立体几何中的轨迹问题(解析版)

合集下载

立体几何中的轨迹问题探索(教师讲义)

立体几何中的轨迹问题探索(教师讲义)

立体几何中的轨迹问题探索一、单选题1.如图为正方体1111ABCD A B C D -,动点M 从1B 点出发,在正方体表面沿逆时针方向运动一周后,再回到1B 的运动过程中,点M 与平面11A DC 的距离保持不变,运动的路程x 与11 l MA MC MD =++之间满足函数关系() l f x =,则此函数图象大致是( )A .B .C .D .【答案】C 【解析】 【分析】先由题意,得到点M 在1B AC ∆的边上沿逆时针方向运动,设正方体1111ABCD A B C D -的棱长为1,取线段1B A 的中点为N ,根据题意确定当动点M 运动到点N 时,111 =++<==N A B C l NA NC ND l l l ,同理得到动点M 运动到线段AC 或1CB 的中点时,也符合上式,根据变化情况,结合选项,即可得出结果. 【详解】由题意可知:点M 在1B AC ∆的边上沿逆时针方向运动,设正方体1111ABCD A B C D -的棱长为1,取线段1B A 的中点为N , 则当动点M 运动到点N 时,111 22=++=<+===N A B C l NA NC ND l l l , 同理,当动点M 运动到线段AC 或1CB 的中点时,符合C选项的图像特征.故选:C【点睛】本题主要考查空间几何体中的轨迹问题,熟记空间几何体的结构特征即可,属于常考题型.EF=,长为4的线段AB的两端点分别在直线a、b上2.已知异面直线a、b成60°角,其公垂线段为EF,||2运动,则AB中点的轨迹为()A.椭圆B.双曲线C.圆D.以上都不是【答案】A【解析】【分析】AB EF的中点,O P所在的平面,建立合适坐标系,先根据余弦定理求出根据条件画出合适的示意图,确定,OM ON之间的关系,然后利用P的坐标形式表示出,OM ON之间的关系,由此得到对应的轨迹形状.,【详解】如图所示:M N,设EF的中点为O,过O作EF的垂面α,则AB的中点P必在平面α内,设,A B在平面内的射影点为,以MON ∠的角平分线为x 轴,O 为坐标原点建立平面直角坐标系如图所示:设OM m =,ON n =,由余弦定理可知:2220122cos60MN m n mn ==+-,所以2212m n mn +-=,又因为30MOx NOx ∠=∠=︒,设(),P x y,所以)()22122x m n y m n ⎧=+⎪⎪⎨⎪=-⎪⎩,所以223m x y n x y ⎧=+⎪⎪⎨⎪=-⎪⎩, 将上述结果代入等式2212m n mn +-=中化简可得:2219x y +=,故轨迹是椭圆.故选:A. 【点睛】本题考查立体几何中的轨迹问题,难度较难.处理立体几何中的轨迹问题的方法:首先根据空间中的点线面位置关系确定出线段的长度,然后将问题统一到一个平面中并在该平面中建立合适的平面直角坐标系,借用坐标表示线段间的长度关系,进而化简可得轨迹方程即可判断轨迹形状.3.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aCD.2【答案】D【分析】设H ,I 分别为1CC 、11C D 边上的中点,由面面平行的性质可得F 落在线段HI 上,再求HI 的长度即可. 【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点, 则ABEG 四点共面, 且平面1//A BGE 平面1B HI , 又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,1122HI CD a ∴==,即F 在侧面11CDD C . 故选:D .【点睛】本题考查了面面平行的性质及动点的轨迹问题,属中档题.4.已知直线a 平行于平面α,且它们的距离为2d ,我们把到直线a 与到平面α的距离都相等的点构成的集合定义为集合A ,那么集合A 中同属于某个平面的点构成的图形不可能是( ) A .椭圆 B .两条平行直线 C .一条直线 D .抛物线【答案】A 【解析】 【分析】把问题放在正方体ABCD -EFGH 中去,建立空间直角坐标系,找出关于,,x y z 的方程,通过方程判断可能的图形. 【详解】棱长2d ,如图,建立空间直角坐标系,设点M (,,)x y z ,则点M 到平面α的距离为z ,(2,0,2),(0,0,2E d d H d ),(2,0,0),(,,2HE d HM x y z d ∴==-), |cos ,|2HE HM HE HM HE HMd ⋅∴<>==则sin ,1HE HM<>==点M 到直线a 的距离为:sin ,MH HEHM x ⋅<>==z ∴=整理得:22440y d dz +-=当z d =时,20y =,即0y =,一条直线,C 有可能;当z d >时,24()y d z d =-,即y =B 有可能; 当z 不取常数,为一个变量时,22440y d dz +-=是一个抛物线的方程,D 有可能;故选:A . 【点睛】本题考查利用空间直角坐标解决空间图形的轨迹问题,是一道难题.5.在正方体1111ABCD A B C D -的侧面11ABB A 内有一动点P 到直线11A B 与直线BC 的距离相等,则动点P 所在的曲线的形状为( )A .B .C .D .【答案】B 【解析】 【分析】由BC ⊥平面11ABB A 可知P 到直线BC 的距离即为P 到点B 的距离,从而可得其轨迹为抛物线的一部分且过点A ,依次判断各个选项即可. 【详解】BC ⊥平面11ABB A ,PB ⊂平面11ABB A P B B C∴⊥ P ∴到直线BC 的距离为PB ,即P 点到点B 的距离P ∴点轨迹是以B 为焦点,11A B 所在直线为准线的抛物线的一部分又P 在平面11ABB A 上,1AB AA = P ∴点轨迹过点A,A C 中轨迹不是抛物线,则,A C 错误;D 中轨迹不过A ,则D 错误.本题考查立体几何中点的轨迹的求解,关键是能够通过线面垂直关系确定动点轨迹为抛物线的一部分.6.给定正三棱锥P ABC -,点M 为底面正ABC ∆内(含边界)一点,且M 到三个侧面PAB ,,PBC PCA 的距离依次成等差数列,则点M 的轨迹为( ) A .椭圆的一部分 B .一条线段 C .双曲线的一部分 D .抛物线的一部分【答案】B 【解析】 【分析】根据M 到三个侧面PAB ,,PBC PCA 的距离依次成等差数列可设距离分别为,,d a d d a -+,根据等体积法可求得d 为常数。

2025年新人教版高考数学一轮复习讲义 第七章 §7.10 立体几何中的动态、轨迹问题

2025年新人教版高考数学一轮复习讲义  第七章 §7.10 立体几何中的动态、轨迹问题
设 AB=a,BC=b,则 a2+b2+22= 5,可得 a2+b2=1,
所以 V=2ab≤a2+b2=1,当且仅当 a=b= 22时,等号成立.
如图,设AC,BD相交于点O,
因为BO⊥AC,BO⊥AA1,AC∩AA1=A,AC,AA1⊂平面A1ACC1, 所以 BO⊥平面 A1ACC1,因为直线 BP 与平面 A1ACC1
2π 则在此过程中动点M形成的轨迹长度为___8___.
如 图 , 设 AC 的 中 点 为 M0 , △ADE 沿 DE 翻 折 90°,此时平面A′DE⊥平面ABCD,取CD中 点P,CE中点Q,PQ中点N, 连接PQ,MP,MQ,MN,M0P,M0Q,M0N. MP=M0P=12AD=12,MQ=M0Q=12AE=12,PQ=12DE= 22,△MPQ 和△M0PQ 是等腰直角三角形,
1 2 3 4 5 6 7 8 9 10
知BP⊥平面ACN,CN⊂平面ACN,所以BP⊥CN, 所以动点Q的轨迹为线段CN, 在Rt△ABN,Rt△RAB中,∠BAN=∠ARB, 所以Rt△ABN∽Rt△RAB,
则BANB=ARBA,得 BN=12, 易得 CN= BN2+BC2=
212+12=
5 2.
题型一 平行、垂直中的动态轨迹问题
例1 如图,在棱长为a的正方体ABCD-A1B1C1D1 中,E,F,G,H,N分别是CC1,C1D1,DD1,CD, BC的中点,M在四边形EFGH边上及其内部运动,
若MN∥平面A1BD,则点M轨迹的长度是
A. 3a
B. 2a
3a C. 2
√D.
2a 2
连接HN,GN(图略), ∵在棱长为a的正方体ABCD-A1B1C1D1中,E,F,G,H,N分别是 CC1,C1D1,DD1,CD,BC的中点,则GH∥BA1,HN∥BD, 又GH⊄平面A1BD,BA1⊂平面A1BD, ∴GH∥平面A1BD, 同理可证得NH∥平面A1BD, 又GH∩HN=H,GH,HN⊂平面GHN,

立体几何动点轨迹问题

立体几何动点轨迹问题

立体几何动点轨迹问题立体几何里的动点轨迹问题啊,就像一场在三维空间里的神秘舞蹈,那些动点就像舞者,它们的轨迹让人捉摸不透,可一旦搞清楚了,又觉得特别有趣。

我记得在高中上立体几何课的时候,老师在黑板上画了一个复杂的立体图形,然后说有个动点在这个图形里按照一定规则运动,让我们找出它的轨迹。

当时我就懵了,感觉像是在看一场没有头绪的魔术表演。

老师在讲台上滔滔不绝地讲着各种定理和方法,我却在下面听得云里雾里。

有一次考试就碰到了一道动点轨迹的难题。

那是一个正方体,在它的棱上有一个动点,规定这个动点到正方体某个面的距离始终保持不变。

我看着题目,脑海里就像一团乱麻。

我先试着在草稿纸上把正方体画出来,可是怎么画都觉得不太对劲,那线条歪歪扭扭的,就像喝醉了酒的蚯蚓。

我想象着那个动点在正方体的棱上慢慢移动,可就是想不出它到底会画出什么样的轨迹。

我旁边的同桌倒是很淡定,他拿着铅笔在纸上比划着。

我凑过去看,他一边画一边说:“你看,这个动点到那个面的距离不变,就相当于它在和这个面平行的一个平面上运动。

”我似懂非懂地点点头,可还是不太明白。

他无奈地看了我一眼,然后拿了一个橡皮擦,放在正方体的模型上,说:“你把这个橡皮擦当成动点,现在你看,它沿着棱移动的时候,是不是始终在一个平面内?”我仔细一看,好像有点明白了。

就像一个小蚂蚁在正方体的框架上爬行,但是只能在一个特定高度的平面上爬,这样它的轨迹就不是随意的了。

还有一道题是关于圆锥里的动点。

一个动点在圆锥的母线和底面圆周之间运动,并且它到圆锥顶点的距离和到底面圆心的距离有一定的比例关系。

这可把我难住了,我看着圆锥的图形,想象着那个动点像个调皮的小精灵在圆锥里穿梭。

我尝试着建立空间直角坐标系,想用坐标来表示动点的位置,可是那些坐标值就像调皮的数字,在我脑袋里跳来跳去,怎么都理不顺。

我叹了口气,觉得自己像是迷失在立体几何的迷宫里,找不到出口。

不过,经过不断地练习和老师的耐心讲解,我慢慢地开始掌握了一些门道。

第2讲 空间几何体轨迹问题(解析版)

