意得,A1的坐标为(1,0),A2的坐标为(1,),A3的坐标为(﹣2,2),A4的坐标为(﹣8,0),A5的坐标为(﹣8,﹣8),A6的坐标为(16,﹣16),A7的坐标为(64,0),…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2,与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2n﹣2,∵2019÷6=336…3,∴点A2019的方位与点A23的方位相同,在第二象限内,其横坐标为﹣2n﹣2=﹣22017,纵坐标为22017,故答案为:(﹣22017,22017).【点评】本题主点的坐标的规律题,主要考查了解直角三角形的知识,关键是求出前面7个点的坐标,找出其存在的规律.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17.(5分)计算:(﹣1)4﹣|1﹣|+6tan30°﹣(3﹣)0.【分析】直接利用特殊角的三角函数值以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式=1﹣(﹣1)+6×﹣1=1﹣+1+2﹣1=1+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)解分式方程:﹣1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:﹣1=,方程两边乘(x﹣2)2得:x(x﹣2)﹣(x﹣2)2=4,解得:x=4,检验:当x=4时,(x﹣2)2≠0.所以原方程的解为x=4.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(6分)如图,点E是▱ABCD的CD边的中点,AE、BC的延长线交于点F,CF=3,CE=2,求▱ABCD的周长.【分析】先证明△ADE≌△FCE,得到AD=CF=3,DE=CE=2,从而可求平行四边形的周长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠F,∠D=∠ECF.又ED=EC,∴△ADE≌△FCE(AAS).∴AD=CF=3,DE=CE=2.∴DC=4.∴平行四边形ABCD的周长为2(AD+DC)=14.【点评】本题主要考查了平行四边形的性质、全等三角形的判定和性质,解题的关键是借助全等转化线段.20.(6分)如图,已知A(n,﹣2),B(﹣1,4)是一次函数y=kx+b和反比例函数y =的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.【分析】(1)根据A(n,﹣2),B(﹣1,4)是一次函数y=kx+b的图象与反比例函数y =的图象的两个交点,可以求得m的值,进而求得n 的值,即可解答本题;(2)根据函数图象和(1)中一次函数的解析式可以求得点C的坐标,从而根据S△AOB=S△AOC+S△BOC可以求得△AOB的面积.【解答】解:(1)∵A(n,﹣2),B(﹣1,4)是一次函数y=kx+b的图象与反比例函数y =的图象的两个交点,∴4=,得m=﹣4,∴y =﹣,∴﹣2=﹣,得n=2,∴点A(2,﹣2),∴,解得,∴一函数解析式为y=﹣2x+2,即反比例函数解析式为y =﹣,一函数解析式为y=﹣2x+2;(2)设直线与y轴的交点为C,当x=0时,y=﹣2×0+2=2,∴点C的坐标是(0,2),∵点A(2,﹣2),点B(﹣1,4),∴S△AOB=S△AOC+S△BOC =×2×2+×2×1=3.【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.四、实践应用题(本大题共4个小题,第21题6分,第22、23、24题各8分,共30分)21.(6分)为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了200名学生,两幅统计图中的m=84,n =15.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.【分析】(1)用喜欢阅读“A”类图书的学生数除以它所占的百分比得到调查的总人数;用喜欢阅读“B”类图书的学生数所占的百分比乘以调查的总人数得到m的值,然后用30除以调查的总人数可以得到n的值;(2)用3600乘以样本中喜欢阅读“A”类图书的学生数所占的百分比即可;(3)画树状图展示所有6种等可能的结果数,找出被选送的两名参赛者为一男一女的结果数,然后根据概率公式求解.【解答】解:(1)68÷34%=200,所以本次调查共抽取了200名学生,m=200×42%=84,n%=×100%=15%,即n=15;(2)3600×34%=1224,所以估计该校喜欢阅读“A”类图书的学生约有1224人;(3)画树状图为:共有6种等可能的结果数,其中被选送的两名参赛者为一男一女的结果数为4,所以被选送的两名参赛者为一男一女的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.22.(8分)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B 型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【解答】解:(1)设1只A型节能灯的售价是x元,1只B型节能灯的售价是y元,,解得,,答:1只A型节能灯的售价是5元,1只B型节能灯的售价是7元;(2)设购买A型号的节能灯a只,则购买B型号的节能灯(200﹣a)只,费用为w元,w=5a+7(200﹣a)=﹣2a+1400,∵a≤3(200﹣a),∴a≤150,∴当a=150时,w取得最小值,此时w=1100,200﹣a=50,答:当购买A型号节能灯150只,B型号节能灯50只时最省钱.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.23.(8分)如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH上,再向前走10米到达B处,又测得教学楼顶端G的仰角∠GED为60°,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.(参考数据:=1.4,=1.7)【分析】(1)由∠HFE=45°知HE=EF=10,据此得BH=BE+HE=1.5+10=11.5;(2)设DE=x米,则DG =x米,由∠GFD=45°知GD=DF=EF+DE,据此得x=10+x,解之求得x的值,代入CG=DG+DC =x+1.5计算可得.【解答】解:(1)在Rt△EFH中,∠HEF=90°,∠HFE=45°,∴HE=EF=10,∴BH=BE+HE=1.5+10=11.5,∴古树的高为11.5米;(2)在Rt△EDG中,∠GED=60°,∴DG=DE tan60°=DE,设DE=x米,则DG =x米,在Rt△GFD中,∠GDF=90°,∠GFD=45°,∴GD=DF=EF+DE,∴x=10+x,解得:x=5+5,∴CG=DG+DC =x+1.5=(5+5)+1.5=16.5+5≈25,答:教学楼CG的高约为25米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.24.(8分)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)【分析】根据轴对称图形和旋转对称图形的概念作图即可得.【解答】解:如图所示【点评】本题主要考查利用旋转设计图案,解题的关键是掌握轴对称图形和旋转对称图形的概念.五、推理论证题(9分)25.(9分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD 平分∠BAC,AD交BC于点D,ED⊥AD交AB于点E,△ADE的外接圆⊙O交AC于点F,连接EF.(1)求证:BC是⊙O的切线;(2)求⊙O的半径r及∠3的正切值.【分析】(1)由垂直的定义得到∠EDA=90°,连接OD,则OA=OD,得到∠1=∠ODA,根据角平分线的定义得到∠2=∠1=∠ODA,根据平行线的性质得到∠BDO=∠ACB=90°,于是得到BC是⊙O的切线;(2)由勾股定理得到AB ===10,推出△BDO∽△BCA,根据相似三角形的性质得到r =,解直角三角形即可得到结论.【解答】(1)证明:∵ED⊥AD,∴∠EDA=90°,∵AE是⊙O的直径,∴AE的中点是圆心O,连接OD,则OA=OD,∴∠1=∠ODA,∵AD平分∠BAC,∴∠2=∠1=∠ODA,∴OD∥AC,∴∠BDO=∠ACB=90°,∴BC是⊙O的切线;(2)解:在Rt△ABC中,由勾股定理得,AB ===10,∵OD∥AC,∴△BDO∽△BCA,∴,即,∴r =,在Rt△BDO中,BD ===5,∴CD=BC﹣BD=8﹣5=3,在Rt△ACD中,tan∠2===,∵∠3=∠2,∴tan∠3=tan∠2=.【点评】本题考查了切线的判定和性质,勾股定理,圆周角定理,三角函数的定义,正确的识别图形是解题的关键.六、拓展探索题(10分)26.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B 的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)将点A、D的坐标分别代入直线表达式、抛物线的表达式,即可求解;(2)PE+PF=2PF=2(﹣x2+3x+4+x+1)=﹣2(x﹣2)2+18,即可求解;(3)分NC是平行四边形的一条边、NC是平行四边形的对角线,两种情况分别求解即可.【解答】解:(1)将点A、D 的坐标代入直线表达式得:,解得:,故直线l的表达式为:y=﹣x﹣1,将点A、D的坐标代入抛物线表达式,同理可得抛物线的表达式为:y=﹣x2+3x+4;(2)直线l的表达式为:y=﹣x﹣1,则直线l与x轴的夹角为45°,即:则PE=PE,设点P坐标为(x,﹣x2+3x+4)、则点F(x,﹣x﹣1),PE+PF=2PF=2(﹣x2+3x+4+x+1)=﹣2(x﹣2)2+18,∵﹣2<0,故PE+PF有最大值,当x=2时,其最大值为18;(3)NC=5,①当NC是平行四边形的一条边时,设点P坐标为(x,﹣x2+3x+4)、则点M(x,﹣x﹣1),由题意得:|y M﹣y P|=5,即:|﹣x2+3x+4+x+1|=5,解得:x=2或0或4(舍去0),则点M坐标为(2+,﹣3﹣)或(2﹣,﹣3+)或(4,﹣5);②当NC是平行四边形的对角线时,则NC的中点坐标为(0,),设点P坐标为(m,﹣m2+3m+4)、则点M(n,﹣n﹣1),N、C,M、P为顶点的四边形为平行四边形,则NC的中点即为PM中点,即:0=,=,解得:n=0或﹣4(舍去0),。