第2讲 空间几何体轨迹问题(解析版)

第2讲 空间几何体轨迹问题一.选择题(共7小题)1.(2020秋•西城区期末)在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥,则下列说法正确的是( )A .点P 可以是棱1BB 的中点 B .线段MPC .点P 的轨迹是正方形D .点P 轨迹的长度为2【解析】解:在正方体1111ABCD A B C D -中,以D 为坐标原点,分别以DA ,DC ,1DD 为x 轴,y 轴,z 轴建立空间直角坐标系,因为该正方体的棱长为1,M ,N 分别为1BD ,11B C 的中点, 则(0D ,0,0),1111(,,),(,1,1),(0,1,0)2222M N C ,所以1(,0,1)2CN =,设(P x ,y ,)z ,则111(,,)222MP x y z =---,因为MP CN ⊥,所以111()0,2430222x z x z -+-=+-=,当1x =时,14z =, 当0x =时,34z =, 取1133(1,0,),(1,1,),(0,1,),(0,0,)4444E F G H ,连结EF ,FG ,GH ,HE ,则(0,1,0)EF GH ==,1(1,0,)2EH FG ==-,所以四边形EFGH 为矩形,则0,0EF CN EH CN ⋅=⋅=,即EF CN ⊥,EH CN ⊥,又EF 和EH 为平面EFGH 中的两条相交直线, 所以CN ⊥平面EFGH ,又111111(,,),(,,)224224EM MG =-=-,所以M 为EG 的中点,则M ∈平面EFGH , 所以为使MP CN ⊥,必有点P ∈平面EFGH , 又点P 在正方体表面上运动, 所以点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点, 故选项A 错误;又1EF GH ==,EH FG ==,所以EF EH ≠,则点P 的轨迹不是正方形,且矩形EFGH 的周长为222+= 故选项C 错误,选项D 正确;因为1(,0,1)2CN =,111(,,)222MP x y z =---,又MP CN ⊥,则111()0,2430222x z x z -+-=+-=,所以322x z =-,点P 在正方体表面运动,则30212z -,解得1344z,且01y ,所以MP =故当14z =或34z =,0y =或1时,MP 取得最大值为34, 故选项B 错误; 故选:D .2.(2020•5月份模拟)棱长为1的正方体1111ABCD A B C D -中,P 为正方体表面上的一个动点,且总有1PC BD ⊥,则动点P 的轨迹所围成图形的面积为( )A B .C D .1【解析】解:连接1AB ,AC ,1B C ,则可证1BD ⊥平面1ACB , 故P 点轨迹围成图形为△1AB C ,又11AC AB B C ===12AB CS∴. 故选:C .3.(2020•山西模拟)已知长方体1111ABCD A B C D -,2AB AD ==,14AA =,M 是1BB 的中点,点P 在长方体内部或表面上,且//MP 平面11AB D ,则动点P 的轨迹所形成的区域面积是( )A .6B .C .D .9【解析】解:如图所示,E ,F ,G ,H ,N 分别为11B C ,11C D ,1DD ,DA ,AB 的中点, 则11////EF B D NH ,1////MN B A FG , 所以平面//MEFGHN 平面11AB D ,所以动点P 的轨迹是六边形MEFGHN 及其内部. 因为2AB AD ==,14AA =,所以EF HN ==EM MN FG GH ===GM =E 到GM =所以229EFGH S S ===梯形. 故选:D .4.(2020•5月份模拟)棱长为1的正方体1111ABCD A B C D -中P 为正方体表面上的一个动点,且总有1PC BD ⊥,则动点P 的轨迹的长度为( )A .34πB .4πC .D .【解析】解:P 点的轨迹为过点C 与直线1BD 垂直的截面与正方体的交线,就是图形中点三角形1ACB ,它的周长为:. 故选:C .5.(2020•天河区一模)如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC D 【解析】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点则1A BEG 四点共面, 且平面1//A BGE 平面1B HI 又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,1122HI CD ∴==.即F 在侧面11CDD C . 故选:D .6.(2020•大观区校级模拟)已知在三棱锥P ABC -中,O 为AB 中点,PO ⊥平面ABC ,90APB ∠=︒,2PA PB ==,下列说法中错误的是( )A .若O 为ABC ∆的外心,则2PC =B .若ABC ∆为等边三角形,则AP BC ⊥C .当90ACB ∠=︒时,PC 与平面PAB 所成角的范围为(0,]4πD .当4PC =时,M 为平面PBC 内动点,若//OM 平面PAC ,则M 在三角形PBC 内的轨迹长度为2【解析】解:O 为ABC ∆的外心,可得OA OB OC ===PO ⊥平面ABC ,可得PO OC ⊥,即有2PC =,A 正确;若ABC ∆为等边三角形,若AP BC ⊥,又AP PB ⊥,可得AP ⊥平面PBC ,即AP PC ⊥,由PO OC ⊥可得PC AC ===,矛盾, 故B 错误;若90ACB ∠=︒时,设PC 与平面PAB 所成角为θ,可得OC OA OB ===2PC =,设C 到平面PAB 的距离为d , 由C PAB P ABC V V --=,可得11112223232d AC BC =, 即有222242AC BC AC BC +==,当且仅当2AC BC ==取得等号,可得d 2sin 22d θ=,即有θ的范围为(0,]4π,C 正确; 取BC 的中点N ,PB 的中点K ,连接OK ,ON ,KN ,由中位线定理可得//ON AC ,//OK PA ,可得平面//OKN 平面PAC , 可得M 在线段KN 上,而122KN PC ==,可得D 正确. 故选:B .7.(2020•昌平区模拟)如图,正方体1111ABCD A B C D -的棱长为3,点E 在棱BC 上,且满足2BE EC =,动点M 在正方体表面上运动,且1ME BD ⊥,则动点M 的轨迹的周长为( )A .B .C .D .【解析】解:由正方体的特点可知1BD ⊥平面1ACB ,在AB ,1BB 上分别取点P ,Q ,使得2BP PA =,12BQ QB =, 连接PE ,PQ ,EQ ,则//PE AC ,1//EQ B C , ∴平面1//AB C 平面PEQ ,1BD ∴⊥平面PEQ ,M ∴的轨迹为PEQ ∆.正方体棱长为3,AC ∴=, 23PE AC ∴==,PEQ ∴∆的周长为3PE =故选:A .二.多选题(共4小题)8.(2020秋•济南期末)已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111A B C D 内,若||AE =AC DF ⊥,则( )A .点E 的轨迹是一个圆B .点F 的轨迹是一个圆C .||EF 1D .AE 与平面1A BD【解析】解:对于选项A ,在正方体1111ABCD A B C D -中,1AA ⊥平面1111A B C D ,1A E ⊂平面1111A B C D , 所以11AA A E ⊥, 故22211AE AA A E =+, 则有11A E =,所以点E 的轨迹是以1A 为圆心,1为半径的圆, 故选项A 正确;对于选项B ,在正方体中,AC ⊥平面11B BDD , 因为AC DF ⊥, 则DF ⊂平面11B BDD , 故F 在11B D 上,所以F 的轨迹是线段11B D , 故选项B 错误;对于选项C ,||EF 的最小值即为求线段11B D 上的点到以1A 为圆心,1为半径的圆的最小距离,又圆心1A 到线段11B D 的距离为d ,所以||EF 1, 故选项C 正确;建立如图所示的空间直角坐标系,因为点E 的轨迹是以1A 为圆心,1为半径的圆, 故设(cos E θ,sin θ,2),[0,]2πθ∈,则(0A ,0,0),1(0A ,0,2),(2B ,0,0),(0D ,2,0),所以(cos ,sin ,2)AE θθ=,1(2,0,2),(2,2,0)A B BD =-=-, 设平面1A BD 的法向量为(,,)n x y z =, 则有1220220A B n x z BD n x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令1x =,则1y =,1z =, 故(1,1,1)n =,设AE 与平面1A BD 所成的角为α,则)2|||cos sin |cos ,|||||AE n AE n AE nπθθα++⋅=<===, 当4πθ=时,sin α=,故AE 与平面1A BD ,故选项D 正确. 故选:ACD .9.(2020秋•开福区校级月考)已知正方体1111ABCD A B C D -的棱长为1,动点P 在其表面上运动,且||PAx =,其中点P 的轨迹长度为()f x ,给出下列结论正确的有( ) A .13()216fπ=B .f (1)32π=C .f = D.f =【解析】解:动点P 在其表面上运动,且||PA x =,∴点的轨迹是以A 为球心,PA 为半径的球的球面与正方体的面的交线,当01x <时,点的轨迹如图,则13()3242f x x x ππ=⨯⨯=,所以13()24f π=,故选项A 不符合题意; f (1)32π=,故选项B 符合题意;x <时,点P 的轨迹是三段相等圆弧,在与点A 不相邻的三个面上,圆弧半径R ==,圆弧的圆心角为6π,124f π∴=⨯=,故选项D 符合题意;当x =时,点P 的轨迹是三段相等圆弧,圆弧的长是四分之一个圆,半径是1,如图,∴这条轨迹的长度是:1332142ππ⨯⨯⨯=,故选项C 不符合题意.故选:BD .10.(2020秋•胶州市期中)已知四面体ABCD 的所有棱长均为2,则下列结论正确的是( ) A .异面直线AC 与BD 所成角为60︒B .点A 到平面BCDC .四面体ABCDD .动点P 在平面BCD 上,且AP 与AC 所成角为60︒,则点P 的轨迹是椭圆 【解析】解:如图,由题意,四面体ABCD 为正四面体,取底面BCD 的中心为G ,连接CG 并延长,角BD 于E , 则E 为BD 的中点,且CE BD ⊥,连接AG ,则AG ⊥底面BCD ,得AG BD ⊥, 又AGCE G =,BD ∴⊥平面ACG ,则AC BD ⊥,故A 错误;由四面体的所有棱长为2,可得23CG CE =,又2AC =,AG ∴=,即点A 到平面BCD ,故B 正确;设四面体ABCD 的外接球的球心为O ,半径为R ,连接OC ,则222)R R =-+,解得R =ABCD 的外接球体积为343π⨯=,故C 正确; AP 与AC 所成角为60︒,AP 可看作以AC 为轴的圆锥的母线所在直线,P 的轨迹为平面BCD 截圆锥所得曲线,由AP 与AC 所成角为60︒,且1cos 2ACG ∠=>,可知平面BCD 仅与圆锥一侧面有交点,P 的轨迹为双曲线, 故D 错误. 故选:BC .11.(2020秋•靖江市校级月考)如图1AC 是棱长为2的正方体,M 为11B C 的中点,下列命题中正确的命题有( )A .1AB 与1BC 成60︒角B .若113CN NC =,面1A MN 交CD 于E ,则13CE =C .P 点在正方形11ABB A 边界及内部运动,且1MP DB ⊥,则PD .E ,F 分别在1DB 和11A C 上,且1112A F DE EB FC ==,直线EF 与1AD ,1A D 所成角分别是α,β,则2παβ+= 【解析】证明:连接1AD ,11B D ,则11//AD BC , 则△11AB D 是正三角形,则1AD 与1AB 所成的角即为1AB 与1BC 成的角, 即1AB 与1BC 成60︒角;故A 正确,若113CN NC =,面1A MN 交CD 于E ,则13CE =;建立以1D 为坐标原点,11D A ,11D C ,1D D 分别为x ,y ,z 轴的空间直角坐标系如图: 则1(2A ,0,0),(1M ,2,0),(0N ,2,3)2,设DE t =,则(0E ,t ,2),1A ,M ,N ,E 四点共面,∴存在实数x ,y 使111A E xA M y A N =+,即(2-,t ,2)(1x =-,2,0)(2y +-,2,3)2,则2222322x y x y t y ⎧⎪--=-⎪+=⎨⎪⎪=⎩,得234343x y t ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,则43DE =,42233CE =-=,故B 错误,取11A B 的中点H ,1BB 的中点K , 连接HM ,HM ,HK , 则1DB HM ⊥,1DB KM ⊥, 则1DB ⊥平面HKM ,若1MP DB ⊥,则M 在平面HKM 中,则M HK ∈,则1HK ==即P 点在正方形11ABB A 边界及内部运动,且1MP DB ⊥,则P正确,故C 正确;建立如图的空间坐标系如图,则1(2A ,0,0),(0D ,0,2),(2A ,0,2),1(2B ,2,0), 则1(2D A =,0,2),1(2DA =,0,2)-,E ,F 分别在1DB 和11A C 上,且1112A FDE EB FC ==,∴122(233DE DB ==,2,42)(3-=,43,4)3-,则4(3E ,43,2)3,11122(233A F AC ==-,2,40)(3=-,43,0), 则2(3F ,43,0),则2(3EF =-,0,2)3-,则cos |cos EF α=<,122448||122224()()22333D A -->===-+-, 则0α=cos |cos EF β=<,1244||024()3DA -+>==-+, 则2πβ=,即2παβ+=,故D 正确,故选:ACD .三.填空题(共9小题)12.(2020秋•鼓楼区校级期末)如图,在棱长为1的正方体1111ABCD A BC D -中,点E ,F 分别是棱BC 、1CC 的中点,P 是侧面11BCC B 内一点(含边界),若1//A P 平面AEF ,点P 的轨迹长度为 .直线1A P 与平面11BCC B 所成角的正切值的取值范围是 .【解析】解:如图,分别取棱1BB ,11B C 的中点M ,N ,连接1A M ,1A N ,MN ,1BC ,NE ,M ,N ,E ,F 分别是其所在棱的中点,1//MN BC ∴,1//EF BC ,//MN EF ∴,MN ⊂/平面AEF ,EF ⊂平面AEF ,//MN ∴平面AEF ,1//AA NE ,1AA NE =,∴四边形1AENA 为平行四边形,1//A N AE ∴, 1A N ⊂/平面AEF ,AE ⊂平面AEF ,1//A N ∴平面AEF , 1A NM N N =,∴平面1//A MN 平面AEF ,P 是侧面11BCC B 内一点,且1//A P 平面AEF ,∴点P 必在线段MN 上,∴点P的轨迹长度为1122MN BC ==. 点P 的轨迹是线段MN ,11A B ⊥平面11BCC B ,∴直线1A P 与平面11BCC B 所成角的正切值为11A B 与P 到1B 的距离之比,设O 是MN的中点,则2MO NO ==, 111A B =,P 到1B 的距离的最大值为1112MB NB ==, ∴直线1A P 与平面11BCC B 所成角的正切值的最小值为1212=, P 到1B的距离的最小值为1B O == ∴直线1A P 与平面11BCC B=∴直线1A P 与平面11BCC B 所成角的正切值的取值范围是[2,.;[2,.13.(2020秋•桃城区校级月考)在三棱锥P ABC -中,PA AB ⊥,4PA =,3AB =,二面角P AB C --的大小为30︒,在侧面PAB ∆内(含边界)有一动点M ,满足M 到PA 的距离与M 到平面ABC 的距离相等,则M 的轨迹的长度为. 【解析】解:如图,过M 作MN PA ⊥ 于N ,MO ⊥平面ABC 于O , 过O 作OQ AB ⊥ 于Q ,连接MQ , 则MQO ∠ 为二面角P AB C -- 的平面角, 由30MQO ∠=︒, 得2MQ MO =.又MO MN =,所以2MQ MN =,在PAB ∆ 中,以AB 所在直线为x 轴,AP 所在直线为y 轴建立平面直角坐标系, 则直线AM 的方程为2y x =, 直线PB 的方程为43120x y +-=,所以直线AM 与PB 的交点坐标为612(,)55R ,所以M 的轨迹为线段AR ,14.(2020•浙江二模)在棱长为6的正三棱锥P ABC-中,D为棱PA上一动点,E为BC上一动点,且满足32AD BE=,则线段DE的中点Q的运动轨迹的测度||L L为曲线、平面图形、几何体时,||L 分别对应长度、面积、体积).【解析】解:取AB,AC,PB,PC的中点,H,I,G,F,由题意可知,Q在平面FGHI内运动,设2AD x=,3BE x=,在平面FGHI内,32HM x=,MQ x=,所以线段DE的中点Q的轨迹为线段.当E运动到C点时,132HM HI BC===,4AD=,则2MQ=,由正三棱锥的性质,可知PA BC⊥,所以HI MQ⊥,所以||L==15.(2020•河南模拟)在直四棱柱1111ABCD A B C D -中,侧棱长为6,底面是边长为8的菱形,且120ABC ∠=︒,点E 在边BC 上,且满足3BE EC =,动点M 在该四棱柱的表面上运动,并且总保持1ME BD ⊥,则动点M的轨迹围成的图形的面积为 MC 与平面ABCD 所成角最大时,异面直线1MC 与AC 所成角的余弦值为 .【解析】解:如图,在直四棱柱1111ABCD A B C D -中,底面是菱形,侧棱垂直底面, AC ∴⊥平面11BDD B ,1BD AC ∴⊥,在AB 上取F ,使得3BF FA =,连接EF ,则//EF AC ,1BD EF ⊥, 记AC 与BD 的交点为O ,以O 为坐标原点,建立如图所示的空间直角坐标系,则(4B ,0,0),1(4D -,0,6),(1E ,0), 在1BB 上取一点G ,记为(4G ,0,)t ,∴1(8BD =-,0,6),(3EG =,-,)t ,由12460BD EG t =-+=,解得4t =,即12BG GB =, EFG ∴∆的边为点M 的运动轨迹,由题意得FG =3344EF AC ==⨯=动点M 的轨迹围成的面积为12S =⨯∴当M 与G 重合时,MC 与平面ABCD 所成角最大,(4M,0,4),1(0C,6),∴1(4MC=-,,2),AC的一个方向向量为(0n =,1,0),11143cos,||||68MC nMC nMC n∴<>===,∴异面直线1MC与AC故答案为:16.(2020•高密市模拟)在四棱锥P ABCD-中,PA⊥平面ABCD,2AP=,点M是矩形ABCD内(含边界)的动点,且1AB=,3AD=,直线PM与平面ABCD所成的角为4π.记点M的轨迹长度为α,则tanα= P ABM-的体积最小时,三棱锥P ABM-的外接球的表面积为.【解析】解:如图所示,因为PA⊥平面ABCD,垂足为A,则PMA∠为直线PM与平面ABCD所成的角,所以4PMAπ∠=;因为2AP=,所以2AM=,所以点M位于底面矩形ABCD内的以点A为圆心,2为半径的圆上,记点M的轨迹为圆弧EF,连接AF,则2AF=;因为1AB=,3AD=,所以6AFB FAEπ∠=∠=;则弧EF的长度为263ππα=⨯=,所以tanα.当点M位于F时,三棱锥P ABM-的体积最小,又2PAF PBFπ∠=∠=,所以三棱锥P ABM-的外接球球心为PF的中点;因为PF =所以三棱锥P ABM -的外接球的表面积为248S ππ==.8π.17.(2020•南昌三模)已知长方体1111ABCD A B C D -中,32AB =,2AD =,1AA =已知P 是矩形ABCD内一动点,14PA =,设P 点形成的轨迹长度为α,则tan α= -1C P 的长度最短时,三棱锥1D DPC -的体积为 .【解析】解:在长方体的底面矩形ABCD 内一动点P ,连接AP ,14PA =,1AA =2AP ∴,P ∴点的轨迹为以A 为圆心,以2为半径的圆,与底面矩形BC 的交点为E ,D ,即P 的轨迹为圆弧DE ,连接AE , 在ABE ∆中,332cos 24AB EAB AE ∠===,3sin cos 4DAE EAB ∴∠=∠=,得3arcsin 4DAE ∠=, 2DE DAE α∴==∠,α为钝角, 373sin sin(2arcsin )2448DAE α∴=∠==1cos 8α==-,得tan α=-当1C P 的长度最短时,P 在AC 上,此时52AC ==,则51222PC =-=,:1:5PC AC =.又11132322D DAC V -=⨯⨯⨯⨯∴1115D DPC D DAC V V --==故答案为:-.18.(2020•中卫二模)古希腊数学家阿波罗尼奥斯发现:平面上到两定点A ,B 距离之比为常数(0λλ>且1)λ≠的点的轨迹是一个圆心在直线AB 上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:如图,在长方体1111ABCD A B C D -中,1226AB AD AA ===,点E 在棱AB 上,2BE AE =,动点P 满足BP =.若点P 在平面ABCD 内运动,则点P 所形成的阿氏圆的半径为 P 在长方体1111ABCD A B C D -内部运动,F 为棱11C D 的中点,M 为CP 的中点,则三棱锥1M B CF -的体积的最小值为 .【解析】解:①若点P 在平面ABCD 内运动时,如图以A 为原点距离平面直角坐标系,可得(2,0)E ,(6,0)B .设(,)P x y ,由BP =可得223BP PE =.即22223(2)3(6)x y x y -+=-+,2212x y ⇒+=.则点P 所形成的阿氏圆的半径为A ,②若点P 在长方体1111ABCD A B C D -内部运动,由①可得点P在半径为A 球上. 如图建立空间直角坐标系,可得(3A ,0,0),(0F ,3,3),(0C ,6,0),1(3B ,6,3) 则1(0,3,3),(3,3,0)FC FB =-=,(3,6,0)AC =-设面1FB C 的法向量为(,,)m x y z =,1330330m FC y z m FB x y ⎧=-=⎪⎨=+=⎪⎩,可得(1,1,1)m =--. A 到面1FCB的距离为||9||3m AC d m ===则P 到面1FCB 的距离的最小值为=, M 为CP 的中点,M ∴到面1FCB . 则三棱锥1M B CF -的体积的最小值为1213193234FCB S =⨯=. 故答案为:,94.19.(2020•柯城区校级一模)若四棱锥P ABCD-的侧面PAB内有一动点Q,已知Q到底面ABCD的距离与Q到点P的距离之比为正常数k,且动点Q的轨迹是抛物线,则当二面角P AB C--平面角的大小为30︒时,k的值为12.【解析】解:如图,设二面角P AB C--平面角为θ,点Q到底面ABCD的距离为||QH,点Q到定直线AB得距离为d,则||sinQH dθ=,即||sinQHdθ=.点Q到底面ABCD的距离与到点P的距离之比为正常数k,∴||||QHkPQ=,则||||QHPQk=,动点Q的轨迹是抛物线,||PQ d∴=,即||||sinQH QHkθ=.则sin kθ=.∴二面角P AB C--的平面角的余弦值为cos cos30θ===︒解得:1(0)2k k =>.故答案为:12.20.(2019秋•舟山期末)若四棱锥P ABCD-的侧面PAB内有一动点Q,已知Q到底面ABCD的距离与Q到点P的距离之比为正常数k,且动点Q的轨迹是抛物线,则当二面角P AB C--平面角的大小为60︒时,k的值为.【解析】解:如图,设二面角P AB C--平面角为θ,点Q到底面ABCD的距离为||QH,点Q到定直线AB得距离为d,则||sinQH dθ=,即||sinQHdθ=.点Q到底面ABCD的距离与到点P的距离之比为正常数k,∴||||QHkPQ=,则||||QHPQk=,动点Q的轨迹是抛物线,||PQ d∴=,即||||sinQH QHkθ=,则sin kθ=.∴二面角P AB C--的平面角的余弦值为1 cos cos602θ=︒=.解得:0)k k>..。