2020年四川省广安市中考数学试卷

2020年四川省广安市中考数学试卷

2020年~2021年最新 四川省广安市中考数学试卷一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡上.本大题共10个小题,每小题3分,共30分)1.(3分)(2019•广安)2019-的绝对值是( )A .2019-B .2019C .12019-D .120192.(3分)(2019•广安)下列运算正确的是( )A .235a a a +=B .2363412a a a =C .5335-=D .236⨯=3.(3分)(2019•广安)第二届“一带一路”国际合作高峰论坛于2019年4月25日至27日在北京召开,“一带一路”建设进行5年多来,中资金融机构为“一带一路”相关国家累计发放贷款250000000000元,重点支持了基础设施、社会民生等项目.数字250000000000用科学记数法表示,正确的是( )A .110.2510⨯B .112.510⨯C .102.510⨯D .102510⨯4.(3分)(2019•广安)如图所示的几何体是由一个圆锥和一个长方体组成的,则它的俯视图是( )A .B .C .D .5.(3分)(2019•广安)下列说法正确的是( )A .“367人中必有2人的生日是同一天”是必然事件B .了解一批灯泡的使用寿命采用全面调查C .一组数据6,5,3,5,4的众数是5,中位数是3D .一组数据10,11,12,9,8的平均数是10,方差是1.56.(3分)(2019•广安)一次函数23y x =-的图象经过的象限是( )A .一、二、三B .二、三、四C .一、三、四D .一、二、四7.(3分)(2019•广安)若m n >,下列不等式不一定成立的是( )A .33m n +>+B .33m n -<-C .33m n >D .22m n >8.(3分)(2019•广安)下列命题是假命题的是( )A .函数35y x =+的图象可以看作由函数31y x =-的图象向上平移6个单位长度而得到B .抛物线234y x x =--与x 轴有两个交点C .对角线互相垂直且相等的四边形是正方形D .垂直于弦的直径平分这条弦9.(3分)(2019•广安)如图,在Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,4BC =,以BC 为直径的半圆O 交斜边AB 于点D ,则图中阴影部分的面积为( )A .433π-B .2332π-C .1332π-D .133π- 10.(3分)(2019•广安)二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线1x =,下列结论:①0abc <②b c <③30a c +=④当0y >时,13x -<<其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题(请把最简答案填写在答题卡相应位置.本大题共6个小题,每小题3分,共18分)11.(3分)(2019•广安)点(1,3)M x --在第四象限,则x 的取值范围是 .12.(3分)(2019•广安)因式分解:4433a b -= .13.(3分)(2019•广安)等腰三角形的两边长分别为6cm ,13cm ,其周长为 cm .14.(3分)(2019•广安)如图,正五边形ABCDE 中,对角线AC 与BE 相交于点F ,则AFE ∠= 度.15.(3分)(2019•广安)在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为 米. 16.(3分)(2019•广安)如图,在平面直角坐标系中,点1A 的坐标为(1,0),以1OA 为直角边作Rt △12OA A ,并使1260AOA ∠=︒,再以2OA 为直角边作Rt △23OA A ,并使2360A OA ∠=︒,再以3OA 为直角边作Rt △34OA A ,并使3460A OA ∠=︒⋯按此规律进行下去,则点2019A 的坐标为 .三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17.(5分)(2019•广安)计算:40(1)|136tan 30(327)---+︒--.18.(6分)(2019•广安)解分式方程:241244x x x x -=--+. 19.(6分)(2019•广安)如图,点E 是ABCD 的CD 边的中点,AE 、BC 的延长线交于点F ,3CF =,2CE =,求ABCD 的周长.20.(6分)(2019•广安)如图,已知(,2)=+和反比例函数A n-,(1,4)B-是一次函数y kx bmy=的图象的两个交点.x(1)求反比例函数和一次函数的解析式;(2)求AOB∆的面积.四、实践应用题(本大题共4个小题,第21题6分,第22、23、24题各8分,共30分)21.(6分)(2019•广安)为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了名学生,两幅统计图中的m=,n=.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.22.(8分)(2019•广安)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.23.(8分)(2019•广安)如图,某数学兴趣小组为测量一颗古树BH 和教学楼CG 的高,先在A 处用高1.5米的测角仪AF 测得古树顶端H 的仰角HFE ∠为45︒,此时教学楼顶端G 恰好在视线FH 上,再向前走10米到达B 处,又测得教学楼顶端G 的仰角GED ∠为60︒,点A 、B 、C 三点在同一水平线上.(1)求古树BH 的高;(2)求教学楼CG 的高.(参考数据:2 1.4=,3 1.7)=24.(8分)(2019•广安)在数学活动课上,王老师要求学生将图1所示的33⨯正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个33⨯的正方形方格画一种,例图除外)五、推理论证题(9分)25.(9分)(2019•广安)如图,在Rt ABC ∆中,90ACB ∠=︒,6AC =,8BC =,AD 平分BAC ∠,AD 交BC 于点D ,ED AD ⊥交AB 于点E ,ADE ∆的外接圆O 交AC 于点F ,连接EF .(1)求证:BC 是O 的切线;(2)求O 的半径r 及3∠的正切值.六、拓展探索题(10分)26.(10分)(2019•广安)如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线:l y kx n =+与y 轴交于点C ,与抛物线2y x bx c =-++的另一个交点为D ,已知(1,0)A -,(5,6)D -,P 点为抛物线2y x bx c =-++上一动点(不与A 、D 重合).(1)求抛物线和直线l 的解析式;(2)当点P 在直线l 上方的抛物线上时,过P 点作//PE x 轴交直线l 于点E ,作//PF y 轴交直线l 于点F ,求PE PF +的最大值;(3)设M 为直线l 上的点,探究是否存在点M ,使得以点N 、C ,M 、P 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.2019年四川省广安市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡上.本大题共10个小题,每小题3分,共30分)1.(3分)2019-的绝对值是( )A .2019-B .2019C .12019-D .12019【考点】15:绝对值【分析】直接利用绝对值的定义进而得出答案.【解答】解:2019-的绝对值是:2019.故选:B .2.(3分)下列运算正确的是( )A .235a a a +=B .2363412a a a =C .5=D =【考点】79:二次根式的混合运算;35:合并同类项;49:单项式乘单项式【分析】根据合并同类项和二次根式混合运算的法则就是即可.【解答】解:A 、23a a +不是同类项不能合并;故A 错误;B 、2353412a a a =故B 错误;C 、=C 错误;D D 正确;故选:D .3.(3分)第二届“一带一路”国际合作高峰论坛于2019年4月25日至27日在北京召开,“一带一路”建设进行5年多来,中资金融机构为“一带一路”相关国家累计发放贷款250000000000元,重点支持了基础设施、社会民生等项目.数字250000000000用科学记数法表示,正确的是( )A .110.2510⨯B .112.510⨯C .102.510⨯D .102510⨯【考点】1I :科学记数法-表示较大的数【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:数字2500 0000 0000用科学记数法表示,正确的是112.510⨯.故选:B .4.(3分)如图所示的几何体是由一个圆锥和一个长方体组成的,则它的俯视图是( )A .B .C .D .【考点】2U :简单组合体的三视图【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:该组合体的俯视图为故选:A .5.(3分)下列说法正确的是( )A .“367人中必有2人的生日是同一天”是必然事件B .了解一批灯泡的使用寿命采用全面调查C .一组数据6,5,3,5,4的众数是5,中位数是3D .一组数据10,11,12,9,8的平均数是10,方差是1.5【考点】4W :中位数;1W :算术平均数;2V :全面调查与抽样调查;1X :随机事件;5W :众数;7W :方差【分析】根据必然事件、抽样调查、众数、中位数以及方差的概念进行判断即可.【解答】解:A .“367人中必有2人的生日是同一天”是必然事件,故本选项正确; B .了解一批灯泡的使用寿命采用抽样调查,故本选项错误;C .一组数据6,5,3,5,4的众数是5,中位数是5,故本选项错误;D .一组数据10,11,12,9,8的平均数是10,方差是2,故本选项错误;故选:A .6.(3分)一次函数23y x =-的图象经过的象限是( )A .一、二、三B .二、三、四C .一、三、四D .一、二、四【考点】5F :一次函数的性质【分析】根据题目中的函数解析式和一次函数的性质可以解答本题.【解答】解:一次函数23y x =-,∴该函数经过第一、三、四象限,故选:C .7.(3分)若m n >,下列不等式不一定成立的是( )A .33m n +>+B .33m n -<-C .33m n >D .22m n >【考点】2C :不等式的性质【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A 、不等式的两边都加3,不等号的方向不变,故A 错误;B 、不等式的两边都乘以3-,不等号的方向改变,故B 错误;C 、不等式的两边都除以3,不等号的方向不变,故C 错误;D 、如2m =,3n =-,m n >,22m n <;故D 正确;故选:D .8.(3分)下列命题是假命题的是( )A .函数35y x =+的图象可以看作由函数31y x =-的图象向上平移6个单位长度而得到B .抛物线234y x x =--与x 轴有两个交点C .对角线互相垂直且相等的四边形是正方形D .垂直于弦的直径平分这条弦【考点】1O :命题与定理【分析】利用一次函数的平移、抛物线与坐标轴的交点、正方形的判定及垂径定理分别判断后即可确定正确的选项.【解答】解:A 、函数35y x =+的图象可以看作由函数31y x =-的图象向上平移6个单位长度而得到,正确,是真命题;B 、抛物线234y x x =--中△24250b ac =-=>,与x 轴有两个交点,正确,是真命题;C 、对角线互相垂直且相等的平行四边形是正方形,故错误,是假命题;D 、垂直与弦的直径平分这条弦,正确,是真命题,故选:C .9.(3分)如图,在Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,4BC =,以BC 为直径的半圆O 交斜边AB 于点D ,则图中阴影部分的面积为( )A .433πB .233πC .133π-D .133π【考点】MO :扇形面积的计算;5M :圆周角定理;KO :含30度角的直角三角形【分析】根据三角形的内角和得到60B ∠=︒,根据圆周角定理得到120COD ∠=︒,90CDB ∠=︒,根据扇形和三角形的面积公式即可得到结论.【解答】解:在Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,60B ∴∠=︒,120COD ∴∠=︒,4BC =,BC 为半圆O 的直径,90CDB ∴∠=︒,2OC OD ∴==,323CD ∴==, 图中阴影部分的面积21202123602CODCOD S S π∆⋅⨯=-=-⨯扇形43133π= 故选:A . 10.(3分)二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线1x =,下列结论:①0abc <②b c <③30a c +=④当0y >时,13x -<< 其中正确的结论有( )A .1个B .2个C .3个D .4个【考点】HA :抛物线与x 轴的交点;5H :二次函数图象上点的坐标特征;4H :二次函数图象与系数的关系【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【解答】解:①对称轴位于x 轴的右侧,则a ,b 异号,即0ab <. 抛物线与y 轴交于正半轴,则0c >. 0abc ∴<.故①正确;②抛物线开口向下, 0a ∴<.抛物线的对称轴为直线12bx a=-=, 2b a ∴=-. 1x =-时,0y =,0a b c ∴-+=,而2b a =-, 3c a ∴=-,230b c a a a ∴-=-+=<,即b c <, 故②正确;③1x =-时,0y =,0a b c ∴-+=,而2b a =-, 3c a ∴=-, 30a c ∴+=.故③正确;④由抛物线的对称性质得到:抛物线与x 轴的另一交点坐标是(3,0).∴当0y >时,13x -<<故④正确.综上所述,正确的结论有4个. 故选:D .二、填空题(请把最简答案填写在答题卡相应位置.本大题共6个小题,每小题3分,共18分)11.(3分)点(1,3)M x --在第四象限,则x 的取值范围是 1x > . 【考点】1D :点的坐标;6C :解一元一次不等式【分析】根据第四象限的点的横坐标是正数列出不等式求解即可. 【解答】解:点(1,3)M x --在第四象限, 10x ∴->解得1x >,即x 的取值范围是1x >. 故答案为1x >.12.(3分)因式分解:4433a b -= 223()()()a b a b a b ++- . 【考点】55:提公因式法与公式法的综合运用【分析】首先提取公因式3,进而利用平方差公式分解因式即可.【解答】解:442222333()()a b a b a b -=+-223()()()a b a b a b =++-.故答案为:223()()()a b a b a b ++-.13.(3分)等腰三角形的两边长分别为6cm ,13cm ,其周长为 32 cm . 【考点】6K :三角形三边关系;KH :等腰三角形的性质【分析】题目给出等腰三角形有两条边长为6cm 和13cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形. 【解答】解:由题意知,应分两种情况:(1)当腰长为6cm 时,三角形三边长为6,6,13,6613+<,不能构成三角形; (2)当腰长为13cm 时,三角形三边长为6,13,13,周长213632cm =⨯+=. 故答案为32.14.(3分)如图,正五边形ABCDE 中,对角线AC 与BE 相交于点F ,则AFE ∠= 72 度.【考点】3L :多边形内角与外角【分析】根据五边形的内角和公式求出EAB ∠,根据等腰三角形的性质,三角形外角的性质计算即可.【解答】解:五边形ABCDE 是正五边形, (52)1801085EAB ABC -⨯︒∴∠=∠==︒,BA BC =,36BAC BCA ∴∠=∠=︒,同理36ABE ∠=︒,363672AFE ABF BAF ∴∠=∠+∠=︒+︒=︒.故答案为:7215.(3分)在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为 10 米. 【考点】HE :二次函数的应用【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可. 【解答】解:当0y =时,212501233y x x =-++=, 解得,2x =(舍去),10x =. 故答案为:10.16.(3分)如图,在平面直角坐标系中,点1A 的坐标为(1,0),以1OA 为直角边作Rt △12OA A ,并使1260AOA ∠=︒,再以2OA 为直角边作Rt △23OA A ,并使2360A OA ∠=︒,再以3OA 为直角边作Rt △34OA A ,并使3460A OA ∠=︒⋯按此规律进行下去,则点2019A 的坐标为 2017(2-,201723) .【考点】2D :规律型:点的坐标【分析】通过解直角三角形,依次求1A ,2A ,3A ,4A ,⋯各点的坐标,再从其中找出规律,便可得结论.【解答】解:由题意得, 1A 的坐标为(1,0), 2A 的坐标为3), 3A 的坐标为(2-,23), 4A 的坐标为(8,0)-, 5A 的坐标为(8,83)--, 6A 的坐标为(16,3)-, 7A 的坐标为(64,0),⋯由上可知,A 点的方位是每6个循环,与第一点方位相同的点在x 正半轴上,其横坐标为12n -,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为22n -,纵坐标为2n -,与第三点方位相同的点在第二象限内,其横坐标为22n --,纵坐标为2n -, 与第四点方位相同的点在x 负半轴上,其横坐标为12n --,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为22n --,纵坐标为2n --与第六点方位相同的点在第四象限内,其横坐标为22n -,纵坐标为2n -- 201963363÷=⋯,∴点2019A 的方位与点23A 的方位相同,在第二象限内,其横坐标为2201722n --=-,纵坐标为2故答案为:2017(2-,2.