立体几何中的动点轨迹问题

立体几何中的动点轨迹问题

同理,在平面 AA1D1D 内满足条件的点的轨迹长度为52π.在平面 A1B1C1D1 内满足条件 的点的轨迹为以 A1 为圆心,A1F 为半径的14圆弧,长度为 2π×4×14=2π.同理,在平 面 ABCD 内满足条件的点的轨迹为以 A 为圆心,AE 为半径的圆弧,长度为 2π×3×14 =32π.故轨迹的总长度为52π+52π+2π+32π=172π.
的长度最小.因为 B1N1=D1N1= 5,B1D1=2 2,所以△B1N1D1 的边 B1D1 上的高为
52- 22= 3,则 S△B1N1D1=12×2 2× 3= 6,则当 B1N⊥D1N1 时,B1N 最
小,即 B1Nmin=2S△DB1N1N1 1D1=2
6=2 5
530.
总结 提炼
与平行有关的轨迹问题的解题策略 (1)线面平行转化为面面平行得轨迹; (2)平行时可利用法向量垂直关系求轨迹.
模型 3 动点保持等距关系
3 (2023·湖北联考节选)已知正方体 ABCD-A1B1C1D1 的棱长为 3,P 为正方体表 53
面上的一个动点,A1P=2 3,则点 P 的轨迹长度为___2__π__.
【解析】 如图,点 P 的轨迹一部分是在平面 ABB1A1,A1B1C1D1, ADD1A1 三个面内以 2 3为半径,圆心角为π6的三段圆弧,另一部分是 在平面 BCC1B1,CDD1C1,ABCD 三个面内以 3为半径,圆心角为π2 的三段圆弧.故点 P 的轨迹的长度为112×2π×2 3×3+14×2π× 3×3=523π.
点击对应数字即可跳转到对应题目
1
2
3
4
5
6
7
8
9
配套精练
2 . 如 图 , 正 方 体 ABCD - A1B1C1D1 的 棱 长 为 2 , E , F 分 别 为

立体几何中轨迹问题

立体几何中轨迹问题

立体几何中的轨迹问题立体几何是考查学生空间想象能力和转化能力,在立体几何中出现了一些轨迹问题,本人将这些问题作了如下归类,以供参考。

一、轨迹是抛物线例1.2004年高考北京卷(文),如图,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c内一动点,若点p到直线bc与直线c1d1的距离相等,则动点p的轨迹所在的曲线是()a.直线b.圆c.双曲线d.抛物线解:连接pc1,∵d1c1⊥面bb1c1c,又pc?奂面bb1c1c,∴d1c1⊥pc1,即可得线段pc1长为点p到c1d1的距离,原题意可转化为:在平面bb1c1c中,动点p到定点c1的距离与点p到定直线bc(点c1不在直线bc上)的距离相等.由抛物线定义可知:点p的轨迹所在的曲线是抛物线.例2.2004年高考北京卷(理),正方体abcd-a1b1c1d1的棱长为1,点m在棱ab上,且am=,点p是平面abcd上的动点,且点p到直线a1d1的距离与到点m的距离的平方差为1,则点p的轨迹是()a.抛物线b.双曲线c.直线d.以上都不对解:在正方形add1a1中过点e作ef⊥a1d1交ad于f,连接pf,pe,pm. ∵pe为点p到a1d1的距离∴pe⊥a1d1∴a1d1⊥efp面,又ad∥a1d1∴pf⊥ad即pf为点p到直线ad的距离.由条件和所作不难知ef⊥fp.pe2-pm2=ef2+pf2-pm2=1+pf2-pm2=1即:pf=pm,同样由抛物线定义可知:点p的轨迹所在的曲线是抛物线.二、轨迹是椭圆例3.由2004年高考北京卷,(文4)得变题1,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c内一动点,若点p到直线bc的距离是点p到直线c1d1的距离2倍,则动点p的轨迹是()a.线段b.椭圆的一部分c.双曲线的一部分d.抛物线的一部分解:变为在平面bb1c1c中,动点p到定点c1的距离与点p到定直线bc(点c1不在直线bc上)的距离之比为1∶2.由椭圆第二定义可知:点p的轨迹所在的曲线是椭圆(在正方形bb1c1c内),且离心率为.故本题选b.三、轨迹是双曲线例4.变题2,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c内一动点,若点p到直线bc的距离是点p到直线c1d1的距离一半,则动点p的轨迹是双曲线的一部分,且离心率为2.四、轨迹是线段例5.变题3,如图,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c 内一动点,且始终满足ap⊥d1b,则动点p的轨迹所在的曲线是() a.线段 b.椭圆的一部分c.双曲线的一部分d.抛物线的一部分解:连接ac,ab1,b1c,易证bd1⊥面ab1c,∴点p在线段b1c动,才能满足ap⊥d1b.故本题选a.例6.(2005年5月苏州市高三教学调研测试)如图,△adp为正三角形,四边形abcd为正方形,平面pad⊥平面abcd.m为平面abcd内的一动点,且满足mp=mc.点m在正方形abcd内的轨迹为(o为正方形abcd的中心)()解:空间中到p、c两点距离相等的点应在过线段pc中点且垂直于此线段pc的平面α上。

立体几何中的轨迹问题汇总

立体几何中的轨迹问题汇总

例析空间中点的轨迹问题的转化求空间图形中点的轨迹既是中学数学学习中的一个难点,又是近几年高考的一个热点,这是一类立体几何与解析几何的交汇题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面的轨迹问题来处理的基本思想。

一.轨迹为点例1已知平面βα||,直线α⊂l ,点P l ∈,平面βα,之间的距离为8,则在β内到P 点的距离为10且到直线l 的距离为9的点的轨迹是 ( )A .一个圆 B.两条直线 C.两个点 D.四个点解析:设Q 为β内一动点,点P 在β内射影为O ,过O, l 的平面与β的交线为l ', PQ=10,∴OQ==-228106点Q 在以O 为圆心6为半径圆上,过Q 作QM l '⊥于M ,又 点Q 到直线l 的距离为9∴QM=178922=-则点Q 在以l '平行距离为17的两条平行线上 两条平行线与圆有四个交点∴这样的点Q 有四个,故答案选D 。

点评:本题以空间图形为背景,把立体几何问题转化到平面上,再用平面几何知识解决,要熟记一些平面几何点的轨迹。

二. 轨迹为线段例2. 如图,正方体1111ABCD A BC D -中,点P 在侧面11BCC B 及其边界上运动,并且总保持1AP BD ⊥,则动点P 的轨迹是( )。

βαlMOQPA. 线段1B CB.线段1BCC. 1BB 中点与1CC 中点连成的线段D. BC 中点与11B C 中点连成的线段解:连结11,,AB AC B C ,易知111BD A AB ⊥所以11111,,AB BD AC BD B C BD ⊥⊥⊥,所以1BD ⊥面1ABC ,若P ∈1B C ,则AP ⊂平面1ABC ,于是1BD AP ⊥,因此动点P 的轨迹是线段1B C 。

评注:本题是由线面垂直的性质从而求出点P 的轨迹。

例3 已知圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周),若MP AM ⊥,则点P 的轨迹是________。

最新立体几何中的轨迹问题(总结+讲义+练习)

最新立体几何中的轨迹问题(总结+讲义+练习)