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17.(5分)计算:40(1)|16tan 30(3--+︒-.【考点】5T :特殊角的三角函数值;2C :实数的运算;6E :零指数幂【分析】直接利用特殊角的三角函数值以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式11)61=-+111=+1=18.(6分)解分式方程:241244x x x x -=--+. 【考点】3B :解分式方程【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【解答】解:241244x x x x -=--+,方程两边乘2(2)x -得:2(2)(2)4x x x ---=, 解得:4x =,检验:当4x =时,2(2)0x -≠. 所以原方程的解为4x =.19.(6分)如图,点E 是ABCD 的CD 边的中点,AE 、BC 的延长线交于点F ,3CF =,2CE =,求ABCD 的周长.【考点】5L :平行四边形的性质;KD :全等三角形的判定与性质【分析】先证明ADE FCE ∆≅∆,得到3AD CF ==,2DE CE ==,从而可求平行四边形的面积.【解答】解:四边形ABCD 是平行四边形, //AD BC ∴,DAE F ∴∠=∠,D ECF ∠=∠.又ED EC =,()ADE FCE AAS ∴∆≅∆. 3AD CF ∴==,2DE CE ==. 4DC ∴=.∴平行四边形ABCD 的周长为2()14AD DC +=.20.(6分)如图,已知(,2)A n -,(1,4)B -是一次函数y kx b =+和反比例函数my x=的图象的两个交点.(1)求反比例函数和一次函数的解析式; (2)求AOB ∆的面积.【考点】8G :反比例函数与一次函数的交点问题【分析】(1)根据(,2)A n -,(1,4)B -是一次函数y kx b =+的图象与反比例函数my x=的图象的两个交点,可以求得m 的值,进而求得n 的值,即可解答本题;(2)根据函数图象和(1)中一次函数的解析式可以求得点C 的坐标,从而根据AOB AOC BOC S S S ∆∆∆=+可以求得AOB ∆的面积.【解答】解:(1)(,2)A n -,(1,4)B -是一次函数y kx b =+的图象与反比例函数my x=的图象的两个交点, 41m∴=-,得4m =-, 4y x∴=-,42n∴-=-,得2n =,∴点(2,2)A -,∴224k b k b +=-⎧⎨-+=⎩,解得22k b =-⎧⎨=⎩,∴一函数解析式为22y x =-+,即反比例函数解析式为4y x=-,一函数解析式为22y x =-+;(2)设直线与y 轴的交点为C ,当0x =时,2022y =-⨯+=,∴点C 的坐标是(0,2),点(2,2)A -,点(1,4)B -,112221322AOB AOC BOC S S S ∆∆∆∴=+=⨯⨯+⨯⨯=.四、实践应用题(本大题共4个小题,第21题6分,第22、23、24题各8分,共30分) 21.(6分)为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了 200 名学生,两幅统计图中的m = ,n = .(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A ”类图书的学生约有多少人? (3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.【考点】VC :条形统计图;5V :用样本估计总体;6X :列表法与树状图法;VB :扇形统计图【分析】(1)用喜欢阅读“A ”类图书的学生数除以它所占的百分比得到调查的总人数;用喜欢阅读“B ”类图书的学生数所占的百分比乘以调查的总人数得到m 的值,然后用30除以调查的总人数可以得到n 的值;(2)用3600乘以样本中喜欢阅读“A ”类图书的学生数所占的百分比即可;(3)画树状图展示所有6种等可能的结果数,找出被选送的两名参赛者为一男一女的结果数,然后根据概率公式求解. 【解答】解:(1)6834%200÷=, 所以本次调查共抽取了200名学生, 20042%84m =⨯=, 30%100%15%200n =⨯=,即15n =; (2)360034%1124⨯=,所以估计该校喜欢阅读“A ”类图书的学生约有1124人; (3)画树状图为:共有6种等可能的结果数,其中被选送的两名参赛者为一男一女的结果数为4,所以被选送的两名参赛者为一男一女的概率4263==. 22.(8分)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元. (1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.【考点】FH :一次函数的应用;9C :一元一次不等式的应用;9A :二元一次方程组的应用【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A 型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【解答】解:(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元, 35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)设购买A 型号的节能灯a 只,则购买B 型号的节能灯(200)a -只,费用为w 元, 57(200)21400w a a a =+-=-+, 3(200)a a -,150a ∴,∴当150a =时,w 取得最小值,此时1100w =,20050a -=,答:当购买A 型号节能灯150只,B 型号节能灯50只时最省钱.23.(8分)如图,某数学兴趣小组为测量一颗古树BH 和教学楼CG 的高,先在A 处用高1.5米的测角仪AF 测得古树顶端H 的仰角HFE ∠为45︒,此时教学楼顶端G 恰好在视线FH 上,再向前走10米到达B 处,又测得教学楼顶端G 的仰角GED ∠为60︒,点A 、B 、C 三点在同一水平线上.(1)求古树BH 的高;(2)求教学楼CG 的高. 1.4= 1.7)=【考点】TA :解直角三角形的应用-仰角俯角问题【分析】(1)由45HFE ∠=︒知10HE EF ==,据此得 1.51011.5BH BE HE =+=+=; (2)设DE x =米,则3DG x 米,由45GFD ∠=︒知GD DF EF DE ==+,据此得310x x =+,解之求得x 的值,代入3 1.5CG DG DC x =+=+计算可得.【解答】解:(1)在Rt EFH ∆中,90HEF ∠=︒,45HFE ∠=︒, 10HE EF ∴==,1.51011.5BH BE HE ∴=+=+=,∴古树的高为11.5米;(2)在Rt EDG ∆中,60GED ∠=︒, tan 603DG DE DE ∴=︒=,设DE x =米,则3DG x =米,在Rt GFD ∆中,90GDF ∠=︒,45GFD ∠=︒, GD DF EF DE ∴==+,∴310x x =+,解得:535x =,3 1.53(535) 1.516.55325CG DG DC x ∴=+=+=+=+≈,答:教学楼CG 的高约为25米.24.(8分)在数学活动课上,王老师要求学生将图1所示的33⨯正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个33⨯的正方形方格画一种,例图除外)【考点】8P :利用轴对称设计图案;9R :利用旋转设计图案【分析】根据轴对称图形和旋转对称图形的概念作图即可得.【解答】解:如图所示五、推理论证题(9分)25.(9分)如图,在Rt ABC ∆中,90ACB ∠=︒,6AC =,8BC =,AD 平分BAC ∠,AD 交BC 于点D ,ED AD ⊥交AB 于点E ,ADE ∆的外接圆O 交AC 于点F ,连接EF .(1)求证:BC 是O 的切线;(2)求O 的半径r 及3∠的正切值.【考点】KQ :勾股定理;7T :解直角三角形;ME :切线的判定与性质【分析】(1)由垂直的定义得到90EDA ∠=︒,连接OD ,则OA OD =,得到1ODA ∠=∠,根据角平分线的定义得到21ODA ∠=∠=∠,根据平行线的性质得到90BDO ACB ∠=∠=︒,于是得到BC 是O 的切线; (2)由勾股定理得到22228610AB BC AB ++=,推出BDO BCA ∆∆∽,根据相似三角形的性质得到154r =,解直角三角形即可得到结论. 【解答】(1)证明:ED AD ⊥,90EDA ∴∠=︒,AE 是O 的直径,AE ∴的中点是圆心O ,连接OD ,则OA OD =,1ODA ∴∠=∠,AD 平分BAC ∠,21ODA ∴∠=∠=∠,//OD AC ∴,90BDO ACB ∴∠=∠=︒,BC ∴是O 的切线;(2)解:在Rt ABC ∆中,由勾股定理得,22228610AB BC AB =+=+=, //OD AC ,BDO BCA ∴∆∆∽,∴OD OB AC AB =,即10610r r -=, 154r ∴=, 在Rt BDO ∆中,2222(10)5BD OB OD r r =-=--=,853CD BC BD ∴=-=-=,在Rt ACD ∆中,31tan 262CD AC ∠===, 32∠=∠,1tan 3tan 22∴∠=∠=.六、拓展探索题(10分)26.(10分)如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线:l y kx n =+与y 轴交于点C ,与抛物线2y x bx c =-++的另一个交点为D ,已知(1,0)A -,(5,6)D -,P 点为抛物线2y x bx c =-++上一动点(不与A 、D 重合).(1)求抛物线和直线l 的解析式;(2)当点P 在直线l 上方的抛物线上时,过P 点作//PE x 轴交直线l 于点E ,作//PF y 轴交直线l 于点F ,求PE PF +的最大值;(3)设M 为直线l 上的点,探究是否存在点M ,使得以点N 、C ,M 、P 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.【考点】HF :二次函数综合题【分析】(1)将点A 、D 的坐标分别代入直线表达式、抛物线的表达式,即可求解;(2)2222(341)2(2)18PE PF PF x x x x +==-++++=--+,即可求解;(3)分NC 是平行四边形的一条边、NC 是平行四边形的对角线,两种情况分别求解即可.【解答】解:(1)将点A 、D 的坐标代入直线表达式得:056k n k n -+=⎧⎨+=-⎩,解得:11k n =-⎧⎨=-⎩, 故直线l 的表达式为:1y x =--,将点A 、D 的坐标代入抛物线表达式,同理可得抛物线的表达式为:234y x x =-++;(2)直线l 的表达式为:1y x =--,则直线l 与x 轴的夹角为45︒,即:则PE PE =,设点P 坐标为2(,34)x x x -++、则点(,1)F x x --, 2222(341)2(2)18PE PF PF x x x x +==-++++=--+, 20-<,故PE PF +有最大值,当2x =时,其最大值为18;(3)5NC =,①当NC 是平行四边形的一条边时,设点P 坐标为2(,34)x x x -++、则点(,1)M x x --, 由题意得:||5M P y y -=,即:2|341|5x x x -++++=,解得:214x =±0或4(舍去0), 则点P 坐标为(214,314)-或(214-314)-+或(4,5)-; ②当NC 是平行四边形的对角线时,则NC 的中点坐标为1(2-,2), 设点P 坐标为2(,34)m m m -++、则点(,1)M n n --, N 、C ,M 、P 为顶点的四边形为平行四边形,则NC 的中点即为PM 中点,即:122m n +-=,234122m m n -++--=, 解得:0m =或4-(舍去0),故点(4,3)P -; 故点P 的坐标为:(214+314)--或(214,314)-+或(4,5)-或(4,3)-.。

2024四川省广安市中考数学试题及答案(Word解析版)

2024四川省广安市中考数学试题及答案(Word解析版)

四川省广安市2024年中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(2024•广安)4的算术平方根是()A.±2 B.C.2D.﹣2考点:算术平方根.分析:依据算术平方根的定义即可得出答案.解答:解:4的算术平方根是2,故选C.点评:本题主要考查了算术平方根,留意算术平方根与平方根的区分.2.(3分)(2024•广安)将来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将8450亿元用科学记数法表示为8.45×103亿元.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2024•广安)下列运算正确的是()A.a2•a4=a8B.2a2+a2=3a4C.a6÷a2=a3D.(ab2)3=a3b6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:分别利用合并同类项法则、同底数幂的除法、同底数幂的乘法、积的乘方法则分的推断得出即可.解答:解:A、a2•a4=a6,故此选项错误;B、2a2+a2=3a2,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(ab2)3=a3b6,故此选项正确.故选:D.点评:本题考查了合并同类项法则、同底数幂的除法、同底数幂的乘法、积的乘方,解题的关键是驾驭相关运算的法则.4.(3分)(2024•广安)有五个相同的小正方体堆成的物体如图所示,它的主视图是()A.B.C.D.考点:简洁组合体的三视图.分析:找到从正面看所得到的图形即可,留意全部的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有3个正方形,其次层最左边有一个正方形.故选B.点评:本题考查了三视图的学问,主视图是从物体的正面看得到的视图.5.(3分)(2024•广安)数据21、12、18、16、20、21的众数和中位数分别是()A.21和19 B.21和17 C.20和19 D.20和18考点:众数;中位数.分析:依据众数和中位数的定义求解即可.解答:解:在这一组数据中21是出现次数最多的,故众数是21;数据按从小到大排列:12、16、18、20、21、21,中位数是(18+20)÷2=19,故中位数为19.故选A.点评:本题考查了中位数,众数的意义.找中位数的时候肯定要先排好依次,然后再依据奇数和偶数个来确定中位数.假如数据有奇数个,则正中间的数字即为所求;假如是偶数个,则找中间两位数的平均数.众数是一组数据中出现次数最多的数据,留意众数可以不止一个.6.(3分)(2024•广安)假如a3x b y与﹣a2y b x+1是同类项,则()A.B.C.D.考点:解二元一次方程组;同类项.专题:计算题分析:依据同类项的定义列出方程组,然后利用代入消元法求解即可.解答:解:∵a3x b y与﹣a2y b x+1是同类项,∴,②代入①得,3x=2(x+1),解得x=2,把x=2代入②得,y=2+1=3,所以,方程组的解是.故选D.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简洁,依据同类项的“两同”列出方程组是解题的关键.7.(3分)(2024•广安)等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25 B.25或32 C.32 D.19考点:等腰三角形的性质;三角形三边关系.分析:因为已知长度为6和13两边,没有明确是底边还是腰,所以有两种状况,须要分类探讨.解答:解:①当6为底时,其它两边都为13,6、13、13可以构成三角形,周长为32;②当6为腰时,其它两边为6和13,∵6+6<13,∴不能构成三角形,故舍去,∴答案只有32.故选C.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目肯定要想到两种状况,分类进行探讨,还应验证各种状况是否能构成三角形进行解答,这点特别重要,也是解题的关键.8.(3分)(2024•广安)下列命题中正确的是()A.函数y=的自变量x的取值范围是x>3B.菱形是中心对称图形,但不是轴对称图形C.一组对边平行,另一组对边相等四边形是平行四边形D.三角形的外心到三角形的三个顶点的距离相等考点:命题与定理.分析:依据菱形、等腰梯形的性质以及外心的性质和二次根式的性质分别推断得出即可.解答:解:A、函数y=的自变量x的取值范围是x≥3,故此选项错误;B、菱形是中心对称图形,也是轴对称图形,故此选项错误;C、一组对边平行,另一组对边相等四边形是也可能是等腰梯形,故此选项错误;D、依据外心的性质,三角形的外心到三角形的三个顶点的距离相等,故此选项正确.故选:D.点评:此题主要考查了菱形、等腰梯形的性质以及外心的性质和二次根式的性质,娴熟驾驭相关定理和性质是解题关键.9.(3分)(2024•广安)如图,已知半径OD与弦AB相互垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()A.cm B.5cm C.4cm D.cm考点:垂径定理;勾股定理.分析:连接AO,依据垂径定理可知AC=AB=4cm,设半径为x,则OC=x﹣3,依据勾股定理即可求得x 的值.解答:解:连接AO,∵半径OD与弦AB相互垂直,∴AC=AB=4cm,设半径为x,则OC=x﹣3,在Rt△ACO中,AO2=AC2+OC2,即x2=42+(x﹣3)2,解得:x=,故半径为cm.故选A.点评:本题考查了垂径定理及勾股定理的学问,解答本题的关键是娴熟驾驭垂径定理、勾股定理的内容,难度一般.10.(3分)(2024•广安)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>O,②2a+b=O,③b2﹣4ac<O,④4a+2b+c>O其中正确的是()A.①③B.只有②C.②④D.③④考点:二次函数图象与系数的关系.分析:由抛物线开口向下,得到a小于0,再由对称轴在y轴右侧,得到a与b异号,可得出b大于0,又抛物线与y轴交于正半轴,得到c大于0,可得出abc小于0,选项①错误;由抛物线与x轴有2个交点,得到根的判别式b2﹣4ac大于0,选项②错误;由x=﹣2时对应的函数值小于0,将x=﹣2代入抛物线解析式可得出4a﹣2b+c小于0,最终由对称轴为直线x=1,利用对称轴公式得到b=﹣2a,得到选项④正确,即可得到正确结论的序号.