立体几何中的轨迹问题在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有: 1、 几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;2、 代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.轨迹问题【例1】 如图,在正四棱锥S -ABCD 中,E 是BC 的中点,P 点在侧面△SCD 内及其边界上运动,并且总是保持PE ⊥AC .则动点P 的轨迹与△SCD 组成的相关图形最有可能的是 ( )解析:如图,分别取CD 、SC 的中点F 、G ,连结EF 、EG 、FG 、BD .设AC 与BD 的交点为O ,连结SO ,则动点P 的轨迹是△SCD 的中位线FG .由正四棱锥可得SB ⊥AC ,EF ⊥AC .又∵EG ∥SB∴EG ⊥AC∴AC ⊥平面EFG ,∵P ∈FG ,E ∈平面EFG , ∴AC ⊥PE .另解:本题可用排除法快速求解.B 中P 在D 点这个特殊位置,显然不满足PE ⊥AC ;C 中P 点所在的轨迹与CD 平行,它与CF 成π4角,显然不满足PE ⊥AC ;D 于中P 点所在的轨迹与CD 平行,它与CF 所成的角为锐角,显然也不满足PE ⊥AC .评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹.【例2】 (1)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.(2) 正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是 线段B 1C .(3) 正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 线段MN (M 、N 分别为前右两面的中心).(4) 已知正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体的侧面BCC 1B 1上到点A 距离为233的点的集合形成一条曲线,那么这条曲线的形状是 ,它的长度是 .若将“在正方体的侧面BCC 1B 1上到点A 距离为23 3 的点的集合”改为“在正方体表面上与点A 距离为233的点的集合” 那么这条曲线的形状又是 ,它的长度又是 .1AC C 1AEC C 1A AB1A 1(1)(2)(3)(4)DDA .B .C .D . A【例3】 (1)(04北京)在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 ( D )A . A 直线B .圆C .双曲线D .抛物线 变式:若将“P 到直线BC 与直线C 1D 1的距离相等”改为“P 到直线BC 与直线C 1D 1的距离之比为1:2(或2:1)”, 则动点P 的轨迹所在的曲线是 椭圆 (双曲线). (2)(06北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支解:设l 与l 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A . (3)已知正方体ABCD —A 1B 1C 1D 1的棱长为1,M 在棱AB 上,且AM =13,点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为 抛物线 .(4)已知正方体ABCD —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 π6. 【例4】 (04重庆)若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )【例5】 四棱锥P -ABCD ,AD ⊥面P AB ,BC ⊥面P AB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分 分析:∵AD ⊥面P AB ,BC ⊥平面P AB ∴AD ∥BC 且AD ⊥P A ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴AD P A =CB PB ∴PB =2P A在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0) ∴P 的轨迹是(B )BABCDAB1A lAB Cα A B CD D 1 C 1B 1A 1 M PABCDD 1 C 1 B 1 A 1 M N3 323P A BC D立体几何中的轨迹问题(教师版)1.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB与到直线B1C1的距离相等,则动点P所在曲线的形状为(D).2.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为2:1,则动点P所在曲线的形状为(B).A.线段B.一段椭圆弧C.双曲线的一部分D.抛物线的一部分3.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为1:2,则动点P所在曲线的形状为(C).A.线段B.一段椭圆弧C.双曲线的一部分D.抛物线的一部分4.在正方体ABCD-A1B1C1D1中,E为AA1的中点,点P在其对角面BB1D1D内运动,若EP总与直线AC成等角,则点P的轨迹有可能是(A).A.圆或圆的一部分B.抛物线或其一部分C.双曲线或其一部分D.椭圆或其一部分简析由条件易知:AC是平面BB1D1D的法向量,所以EP与直线AC成等角,得到EP与平面BB1D1D 所成的角都相等,故点P的轨迹有可能是圆或圆的一部分.5a,定点M在棱AB上(但不在端点A,B上),点P是平面ABCD内的动点,且点P P到点M的距离的平方差为a2,则点P的轨迹所在曲线为(A).A.抛物线B.双曲线C.直线D.圆连结PE.则PE2=a2+PF2,又PE2-PM2=a2,所以PM2=PF2,从而PM=PF,故点P到直线AD与到点M的距离相等,故点P的轨迹是以M为焦点,AD为准线的抛物线.6P在侧面BCC1B1及其边界上运动,总有1,则动点P的轨迹为的轨迹为_______________.答案线段MN(M、N分别为SC、CD8.若A、B P C(不同于A、B,则动点C在平面内的轨迹是________.(除去两点的圆)A—BCD的侧面ABC内一动点P到底面BCD的距离与到棱AB的距离相等,则动点P的轨迹与组成的图形可能是:(D)A A AP PP PB C B C B C B C A B C D简析 动点P 在侧面ABC 内,若点P 到AB 的距离等于到棱BC 的距离,则点P 在∠ABC 的内角平分线上.现在P 到平面BCD 的距离等于到棱AB 的距离,而P 到棱BC 的距离大于P 到底面BCD 的距离,于是,P 到棱AB 的距离小于P 到棱BC 的距离,故动点P 只能在∠ABC 的内角平分线与AB 之间的区域内.只能选D . 10.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是(B ). A .圆 B .椭圆 C .双曲线 D .抛物线解题的要领就是化空间问题为平面问题,把一些重要元素集中在某一个平面内,利 用相关的知识去解答,象平面几何知识、解析几何知识等.11.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________. 简析以B 为圆心,半径为33且圆心角为π2的圆弧,长度为36π. 12.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 . 提示轨迹的图形是一个平行四边形.13.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积.简析 由于M 、N 都是运动的,所以求的轨迹必须化“动”为“静”,结合动点P 的几何性质,连结DP ,因为MN=2,所以PD=1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P 的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即1843163⨯⨯=ππ.14.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( ) 简析:如图,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4.在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上.又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点.因此所求点的轨迹是四个点,故选C .16.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分简析:因为⊥AD 面PAB ,⊥BC 面PAB ,所以AD//BC ,且︒=∠=∠90CBP DAP . 又8BC ,4AD ,CPB APD ==∠=∠,可得CPB tan PB CB PA AD APD tan ∠===∠,即得2ADCBPA PB == 在平面PAB 内,以AB 所在直线为x 轴,AB 中点O 为坐标原点,建立平面直角坐标系,则A (-3,0)、B(3,0).设点P (x ,y ),则有2y )3x (y )3x (|PA ||PB |2222=+++-=,整理得09x 10y x 22=+++由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B .17.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB .所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B .18.如图,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线简析:因为P 到11D C 的距离即为P 到1C 的距离,所以在面1BC 内,P 到定点1C 的距离与P 到定直线BC 的距离相等.由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D .19.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线简析:如图4,以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系.设P (x ,y ),作AD PE ⊥于E 、11D A PF ⊥于F ,连结EF ,易知1x |EF ||PE ||PF |2222+=+=又作CD PN ⊥于N ,则|1y ||PN |-=.依题意|PN ||PF |=,即|1y|1x2-=+,化简得0y2yx22=+-故动点P的轨迹为双曲线,选B.20.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线分析:由于线段AB是定长线段,而△ABP的面积为定值,所以动点P到线段AB的距离也是定值.由此可知空间点P在以AB为轴的圆柱侧面上.又P在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB是平面的斜线段),得到的切痕是椭圆.P的轨迹就是圆柱侧面与平面a的交线.21.如图,动点P在正方体1111ABCD A B C D-的对角线1BD上.过点P作垂直于平面11BB D D的直线,与正方体表面相交于M N,.设BP x=,MN y=,则函数()y f x=的图象大致是()分析:将线段MN投影到平面ABCD内,易得y为x一次函数.22.已知异面直线a,b成︒60角,公垂线段MN的长等于2,线段AB两个端点A、B分别在a,b上移动,且线段AB长等于4,求线段AB中点的轨迹方程.图5简析:如图5,易知线段AB的中点P在公垂线段MN的中垂面α上,直线'a、'b为平面α内过MN的中点O分别平行于a、b的直线,'a'AA⊥于'A,'b'BB⊥于'B,则P'B'AAB=⋂,且P也为'B'A的中点.由已知MN=2,AB=4,易知,2AP,1'AA==得32'B'A=.则问题转化为求长等于32的线段'B'A的两个端点'A、'B分别在'a、'b上移动时其中点P的轨迹.现以'OB'A∠的角平分线为x轴,O为原点建立如图6所示的平面直角坐标系.A BCDMNPA1 B1C1D1yxOyxOyxOyxO图6设)y ,x (P ,n |'OB |,m |'OA |==, 则)n 21,n 23('B ),m 21,m 23('A - )n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++- 消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为1y 9x 22=+.点评:例5和例6分别将立体几何与解析几何中的双曲线与椭圆巧妙地整合在一起,相互交汇和渗透,有利于培养运用多学科知识解决问题的能力.立体几何中的轨迹问题1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是 ( ) A .圆或圆的一部分 B .抛物线或其一部分 C .双曲线或其一部分 D .椭圆或其一部分5a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD内的动点,且点P P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为( ) A .抛物线 B .双曲线 C .直线 D .圆A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与组成的图形可能是( )A A AB C B C B C B CA B C DA B C D 7.