解答:解:∵抛物线的开口向上,∴a>0,∵﹣>0,∴b<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,①错误;∵对称轴为直线x=1,∴﹣=1,即2a+b=0,②正确,∵抛物线与x轴有2个交点,∴b2﹣4ac>0,③错误;∵对称轴为直线x=1,∴x=2与x=0时的函数值相等,而x=0时对应的函数值为正数,∴4a+2b+c>0,④正确;则其中正确的有②④.故选C.点评:此题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a≠0),a的符号由抛物线开口方向确定;b的符号由对称轴的位置及a的符号确定;c的符号由抛物线与y轴交点的位置确定;抛物线与x轴的交点个数,确定了b2﹣4ac的符号,此外还要留意x=1,﹣1,2及﹣2对应函数值的正负来推断其式子的正确与否.二、填空题:请将最简答案干脆填写在题目后的横线上(本大题共6个小题,每小题3分.共18分)11.(3分)(2024•广安)方程x2﹣3x+2=0的根是1或2.考点:解一元二次方程-因式分解法.专题:因式分解.分析:由题已知的方程进行因式分解,将原式化为两式相乘的形式,再依据两式相乘值为0,这两式中至少有一式值为0,求出方程的解.解答:解:因式分解得,(x﹣1)(x﹣2)=0,解得x1=1,x2=2.点评:本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般状况下是把左边的式子因式分解,再利用积为0的特点解出方程的根,因式分解法是解一元二次方程的一种简便方法,要会敏捷运用.12.(3分)(2024•广安)将点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′的坐标为(2,﹣2).考点:坐标与图形变更-平移.分析:依据点的平移规律,左右移,横坐标减加,纵坐标不变;上下移,纵坐标加减,横坐标不变即可解的答案.解答:解:∵点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′,∴A′的坐标是(﹣1+3,2﹣4),即:(2,﹣2).故答案为:(2,﹣2).点评:此题主要考查了点的平移规律,正确驾驭规律是解题的关键.13.(3分)(2024•广安)如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=63°30′.考点:平行线的判定与性质.分析:依据∠1=∠2可以判定a∥b,再依据平行线的性质可得∠3=∠5,再依据邻补角互补可得答案.解答:解:∵∠1=40°,∠2=40°,∴a∥b,∴∠3=∠5=116°30′,∴∠4=180°﹣116°30′=63°30′,故答案为:63°30′.点评:此题主要考查了平行线的判定与性质,关键是驾驭同位角相等,两直线平行.14.(3分)(2024•广安)解方程:﹣1=,则方程的解是x=﹣.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣x+2=﹣3,解得:x=﹣,经检验是分式方程的解.故答案为:x=﹣点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程肯定留意要验根.15.(3分)(2024•广安)如图,假如从半径为5cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是3cm.考点:圆锥的计算.分析:因为圆锥的高,底面半径,母线构成直角三角形,则留下的扇形的弧长==8π,所以圆锥的底面半径r==4cm,利用勾股定理求圆锥的高即可;解答:解:∵从半径为5cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长==8π,依据底面圆的周长等于扇形弧长,∴圆锥的底面半径r==4cm,∴圆锥的高为=3cm故答案为:3.点评:此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.解此类题目要依据所构成的直角三角形的勾股定理作为等量关系求解.16.(3分)(2024•广安)已知直线y=x+(n为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2024=.考点:一次函数图象上点的坐标特征.专题:规律型.分析:令x=0,y=0分别求出与y轴、x轴的交点,然后利用三角形面积公式列式表示出S n,再利用拆项法整理求解即可.解答:解:令x=0,则y=,令y=0,则﹣x+=0,解得x=,所以,S n=••=(﹣),所以,S1+S2+S3+…+S2024=(﹣+﹣+﹣+…+﹣)=(﹣)=.故答案为:.点评:本题考查的是一次函数图象上点的坐标特点,表示出S n,再利用拆项法写成两个数的差是解题的关键,也是本题的难点.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17.(6分)(2024•广安)计算:()﹣1+|1﹣|﹣﹣2sin60°.考点:实数的运算;负整数指数幂;特别角的三角函数值.分析:分别进行负整数指数幂、肯定值、开立方、特别角的三角函数值等运算,然后依据实数的运算法则计算即可.解答:解:原式=2+﹣1+2﹣2×=3.点评:本题考查了实数的运算,涉及了负整数指数幂、肯定值、开立方、特别角的三角函数值等学问,属于基础题.18.(6分)(2024•广安)先化简,再求值:(﹣)÷,其中x=4.考点:分式的化简求值.分析:先依据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=(﹣)÷=×=﹣,当x=4时,原式=﹣=﹣.点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.19.(6分)(2024•广安)如图,在平行四边形ABCD中,AE∥CF,求证:△ABE≌△CDF.考点:平行四边形的性质;全等三角形的判定.专题:证明题.分析:首先证明四边形AECF是平行四边形,即可得到AE=CF,AF=CF,再依据由三对边相等的两个三角形全等即可证明:△ABE≌△CDF.解答:证明:∵四边形ABCD是平行四边形,∴AE∥CF,AD=BC,AB=CD,∵AE∥CF,∴四边形AECF是平行四边形,∴AE=CF,AF=CF,∴BE=DE,在△ABE和△CDF中,,∴△ABE≌△CDF(SSS).点评:此题主要考查学生对平行四边形的判定与性质和全等三角形的判定的理解和驾驭,难度不大,属于基础题.20.(6分)(2024•广安)已知反比例函数y=(k≠0)和一次函数y=x﹣6.(1)若一次函数与反比例函数的图象交于点P(2,m),求m和k的值.(2)当k满意什么条件时,两函数的图象没有交点?考点:反比例函数与一次函数的交点问题.分析:(1)两个函数交点的坐标满意这两个函数关系式,因此将交点的坐标分别代入反比例函数关系式和一次函数关系式即可求得待定的系数;(2)函数的图象没有交点,即无解,用二次函数根的判别式可解.解答:解:(1)∵一次函数和反比例函数的图象交于点(2,m),∴m=2﹣6,解得m=﹣4,即点P(2,﹣4),则k=2×(﹣4)=﹣8.∴m=﹣4,k=﹣8;(2)由联立方程y=(k≠0)和一次函数y=x﹣6,有=x﹣6,即x2﹣6x﹣k=0.∵要使两函数的图象没有交点,须使方程x2﹣6x﹣k=0无解.∴△=(﹣6)2﹣4×(﹣k)=36+4k<0,解得k<﹣9.∴当k<﹣9时,两函数的图象没有交点.点评:本题考查反比例函数与一次函数的交点问题,留意先代入一次函数解析式,求得两个函数的交点坐标.四、实践应用:(本大题共4个小题,其中第21小题6分,地22、23、24小题各8分,共30分)21.(6分)(2024•广安)6月5日是“世界环境日”,广安市某校实行了“洁美家园”的演讲竞赛,赛后整理参赛同学的成果,将学生的成果分成A、B、C、D四个等级,并制成了如下的条形统计图和扇形图(如图1、图2).(1)补全条形统计图.(2)学校确定从本次竞赛中获得A和B的学生中各选出一名去参与市中学生环保演讲竞赛.已知A等中男生有2名,B等中女生有3 名,请你用“列表法”或“树形图法”的方法求出所选两位同学恰好是一名男生和一名女生的概率.考点:条形统计图;扇形统计图;列表法与树状图法.专题:计算题分析:(1)依据等级为A的人数除以所占的百分比求出总人数,进而求出等级B的人数,补全条形统计图即可;(2)列表得出全部等可能的状况数,找出一男一女的状况数,即可求出所求的概率.解答:解:(1)依据题意得:3÷15%=20(人),故等级B的人数为20﹣(3+8+4)=5(人),补全统计图,如图所示;(2)列表如下:男男女女女男(男,男)(男,男)(女,男)(女,男)(女,男)男(男,男)(男,男)(女,男)(女,男)(女,男)女(男,女)(男,女)(女,女)(女,女)(女,女)全部等可能的结果有15种,其中恰好是一名男生和一名女生的状况有8种,则P恰好是一名男生和一名女生=.点评:此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.22.(8分)(2024•广安)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.依据市场须要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.空调彩电进价(元/台)5400 3500售价(元/台)6100 3900设商场安排购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试写出y与x的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?考点:一次函数的应用.分析:(1)y=(空调售价﹣空调进价)x+(彩电售价﹣彩电进价)×(30﹣x);(2)依据用于一次性购进空调、彩电共30台,总资金为12.8万元,全部销售后利润不少于1.5万元.得到一元一次不等式组,求出满意题意的x的正整数值即可;(3)利用y与x的函数关系式y=150x+6000的增减性来选择哪种方案获利最大,并求此时的最大利润即可.解答:解:(1)设商场安排购进空调x台,则安排购进彩电(30﹣x)台,由题意,得y=(6100﹣5400)x+(3900﹣3500)(30﹣x)=300x+12000;(2)依题意,有,解得10≤x≤12.∵x为整数,∴x=10,11,12.即商场有三种方案可供选择:方案1:购空调10台,购彩电20台;方案2:购空调11台,购彩电19台;方案3:购空调12台,购彩电18台;(3)∵y=300x+12000,k=300>0,∴y随x的增大而增大,即当x=12时,y有最大值,y最大=300×12+12000=15600元.故选择方案3:购空调12台,购彩电18台时,商场获利最大,最大利润是15600元.点评:本题主要考查了一次函数和一元一次不等式组的实际应用,难度适中,得出商场获得的利润y与购进空调x的函数关系式是解题的关键.在解答一次函数的应用问题中,要留意自变量的取值范围还必需使实际问题有意义.23.(8分)(2024•广安)如图,广安市防洪指挥部发觉渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.(1)求加固后坝底增加的宽度AF的长;(2)求完成这项工程须要土石多少立方米?考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:(1)分别过E、D作AB的垂线,设垂足为G、H.在Rt△EFG中,依据坡面的铅直高度(即坝高)及坡比,即可求出FG的长,同理可在Rt△ADH中求出AH的长;由AF=FG+GH﹣AH求出AF的长.(2)已知了梯形AFED的上下底和高,易求得其面积.梯形AFED的面积乘以坝长即为所需的土石的体积.解答:解:(1)分别过点E、D作EG⊥AB、DH⊥AB交AB于G、H,∵四边形ABCD是梯形,且AB∥CD,∴DH平行且等于EG,故四边形EGHD是矩形,∴ED=GH,在Rt△ADH中,AH=DH÷tan∠DAH=8÷tan45°=8(米),在Rt△FGE中,i=1:2=,∴FG=2EG=16(米),∴AF=FG+GH﹣AH=16+2﹣8=10(米);(2)加宽部分的体积V=S梯形AFED×坝长=×(2+10)×8×400=19200(立方米).答:(1)加固后坝底增加的宽度AF为10米;(2)完成这项工程须要土石19200立方米.点评:本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.24.(8分)(2024•广安)雅安芦山发生7.0级地震后,某校师生打算了一些等腰直角三角形纸片,从每张纸片中剪出一个半圆制作玩具,寄给灾区的小挚友.已知如图,是腰长为4的等腰直角三角形ABC,要求剪出的半圆的直径在△ABC的边上,且半圆的弧与△ABC的其他两边相切,请作出全部不同方案的示意图,并求出相应半圆的半径(结果保留根号).考点:作图—应用与设计作图.专题:作图题.分析:分直径在直角边AC、BC上和在斜边AB上三种状况分别求出半圆的半径,然后作出图形即可.解答:解:依据勾股定理,斜边AB==4,①如图1、图2,直径在直角边BC或AC上时,∵半圆的弧与△ABC的其它两边相切,∴=,解得r=4﹣4,②如图3,直径在斜边AB上时,∵半圆的弧与△ABC的其它两边相切,∴=,解得r=2,作出图形如图所示:点评:本题考查了应用与设计作图,主要利用了直线与圆相切,相像三角形对应边成比例的性质,分别求出半圆的半径是解题的关键.五、理论与论证(9分)25.(9分)(2024•广安)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙0,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙0的切线.(2)假如⊙0的半径为5,sin∠ADE=,求BF的长.考点:切线的判定;等腰三角形的性质;圆周角定理;解直角三角形.分析:(1)连结OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,依据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后依据切线的判定方法即可得到结论;(2)由∠DAC=∠DAB,依据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相像比可计算出BF.解答:(1)证明:连结OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴EF是⊙0的切线;(2)解:∵∠DAC=∠DAB,∴∠ADE=∠ABD,在Rt△ADB中,sin∠ADE=sin∠ABD==,而AB=10,∴AD=8,在Rt△ADE中,sin∠ADE==,∴AE=,∵OD∥AE,∴△FDO∽△FEA,∴=,即=,∴BF=.点评:本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、圆周角定理和解直角三角形.六、拓展探究(10分)26.(9分)(2024•广安)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之变更.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)考点:二次函数综合题.专题:代数几何综合题.分析:(1)把点A、B、C的坐标代入抛物线解析式,利用待定系数法求二次函数解析式解答即可;(2)①依据点A、B的坐标求出OA=OB,从而得到△AOB是等腰直角三角形,依据等腰直角三角形的性质可得∠BAO=45°,然后求出△PED是等腰直角三角形,依据等腰直角三角形的性质,PD越大,△PDE的周长最大,再推断出当与直线AB平行的直线与抛物线只有一个交点时,PD最大,再求出直线AB的解析式为y=x+3,设与AB平行的直线解析式为y=x+m,与抛物线解析式联立消掉y,得到关于x的一元二次方程,利用根的判别式△=0列式求出m的值,再求出x、y的值,从而得到点P的坐标;②先确定出抛物线的对称轴,然后(i)分点M在对称轴上时,过点P作PQ⊥对称轴于Q,依据同角的余角相等求出∠APF=∠QPM,再利用“角角边”证明△APF和△MPQ全等,依据全等三角形对应边相等可得PF=PQ,设点P的横坐标为n,表示出PQ的长,即PF,然后代入抛物线解析式计算即可得解;(ii)点N在对称轴上时,同理求出△APF和△ANQ全等,依据全等三角形对应边相等可得PF=AQ,依据点A的坐标求出点P的纵坐标,再代入抛物线解析式求出横坐标,即可得到点P的坐标.解答:解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0),∴,解得,所以,抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵A(﹣3,0),B(0,3),∴OA=OB=3,∴△AOB是等腰直角三角形,∴∠BAO=45°,∵PF⊥x轴,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PD越大,△PDE的周长越大,易得直线AB的解析式为y=x+3,设与AB平行的直线解析式为y=x+m,联立,消掉y得,x2+3x+m﹣3=0,当△=32﹣4×1×(m﹣3)=0,即m=时,直线与抛物线只有一个交点,PD最长,此时x=﹣,y=﹣+=,∴点P(﹣,)时,△PDE的周长最大;②抛物线y=﹣x2﹣2x+3的对称轴为直线x=﹣=﹣1,(i)如图1,点M在对称轴上时,过点P作PQ⊥对称轴于Q,在正方形APMN中,AP=PM,∠APM=90°,∴∠APF+∠FPM=90°,∠QPM+∠FPM=90°,∴∠APF=∠QPM,∵在△APF和△MPQ中,,∴△APF≌△MPQ(AAS),∴PF=PQ,设点P的横坐标为n(n<0),则PQ=﹣1﹣n,即PF=﹣1﹣n,∴点P的坐标为(n,﹣1﹣n),∵点P在抛物线y=﹣x2﹣2x+3上,∴﹣n2﹣2n+3=﹣1﹣n,整理得,n2+n﹣4=0,解得n1=(舍去),n2=,﹣1﹣n=﹣1﹣=,所以,点P的坐标为(,);(ii)如图2,点N在对称轴上时,设抛物线对称轴与x轴交于点Q,∵∠PAF+∠FPA=90°,∠PAF+∠QAN=90°,∴∠FPA=∠QAN,又∵∠PFA=∠AQN=90°,PA=AN,∴△APF≌△NAQ,∴PF=AQ,设点P坐标为P(x,﹣x2﹣2x+3),则有﹣x2﹣2x+3=﹣1﹣(﹣3)=2,解得x=﹣1(不合题意,舍去)或x=﹣﹣1,此时点P坐标为(﹣﹣1,2).综上所述,当顶点M恰好落在抛物线对称轴上时,点P坐标为(,),当顶点N恰好落在抛物线对称轴上时,点P的坐标为(﹣﹣1,2).点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,等腰直角三角形的判定与性质,正方形的性质,全等三角形的判定与性质,抛物线上点的坐标特征,(2)确定出△PDE是等腰直角三角形,从而推断出点P为平行于AB的直线与抛物线只有一个交点时的位置是解题的关键,(3)依据全等三角形的性质用点P的横坐标表示出纵坐标或用纵坐标求出横坐标是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广安市二O 一三年高中阶段教育学校招生考试
数 学 试 卷
注意事项:1.本试卷共8页,满分120分,考试时间120分钟.