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是 ( )A .圆B .椭圆C .双曲线D .抛物线8.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A .一个圆B .两条平行直线C .四个点D .两个点9.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( ) A .圆 B .不完整的圆 C .抛物线 D .抛物线的一部分10.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点11.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线12.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线 13.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )14.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________.15.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.16.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.17.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________.18.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 .A BC D MNP A 1B 1C 1D 1 yxOyOxOyx O19.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 中点P 的轨迹与正方体的面所围成的几何体的体积是 .20.已知异面直线a ,b 成︒60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且线段AB 长等于4,求线段AB 中点的轨迹方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第20讲 立体几何中轨迹问题7类【题型一】由动点保持平行性求轨迹【典例分析】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC 的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是( )A 3B 2C 3aD 2a 【答案】D 【分析】连接GH 、HN ,有GH ∥BA 1,HN ∥BD ,证得面A 1BD ∥面GHN ,由已知得点M 须在线段GH 上运动,即满足条件,由此可得选项. 【详解】解:连接GH 、HN 、GN ,∥在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、CD 的中点,N 是BC 的中点,则GH ∥BA 1,HN ∥BD ,又GH ⊄面A 1BD ,BA 1⊂面A 1BD ,所以//GH 面A 1BD ,同理可证得//NH 面A 1BD , 又GH HN H ⋂=,∥面A 1BD ∥面GHN ,又∥点M 在四边形EFGH 上及其内部运动,MN ∥面A 1BD , 则点M 须在线段GH 上运动,即满足条件,GH 2,则点M 2. 故选:D.【变式演练】1.在三棱台111A B C ABC -中,点D 在11A B 上,且1//AA BD ,点M 是三角形111A B C 内(含边界)的一个动点,且有平面//BDM 平面11A ACC ,则动点M 的轨迹是( )A .三角形111ABC 边界的一部分 B .一个点 C .线段的一部分D .圆的一部分【答案】C 【分析】过D 作11//DE AC 交11B C 于E ,连接BE ,证明平面//BDE 平面11AAC C ,得M DE ∈,即得结论. 【详解】如图,过D 作11//DE AC 交11B C 于E ,连接BE ,1//BD AA ,BD ⊄平面11AAC C ,1AA ⊂平面11AAC C ,所以//BD 平面11AAC C , 同理//DE 平面11AAC C ,又BD DE D ⋂=,,BD DE ⊂平面BDE ,所以平面//BDE 平面11AAC C ,所以M DE ∈,(M 不与D 重合,否则没有平面BDM ), 故选:C .2.已知正方体1111ABCD A B C D -的棱长为2,E 、F 分别是棱1AA 、11A D 的中点,点P 为底面ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为( )A 21B 5C 32D 6【答案】B 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点(),,0P a b ,计算出平面BEF 的一个法向量m 的坐标,由已知条件得出10D P m ⋅=,可得出a 、b 所满足的等式,求出点P 的轨迹与线段AD 、BC 的交点坐标,即可求得结果.【详解】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()2,2,0B 、()2,0,1E 、()1,0,2F 、()10,0,2D ,设点(),,0P a b ,()0,2,1BE =-,()1,0,1EF =-,设平面BEF 的法向量为(),,m x y z =, 由200m BE y z m EF x z ⎧⋅=-+=⎨⋅=-+=⎩,取2z =,可得()2,1,2m =,()1,,2D P a b =-,由题意可知,1//D P 平面BEF ,则1240D P m a b ⋅=+-=,令0b =,可得2a =;令2b =,可得1a =.所以,点P 的轨迹交线段AD 于点()2,0,0A ,交线段BC 的中点()1,2,0M , 所以,点P 的轨迹长度为()()2221025AM =-+-=故选:B.3.在棱长为2的正方体1111ABCD A B C D -中,点E ,F 分别是棱11C D ,11B C 的中点,P 是上底面1111D C B A 内一点(含边界),若//AP 平面BDEF ,则Р点的轨迹长为( ) A .1 B 2C .2 D .22【答案】B 【分析】由分别取棱11A B 、11A D 的中点M 、N ,连接MN ,由线面平行得面面平行,得动点轨迹,从而可计算其长度. 【详解】如图所示,分别取棱11A B 、11A D 的中点M 、N ,连接MN ,连接11B D , ∥M 、N 、E 、F 为所在棱的中点,∥11//MN B D ,11//EF B D ,∥//MN EF , 又MN ⊄平面BDEF ,EF ⊂平面BDEF ,∥//MN 平面BDEF ,连接NF ,由11//NF A B ,11NF A B =,11//A B AB ,11A B AB =,可得//NF AB ,NF AB =,则四边形ANFB 为平行四边形,则//AN FB ,而AN ⊄平面BDEF ,FB ⊂平面BDEF ,则//AN 平面BDEF . 又ANNM N =,∥平面//AMN 平面BDEF .又P 是上底面1111D C B A 内一点,且//AP 平面BDEF , ∥P 点在线段MN 上.又1112MN B D =,∥P 2【题型二】动点保持垂直性求轨迹【典例分析】在正方体1111ABCD A B C D -中,Q 是正方形11B BCC 内的动点,11A Q BC ⊥,则Q 点的轨迹是( ) A .点1B B .线段1B CC .线段11B CD .平面11B BCC【答案】B 【分析】如图,连接1A C ,证明1BC ⊥1B Q ,又1BC ⊥1B C ,即得解.【详解】如图,连接1A C ,因为111111111111,,,,BC AQ BC A B AQ A B A AQ A B ⊥⊥=⊂平面11A B Q ,所以1BC ⊥平面11A B Q , 又1B Q ⊂平面11A B Q ,所以1BC ⊥1B Q ,又1BC ⊥1B C .所以点Q 在线段1B C 上.故选:B【变式演练】1.在正方体1111ABCD A B C D -中,点P 在侧面11BCC B 及其边界上运动,且保持1AP BD ⊥,则动点P 的轨迹为( ) A .线段1CBB .线段1BCC .1BB 的中点与1CC 的中点连成的线段D .BC 的中点与11B C 的中点连成的线段【答案】A 【分析】利用直线与平面垂直的判定可得1BD ⊥面1ACB ,又点P 在侧面11BCC B 及其边界上运动,并且总是保持AP 与1BD 垂直,得到点P 的轨迹为面1ACB 与面11BCC B 的交线. 【详解】如图,连接AC ,1AB ,1B C ,在正方体1111ABCD A B C D -中,有1BD ⊥平面1ACB ,又点P 在侧面11BCC B 及其边界上运动,∴故点P 的轨迹为平面1ACB 与平面11BCC B 的交线段1CB .故选:A.2.在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥.给出下列说法: ∥点P 可以是棱1BB 的中点; ∥线段MP 的最大值为34; ∥点P 的轨迹是正方形; ∥点P 轨迹的长度为25其中所有正确说法的序号是________.【答案】∥∥ 【分析】以D 为坐标原点,分别以DA ,DC ,1DD 为x 轴,y 轴,z 轴建立空间直角坐标系,求出MP 的坐标,从而得到MP 的最大值,即可判断选项∥,通过分析判断可得点P 不可能是棱1BB 的中点,从而判断选项∥,又1EF GH ==,5EH FG ==∥和选项∥. 【详解】解:在正方体1111ABCD A B C D -中,以D 为坐标原点,1DC 为x 轴,y 轴, ∥该正方体的棱长为1,M ,N 分别为1BD ,11B C 的中点, ∥()0,0,0D ,M (12,12,12),1,1,12N ⎛⎫ ⎪⎝⎭,()0,1,0C∥1,0,12CN ⎛⎫= ⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,∥MP CN ⊥,∥1110222x z ⎛⎫-+-= ⎪⎝⎭,即2430x z +-=当1x =时,14z =,当0x =时,34z =,取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭,连结EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭,∥四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=, 即EF CN ⊥,EH CN ⊥,又EF 和EH 为平面EFGH 中的两条相交直线, ∥CN ⊥平面EFGH ,又111,,224EM ⎛⎫=- ⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,∥M 为EG 的中点,则M ∈平面EFGH , 为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体表面上运动,∥点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,故选项∥错误; 又1EF GH ==,5EH FG ==, ∥EF EH ≠,则点P 的轨迹不是正方形且矩形EFGH 周长为52225+=故选项∥错误,选项∥正确;∥1,0,12CN ⎛⎫= ⎪⎝⎭,111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,又MP CN ⊥,则1110222x z ⎛⎫-+-= ⎪⎝⎭,即2430x z +-=,∥322x z =-,点P 在正方体表面运动, 则30212z ≤-≤,解1344z ≤≤, ∥2222211111522222MP x y z z y ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故当14z =或34z =,0y =或1,MP 取得最大值为34,故∥正确.故答案为:∥∥.3.如图,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,则下列说法不正确的是( )A .1A F 与1D E 不可能平行B .1A F 与BE 是异面直线C .点F 的轨迹是一条线段D .三棱锥1F ABD -的体积为定值 【答案】A 【分析】设平面1D AE 与直线BC 交于G ,连接AG ,EG ,则G 为BC 的中点,分别取1B B ,11B C 的中点M ,N ,连接1A M ,MN ,1A N ,证明平面1//A MN 平面1D AE ,即可分析选项ABC 的正误;再由//MN EG ,得点F到平面1D AE 的距离为定值,可得三棱锥1F ABD -的体积为定值判断D . 【详解】解:设平面1D AE 与直线BC 交于G ,连接AG ,EG , 则G 为BC 的中点,分别取1B B ,11B C 的中点M ,N , 连接1A M ,MN ,1A N , 如图,∥11//A M D E ,1A M平面1D AE ,1D E ⊂平面1D AE ,∥1//A M 平面1D AE ,同理可得//MN 平面1D AE , 又1A M 、MN 是平面1A MN 内的两条相交直线,∥平面1//A MN 平面1D AE ,而1//A F 平面1D AE ,∥1A F ⊂平面1A MN , 得点F 的轨迹为一条线段,故C 正确;并由此可知,当F 与M 重合时,1A F 与1D E 平行,故A 错误;∥平面1//A MN 平面1D AE ,BE 和平面1D AE 相交,∥1A F 与BE 是异面直线,故B 正确; ∥//MN EG ,则点F 到平面1D AE 的距离为定值,∥三棱锥1F ABD -的体积为定值,故D 正确. 