2.答题前请考生将自己的姓名、考号填涂到机读卡和试卷相应位置上.
3.请考生将选择题答案填涂在机读卡上,将非选择题直接答在试题卷中.
4.填空题把最简答案直接写在相应题后的横线上.
5.解答三至六题时要写出必要的文字说明、证明过程或演算步骤.
一、选择题:每小题给出的四个选项中。

只有一个选项符合题 意要求。

请将符合要求的选项的代号填涂在机读卡上(本大题
共 10个小题,每小题3分,共30分)
1. 4的算术平方根是( )
A. ±2
B. 12
C. 2
D. -2 2. 未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450
亿元用科学计数法表示为( )
A. 40.84510⨯亿元
B. 38.4510⨯亿元
C. 48.4510⨯ 亿元
D.284.510⨯ 亿元
3. 下列运算正确的是( )
A. 248a a a ⋅=
B. 22423a a a +=
C. 623a a a ÷=
D. 2336
()ab a b =
4. 由五个相同的小正方体堆成的物体如图1所示,它的主视图是( )
图1
5. 数据21,12,18,16,20,21的众数和中位数分别是( )
A. 21和19
B. 21和17
C. 20和19
D. 20和18
6. 如果312
x y a b 与21y x a b +-是同类项,则( ) A. 23x y =-⎧⎨=⎩ B. 23x y =⎧⎨=-⎩ C. 23x y =-⎧⎨=-⎩ D. 23
x y =⎧⎨=⎩ 7.等腰三角形的一边长为6,另一边长为13,则它的周长为( )
A. 25
B. 25或32
C. 32
D. 19
8.下列命题中,正确的是( )
A. 函数3y x =-的自变量x 的取值范围是x >3
B. 菱形是中心对称图形,但不是轴对称图形
得分
评卷人
C. 一组对边平行,另一组对边相等的四边形是平行四边形
D. 三角形的外心到三角形的三个顶点的距离相等
9. 如图2,已知半径OD 与弦AB 互相垂直,垂足为点C ,若AB=8cm ,
CD=3cm ,则圆O 的半径为( )
A. 256cm
B. 5cm
C. 4cm
D. 196cm 10. 已知二次函数2
y ax bx c =++的图像如图3所示,对称轴是直
线x =1. 下列结论:①abc >0,②2a +b =0,③240b ac -<,
④4a +2b +c >0,其中正确的是( )
A. ①③
B. 只有②
C. ②④
D. ③④
题号
二 三 四 五 六 总分 总分人 17 18 19 20 21 22 23 24 25 26 应得分
18 5 6 6 6 6 8 8 8 9 10 90 实得分
得分
评卷人 二、填空题:请把最简答案直接填写在置后的横线上(本大题共6个小题,每小题3分,共18分) 11. 方程2320x x -+=的根是_________________.
12. 将点A (-1,2)沿x 轴向右平移3个单位长度,再沿y 轴向下平移4个单位长度后
得到点A '的坐标为__________________.
13. 如图4,若∠1=40°,∠2=40°,∠3=116°30′,
则∠4=__________________.
14. 解方程:43122x x x
-=--,则方程的解是 __________________.
15. 如图5,如果从半径为5cm 的圆形纸片上剪去15
圆周的一个扇形,将留下的扇形围成一个圆锥
(接线处不重叠),那么这个圆锥的高是______
_______________cm.
16. 已知直线(1)122
n y x n n -+=+++(n 为正整数) 与两坐标轴围成的三角形的面积为n S ,则
1232012S S S S +++⋅⋅⋅+=_______________.
17. 计算:131()1382sin 602-+----︒
18. 先化简,再求值:22113()24
x x x x x --÷--,其中x =4
19. 如图6,在平行四边形ABCD 中,AE ∥CF ,
求证:△ABE ≅△CDF
得分
评卷人 三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分.共23分)
20. 已知反比例函数(0)k y k x
=≠和一次函数6y x =-. (1) 若一次函数与反比例函数的图像交于点P (2,m ),求m 和k 的值.
(2) 当k 满足什么条件时,两函数的图像没有交点?
得分
评卷人 四、实践应用(本大题共4个小题,其中第21小题6分,第22、23、24每小题8分,共30分)
21. 6月5日是“世界环境日”,广安市某校举行了“洁美家园”的演讲比赛,赛后整理参
赛同学的成绩,将学生的成绩分成A 、B 、C 、D 四个等级,并制成如下的条形统计图和扇形图(如图7、8)
(1) 补全条形统计图.
(2) 学校决定从本次比赛中获得A 等和B 等的学生中各选出一名去参加市中学生环
保演讲比赛. 已知A 等中有男生2名,B 等中有女生3名. 请你用“列表法”或“树形图法”的方法求出所选两位同学恰好是一名男生和一名女生的概率.
22. 某商场筹集资金12.8万元,一次性购进空调、彩电共30台. 根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩
电的进价和售价见右表.
设商场计划购进空调x 台,空调和彩电全部销售后商场获得的利润为y 元.
(1) 试写出y 与x 的函数关系式;
(2) 商场有哪几种进货方案可供选择?
(3) 选择哪种进货方案,商场获利最大?最大利润是多少元?
空调 彩电 进价(元/台) 5400 3500 售价(元/台) 6100 3900
23. 如图9,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°
的防洪大堤(横断面为梯形ABCD )急需加固. 经调查论证,防洪指挥部专家制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF 的坡比为i =1∶2.
(1)求加固后坝底增加的宽度AF 的长;
(2)求完成这项工程需要的土石为多少立方米?
24. 雅安芦山发生7.0级地震后,某校师生准备了一些等腰直角三角形纸片,从每张纸片
中剪出一个半圆制作玩具,寄给灾区的小朋友. 已知如图10,是腰长为4的等腰直角三角形ABC ,要求剪出的半圆的直径在△ABC 的边上,且半圆的弧与△ABC 的其他两边相切,请作出所有不同方案的示意图...
,并求出相应半圆的半径(结果保留根号).
B 4 4
C A B
4 4 C A (备用图) 图10
得分评卷人
五、推理与论证(9分)
25. 如图11,在△ABC中,AB=AC,以AB为直径作半圆e O,交BC于点D,连接AD,
过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
(1)求证:EF是e O的切线.
(2)如果e O的半径为5,
4
sin=
5
ADE
,求BF的长.
得分
评卷人 六、拓展探究(10分)
26. 如图12,在平面直角坐标系xoy 中,抛物线2y ax bx c =++经过A 、B 、C 、三点,
已知点A (-3,0),B (0,3),C (1,0).
(1)求此抛物线的解析式.
(2)点P 是直线AB 上方..
的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为点F ,交直线AB 于点E ,作PD ⊥AB 于点D .
①动点P 在什么位置时,△PDE 的周长最大,求出此时P 点的坐标;
②连接PA ,以AP 为边作图示一侧的正方形APMN ,随着点P 的运动,正方形
的大小、位置也随之改变. 当顶点M 或N 恰好落在抛物线对称轴上时,求出
对应的P 点的坐标. (结果保留根号)。

相关文档
最新文档