故选:A .【题型三】由动点保持等距(或者定距)求轨迹【典例分析】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是( ) A .直线 B .椭圆C .抛物线D .双曲线【答案】D 【分析】以D 为坐标原点建立空间直角坐标系D xyz -,求出点P 的轨迹方程即可判断. 【详解】如图示,过P 作PE ∥AB 与E ,过P 作PF ∥AD 于F ,过F 作FG ∥AA 1交A 1D 1于G ,连结PG ,由题意可知PE=PG以D 为坐标原点建立空间直角坐标系D xyz -,设(),,0P x y ,由PE=PG 得: 2211x y -=+,平方得:()2211x y --=即点P 的轨迹是双曲线.故选:D.【变式演练】1.如图,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为正方形ABCD 内(包括边界)的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为( )A .B .C .D .【答案】A 【分析】如图,以D 为坐标原点,建立空间直角坐标系,设(),,0M x y ,正方形ABCD 的边长为a ,求出MC ,MP 的坐标,利用MP MC =可得x 与y 的关系,即可求解. 【详解】如图,以D 为坐标原点,DA ,DC 所在的直线分别为x ,y 轴建立如图所示的空间直角坐标系,设正方形ABCD 的边长为a ,(),,0M x y ,则0x a ≤≤,0y a ≤≤,32a a P ⎛ ⎝⎭,()0,,0C a ,则()22MC x a y =+-222322a a MP x y ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭MP MC =,得2x y =,所以点M 在正方形ABCD 内的轨迹为一条线段()102y x x a =≤≤, 故选:A .2.如图,在棱长为4的正方体ABCD A B C D ''''-中,E 、F 分别是AD 、A D ''的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A B C D ''''上运动,则线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体的体积为( )A .43πB .23π C .6πD .3π【分析】连接PF 、NF ,分析得出1FP =,可知点P 的轨迹是以点F 为球心,半径长为1的球面,作出图形,结合球体的体积公式可求得结果. 【详解】连接PF 、NF ,因为//AD A D '',AD A D ''=,且E 、F 分别为AD 、A D ''的中点, 故//AE A F '且AE A F '=,所以,四边形AA FE '为平行四边形,故//EF AA '且4EF AA ='=,AA '⊥平面A B C D '''',则EF ⊥平面A B C D '''',因为FN ⊂平面A B C D '''',所以,EF FN ⊥,P 为MN 的中点,故112FP MN ==,所以,点P 的轨迹是以点F 为球心,半径长为1的球面,如下图所示:所以,线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体为球F 的14, 故所求几何体的体积为3141433V ππ=⨯⨯=.故选:D.3.四棱锥P ﹣OABC 中,底面OABC 是正方形,OP ∥OA ,OA =OP =a .D 是棱OP 上的一动点,E 是正方形OABC 内一动点,DE 的中点为Q ,当DE =a 时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是( ) A .23B .26C .336D .6【分析】由题意结合选项可特殊化处理,即取OP 与底面垂直,求得Q 的轨迹,结合球的表面积求解. 【详解】解:不妨令OP ∥OC ,则OP ∥底面OABC , 如图,∥D 是OP 上的动点,∥OD ∥底面OABC ,可得OD ∥OE , 又Q 为DE 的中点,∥OQ 1122DE a ==,即Q 的轨迹是以O 为球心,以12a 为半径的18球面, 其表面积为S 214384a ππ=⨯⨯=,得a 6=.故选:B .【题型四】由动点保持等角(或定角)求轨迹【典例分析】正方体1111ABCD A B C D -中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为( )A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【分析】根据题设分析可知:Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,应用数形结合,结合平面与双锥面相交所成曲线的性质判断Q 所在轨迹的形状. 【详解】由题设,Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,如下图示:当P 是边11C D 上移动过程中,只与下方锥体有相交,Q 点轨迹为抛物线; 当P 是边11C D 上移动过程中,与上方锥体也有相交,Q 点轨迹为双曲线;故选:D【变式演练】1.如图,斜线段AB 与平面α所成的角为60︒,B 为斜足,平面α上的动点P 满足30PAB ∠=︒,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支【答案】C 【分析】由题可知点P 在以AB 为轴的圆锥的侧面上,再结合条件可知P 的轨迹符合圆锥曲线中椭圆定义,即得. 【详解】用垂直于圆锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线.此题中平面α上的动点P 满足30PAB ∠=︒,可理解为P 在以AB 为轴的圆锥的侧面上, 再由斜线段AB 与平面α所成的角为60︒,可知P 的轨迹符合圆锥曲线中椭圆定义. 故可知动点P 的轨迹是椭圆. 故选:C.2.如图所示,1111ABCD A B C D -为长方体,且AB =BC =2,1AA =4,点P 为平面1111A B C D 上一动点,若11PBC BC C ∠=∠,则P 点的轨迹为( )A .抛物线B .椭圆C .双曲线D .圆【答案】B【分析】建立空间直角坐标系,利用空间向量的坐标运算和轨迹方程思想求得P 的轨迹方程,进而根据方程判定轨迹类型. 【详解】如图,建立直角坐标系,则()()10,0,4,0,2,0B C ,2222112425BC BC CC =+=+= 设(),,0P x y ,则向量(),,4BP x y =-,向量()10,2,4BC =-,()111222211cos ||2551624CC BP BC PBC BC BP BC x y ∠=====+++-, ∥()()2228416y x y +=++,即2243160x y y +-=,228644333x y ⎛⎫+-= ⎪⎝⎭,22831166439y x ⎛⎫- ⎪⎝⎭+=,这方程表示的轨迹是平面1111A B C D 上的椭圆,故选:B.3.在长方体1111ABCD A B C D -中,6AB AD ==,12AA =,M 为棱BC 的中点,动点P 满足APD CPM ∠=∠,则点P 的轨迹与长方体的侧面11DCC D 的交线长等于___________. 【答案】23π【分析】由题意画出图形,由角的关系得到边的关系,然后再在平面11DCC D 内建系,求出P 的轨迹方程,确定点P 的轨迹与长方体的面11DCC D 的交线,进而求得交线长. 【详解】 如下图所示:当P 在面11DCC D 内时,AD ⊥面11DCC D ,CM ⊥面11DCC D ; 又APD MPC ∠=∠,在Rt PDA 与Rt PCM 中,∥6AD =,则3MC =, ∥tan tan AD MCAPD MPC PD PC∠==∠=,则63PD PC=,即2PD PC =. 在平面11DCC D 中,以DC 所在直线为x 轴,以DC 的垂直平分线为y 轴建立平面直角坐标系,则()3,0D -,()3,0C ,设(),P x y ,由2PD PC =()()2222323x y x y ++-+整理得:221090x x y -++=,即()22516x y -+=. ∥点P 的轨迹是以F (5,0)为圆心,半径为4的圆.设圆F 与面11DCC D 的交点为E 、M ,作EK 垂直x 轴于点K ,如图,则21sin 42EK EFK EF ∠===;∥6EFK π∠=;故点P 的轨迹与长方体的面11DCC D 的交线为劣弧ME ,所以劣弧ME 的长为2463ππ⨯=.故答案为:【题型五】 投影求轨迹【典例分析】1822年,比利时数学家 Dandelin 利用圆锥曲线的两个内切球,证明了用一个平面去截圆锥,可以得到椭圆(其中两球与截面的切点即为椭圆的焦点),实现了椭圆截线定义与轨迹定义的统一性.在生活中,有一个常见的现象:用手电筒斜照地面上的篮球,留下的影子会形成椭圆.这是由于光线形成的圆锥被地面所截产生了椭圆的截面.如图,在地面的某个占1A 正上方有一个点光源,将小球放置在地面,使得1AA 与小球相切.若15A A =,小球半径为2,则小球在地面的影子形成的椭圆的离心率为( )A .23B .45 C .13D .25【答案】A 【分析】设21A F x =,从而可得15AA = ,122A A x =+,23AA x =+,利用勾股定理可得10x =,再由离心率的定义即可求解. 【详解】在21Rt AA A 中,设21A F x =,2DA x ∴=15AA = ,122A A x =+,23AA x =+,2225(2)(3)x x ∴++=+, 10x ∴=, ∥长轴长12212A A a ==,6a =,624c =-=则离心率23c e a ==.故选:A【变式演练】1.如图,已知水平地面上有一半径为3的球,球心为O ',在平行光线的照射下,其投影的边缘轨迹为椭圆C .如图,椭圆中心为O ,球与地面的接触点为E ,4OE =.若光线与地面所成角为θ,椭圆的离心率e =__________.【答案】45【分析】根据平行投影计算出椭圆C 的短半轴长b ,再求出光线与水平面所成锐角的正弦,进而求得椭圆C 的长轴长2a 而得解. 【详解】连接OO ',则O OE θ'∠=,因为34,O E OE '==,如图:所以2222345OO O E OE ''+=+=,所以3sin 5O E OO θ'==' 在照射过程中,椭圆的短半轴长b 是球的半径R ,即3b =,过球心与椭圆长轴所在直线确定的平面截球面所得大圆及对应光线,如图:椭圆的长轴长2a 是AC ,过A 向BC 做垂线,垂足是B ,则,AB O O O E AC ''⊥⊥,由题意得:326sin sin 5AB R ACB θ==∠==,,又sin ABACB AC∠=, 则35AB AC =,10AC =,即2105a a ==,, 所以椭圆的离心率为2225945ca b e a--====.故答案为:45【题型六】翻折与动点求轨迹(难点)【典例分析】如图,将四边形ABCD 中,ADC 沿着AC 翻折到1AD C ,则翻折过程中线段DB 中点M 的轨迹是( )A .椭圆的一段B .抛物线的一段C .双曲线的一段D .一段圆弧【答案】D 【分析】过点D 作AC 的垂线,垂足为F ,过点点B 作AC 的垂线,垂足为E ,连接,DE BF ,再分别分析翻折前、后的变化量与不变量,在翻折后的图形中取BE 中点O ,进而可得答案. 【详解】解:在四边形ABCD 中,过点D 作AC 的垂线,垂足为F ,过点点B 作AC 的垂线,垂足为E ,连接,DE BF ,如图1,所以当四边形ABCD 确定时, DEF 和BEF 三边长度均为定值,当ADC 沿着AC 翻折到1AD C ,形成如图2的几何体,并取BE 中点O ,连接OM , 由于在翻折过程中,1DE D E =,所以由中位线定理可得112OM D E =为定值, 所以线段DB 中点M 的轨迹是以BE 中点O 为圆心的圆弧上的部分.故选:D【变式演练】1.已知∥ABC 的边长都为2,在边AB 上任取一点D ,沿CD 将∥BCD 折起,使平面BCD ∥平面AC D .在平面BCD 内过点B 作BP ∥平面ACD ,垂足为P ,那么随着点D 的变化,点P 的轨迹长度为( ) A .6πB .3π C .23π D .π【答案】C 【分析】根据题意,先确定点P 轨迹的形状,进而求出轨迹的长度即可. 【详解】由题意,在平面BCD 内作BQ ∥CD ,交CD 于Q ,因为平面BCD ∥平面ACD ,平面BCD 与平面ACD 交于CD ,所以BQ ∥平面ACD ,又BP ∥平面ACD ,所以P ,Q 两点重合,于是随着点D 的变化,BP ∥CD 始终成立,可得在平面ABC 中,BP ∥CP 始终成立,即得点P 的轨迹是以BC 为直径的圆的一部分,由题意知随着点D 的变化,∥BCD 的范围为0,3π⎡⎤⎢⎥⎣⎦,可得点P 的轨迹是以BC 为直径(半径为1)的圆的13,即得点P 的轨迹长度为2122133ππ⨯⨯=.故选:C.2.如图,等腰梯形ABCD 中,//AB CD ,2AB =,1AD BC ==,AB CD >,沿着AC 把ACD △折起至1ACD △,使1D 在平面ABC 上的射影恰好落在AB 上.当边长CD 变化时,点1D 的轨迹长度为( )A .2π B .3π C .4π D .6π【答案】B 【分析】根据1D 的射影在边AB 上,且1AD 固定长度为1,所以1D 的轨迹在以A 为原点半径为1的圆上,因此考虑CD 的长度缩短到0时和CD 变长到AB 的长度两种情况,从而求出夹角大小,进而求出弧长. 【详解】因为1D 的射影在边AB 上,且1AD 固定长度为1,所以1D 的轨迹在以A 为原点半径为1的圆上.考虑极端情况:当CD 的长度缩短到0时,1,,C D D 都汇聚到线段AB 的中点(D 2);当CD 变长到AB 的长度时(1D 的射影为D 3),如图,设3AD t =,则32BD t =-,在13D D ARt中,22131D D t =-,同理:()22312CD t =+-,()22221313412D D CD CD t ⎡⎤=-=-+-⎣⎦∥()22141212t t t ⎡⎤-+-=-⇒=⎣⎦,即1D 在线段AB 上的投影与点A 的距离为12,从而1AD 与AB 夹角为3π,故点1D 的轨迹为1=33ππ⨯.故选:B.3.已知矩形ABCD 中,1AB =,2AE =ABE △沿着BE 进行翻折,使得点A 与点S 重合,若点S 在平面BCDE 上的射影在四边形BCDE 内部(包含边界),则动点S 的轨迹长度是( )A 3πB 6πC 6πD 3π 【答案】C 【分析】过点A 作AM BE ⊥于点M ,交BC 于点G ,则点S 在平面BCDE 上的射影N 落在线段MG 上.由翻折过程可知,6SM AM ==S 的轨迹是以点M 6为半径的一段圆弧,求出圆心角,利用弧长公式求出弧长. 【详解】如图(1),过点A 作AM BE ⊥于点M ,交BC 于点G ,则点S 在平面BCDE 上的射影N 落在线段MG 上.在Rt ABE △中,1AB =,2AE =3BE =2633AM =. 翻折的过程中,动点S 满足6SM =S 的轨迹是以点M 6.易得3BM =233EM =,AME GMB ∽△△,所以12MG MB MA ME ==,则6MG SM =<,如图(2),在圆M 中,0S M AG ⊥,1S G AG ⊥,所以点S 的轨迹是01S S ,且111cos 2MG S MG MS ∠==,则1π3S MG ∠=,10π6S MS ∠=,从而点S 的轨迹长度为π66π6=. 故选:C【课后练习】1.(多选题)(海南省海口市北京师范大学海口附属学校12月月考)如图,已知正方体1111ABCD A B C D -的棱长为112,,M DD 的中点,N 为正方形ABCD 所在平面内一动点,则下列结论正确的是( )A .若N 到直线1BB 与直线DC 的距离相等,则N 的轨迹为抛物线 B .若2MN =,则MN 的中点的轨迹所围成图形的面积为π C .若1D N 与AB 所成的角为60,则N 的轨迹为双曲线 D .若MN 与平面ABCD 所成的角为60,则N 的轨迹为椭圆 【答案】ABC 【分析】A :由1BB ⊥平面ABCD ,可得NB 即为N 到直线1BB 的距离,由抛物线的定义即可判断; B :由题意可得MN 中点的轨迹为以MD 3ABCD 的圆,计算可判断; C :建立空间直角坐标系,设(N x ,y ,0),由1D N 与AB 所成的角为60°,可得点N 的轨迹方程,从而可判断;D :由MN 与平面ABCD 所成的角为MND ∠,计算可得DN 为定值,可判断点N 的轨迹为以D 为圆心,DN 为半径的圆,从而可判断. 【详解】对于A ,1BB ⊥平面ABCD ,NB 即为N 到直线1BB 的距离, 在平面ABCD 内,点N 到定点B 的距离与到定直线DC 的距离相等, ∥点N 的轨迹就是以B 为焦点,DC 为准线的抛物线,故A 正确; 对于B ,1BB ⊥平面ABCD ,NB 即为N 到直线1BB 的距离, 在平面ABCD 内,点N 到定点B 的距离与到定直线DC 的距离相等, ∥点N 的轨迹就是以B 为焦点,DC 为准线的抛物线,故B 正确; 对于C ,如图,建立空间直角坐标系,(0D ,0,0),1(0D ,0,2),(2A ,0,0),(2B ,2,0),设(N x ,y ,0),则1(D N x =,y ,2)-,(0AB =,2,0),122121cos60242y D N AB D N ABx y ⋅︒==⨯++⨯, 化简得2234y x -=,即2214134y x -=,∥N 的轨迹为双曲线,故C 正确;对于D ,MN 与平面ABCD 所成的角为MND ∠,∥60MND ∠=︒, 则3DN =∥点N 的轨迹为以D 3D 错误. 故选:ABC ﹒2.(广东省六校高三上学期第三次联考数学试题)(多选题)如图的正方体1111ABCD A B C D -中,棱长为2,点E 是棱1DD 的中点,点F 在正方体表面上运动.以下命题正确的有( )A .侧面11CDD C 上不存在点F ,使得11B F CD ⊥B .点D 到面1A BE 的距离与点1C 到面1A BE 的距离之比为13C .若点F 满足1//B F 平面1A BE ,则动点F 的轨迹长度为25D .若点F 到点A 221F的轨迹长度为23π 【答案】BD 【分析】先找到点F 满足1//B F 平面1A BE 的轨迹,可判断选项AC ,将平面1A BE 补全,利用比例判断选项B ,找到满足点F 到点A 221D 【详解】取11C D 中点M ,1C C 中点N ,连接1B M ,1B N ,MN ,易证11//B N A E ,又1B N ⊄平面1A BE ,1A E ⊂平面1A BE ,所以1//B N 平面1A BE , 又1//MN A B ,同理得到//MN 平面1A BE , 所以平面1//B MN 平面1A BE ,所以若点F 满足1//B F 平面1A BE ,则点F 在1B MN △的三边上运动,112,5MN B M B N ===F 的轨迹长度为252C 错误;当点F 在侧面11CDD C 上运动时,点F 的运动轨迹为线段MN ,当F 运动到MN 中点时,因为∥1B MN 是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 错误;取CD 中点G ,连接BG ,EG ,易证1//A B EG ,则1,,,A B E G 共面,令1C D EG H ⋂=,则易得113DH C H =, 所以点D 到面1A BE 的距离与点1C 到面1A BE 的距离之比为13,故B 正确;22122>F 到点A 221则动点F 的轨迹在正方形11B BCC 和正方形11CC D D 及正方形1111D C B A 上, 若在正方形11B BCC 上,则满足22222143(2BF BA BF +=⇒=<,所以在正方形11B BCC 上,动点F 的轨迹为以B 4323, 同理点F 在正方形1111D C B A 及正方形11CC D D 面上运动时,轨迹分别为以1,A D 43为半径的四分之一圆弧,所以动点F 23323π⨯=,所以D 正确;故选:BD3.(多选题)(全国著名重点中学领航高考冲刺试卷(六))如图,在正方体1111ABCD A B C D -中,E 为1AA 的中点,点F 在线段1AD 上运动,G 为底面ABCD 内一动点,则下列说法正确的是( )A .11C F CB ⊥B .若1//FG CD ,则点G 在线段AC 上C .当点F 从A 向1D 运动时,三棱锥1D BFC -的体积由小变大D .若1GD ,GE 与底面ABCD 所成角相等,则动点G 的轨迹为圆的一部分 【答案】ABD 【分析】结合线面垂直的知识来判断A 选项的正确性.结合平面的知识来判断B 选项的正确性.结合锥体体积的求法来确定C 选项的正确性.结合阿波罗尼斯圆的知识来判断D 选项的正确性. 【详解】连接1A D ,∥1C F 在平面11ADD A 内的射影为1D F ,11CB A D ∥,且11A D D F ⊥,则1A D ⊥平面11C D F ,11A D C F ⊥,∥11C F CB ⊥,故A 正确;∥1FG CD ∥,∥FG 与1CD 确定唯一的平面α,而平面1ACD 与α有F ,1D ,C 三个不在一条直线上的公共点,∥平面1ACD 与α重合,又G 为底面ABCD 内一动点,则点G 必在平面1ACD 与平面ABCD 的交线AC 上,故B 正确;∥11AD BC ∥,1AD ⊄平面1DBC ,1BC ⊂平面1DBC ,∥1AD ∥平面1DBC ,故当点F 在1AD 上运动时,点F 到平面1DBC 的距离不变,于是三棱锥1F BDC -的体积不变,即三棱锥1D BFC -的体积不变,故C 错误; 连接GD ,GA ,当1GD ,GE 与底面ABCD 所成角相等时,易得2GD GA =,∥AD 为定值,由阿波罗尼斯圆易知点G 的轨迹为圆的一部分,故D 正确. 阿波罗尼斯圆:已知平面上两点A ,B ,则所有满足PAk PB=(0k >且1k ≠)的点P 的轨迹是一个以定比m :n 内分和外分定线段AB 的两个分点的连线为直径的圆,此圆称为阿波罗尼斯圆. 故选:ABD4.(吉林省梅河口市第五中学第一次月考)在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1AA ,1CC 的中点,O 为底面ABCD 的中心,点P 在正方体的表面上运动,且满足NP MO ⊥,则下列说法正确的是( )A .点P 可以是棱1BB 的中点B .线段NP 2C .点P 的轨迹是平行四边形D .点P 轨迹的长度为12【答案】B 【分析】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,根据NP MO ⊥,确定点P 的轨迹,在逐项判断,即可得出结果. 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,因为该正方体的棱长为1,,M N 分别为1AA ,1CC 的中点,则()0,0,0D ,11,0,2M ⎛⎫⎪⎝⎭,10,1,2N ⎛⎫⎪⎝⎭,11,,022O ⎛⎫⎪⎝⎭,所以111,,222OM ⎛⎫=- ⎪⎝⎭,设(),,P x y z ,则1,1,2NP x y z ⎛⎫=-- ⎪⎝⎭,因为NP MO ⊥, 所以0NP OM ⋅=所以()1111102222x y z ⎛⎫--+-= ⎪⎝⎭,即2221x y z -+=-,令0z =,当12x =时,1y =;当0x =时,12y =;取1,1,02E ⎛⎫ ⎪⎝⎭,10,,02F ⎛⎫ ⎪⎝⎭,连接EF ,FN ,NE ,则11,,022EF ⎛⎫=-- ⎪⎝⎭,11,0,22EN ⎛⎫=- ⎪⎝⎭,则111110022222EF OM ⎛⎫⎛⎫⋅=-⨯+-⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭,111110022222EN OM ⎛⎫⋅=-⨯+⨯-+⨯= ⎪⎝⎭,所以EF OM ⊥,EN OM ⊥,又EF EN E ⋂=,且EF ⊂平面EFN ,EN ⊂平面EFN ,所以OM ⊥平面EFN ,所以,为使NP OM ⊥,必有点P ∈平面EFN ,又点P 在正方体的表面上运动,所以点P 的轨迹为正三角形EFN ,故C 错误;因此点P 不可能是棱1BB 的中点,故A 错误;线段NP 的最大值为NF 2=B 正确; 点P 22232=D 错误; 故选:B5.(广东省深圳市平冈高级中学高三上学期9月第一次月考)如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点,F 是侧面CDD 1C 1上的动点,且B 1F ∥平面A 1BE ,则F 在侧面CDD 1C 1上的轨迹的长度是( )A .aB .2aC 2aD 2a 【答案】D【分析】过1B 做与平面1A BE 平行的平面,该平面与侧面11CDD C 的交线,即为满足条件的轨迹,求解即可.【详解】设G ,H ,I 分别为CD ,CC 1,C 1D 1边上的中点,连接B 1I ,B 1H ,IH ,CD 1,EG ,BG ,则1A B ∥1CD ∥GE ,所以 A 1,B ,E ,G 四点共面,由1B H ∥11,A E A E ⊄平面B 1HI ,1B H ⊂平面B 1HI ,所以A 1E ∥平面B 1HI ,同理A 1B ∥平面B 1HI ,111A B A E A =,所以平面A 1BGE ∥平面B 1HI ,又因为B 1F ∥平面A 1BE ,所以F 落在线段HI 上,因为正方体ABCD -A 1B 1C 1D 1的棱长为a ,所以1122HI CD ==, 即F 在侧面CDD 1C 12.故选:D. 6.(湖南省永州市高三上学期第一次适应性考试)已知在三棱锥S ABC -中,D 为线段AB 的中点,点E 在SBC △(含边界位置)内,则满足//DE 平面SAC 的点E 的轨迹为( )A .线段SB ,BC 的中点连接而成的线段B .线段SB 的中点与线段BC 靠近点B 的三等分点连接而成的线段C .线段BC 的中点与线段SB 靠近点B 的三等分点连接而成的线段D .线段BC 靠近点B 的三等分点与线段SB 靠近点B 的三等分点连接而成的线段【答案】A【分析】利用面面平行得到线面平行,即可.【详解】解:如图所示,P 、Q 分别为线段SB ,BC 的中点,所以//PQ SC ,//,DQ AC PQ ⊄平面SAC ,AC ⊂平面SAC ,所以//PQ 平面SAC ,同理//DQ 平面SAC ,PQ DQ Q =,所以平面//PDQ 平面SAC ,若DE ⊆平面PDQ ,则会有//DE 平面SAC ,故点E 的轨迹为线段SB ,BC 的中点连接而成的线段,故选A.7.(辽宁省实验中学上学期联考)已知正六棱柱111111ABCDEF A B C D E F -3P 在棱1AA 上运动,点Q 在底面ABCDEF 内运动,2PQ =R 为PQ 的中点,则动点R 的轨迹与正六棱柱的侧面和底面围成的较小部分的体积为( )A .224πB 218πC 2πD .23π 【答案】B【分析】根据题意,可判断出动点R 的轨迹为球,结合球的体积公式,即可求解.【详解】由直角三角形的性质得2AR =, 所以点R 在以A 2 因为23BAF π∠=,所以动点R 的轨迹与正六棱柱的侧面和底面围成的较小部分16球, 其体积为3142263ππ⨯=⎝⎭. 故选:B.8.四棱锥P OABC -中,底面OABC 是正方形,OP OA ⊥,OA OP a ==.D 是棱OP 上的一动点,E 是正方形OABC 内一动点,DE 的中点为Q ,当DE a =时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是( )A .23B .26C .336D .6 【答案】B【分析】首先假设OP OC ⊥,将四棱锥P OABC -放在正方体中,然后根据直角三角形斜边中线等于斜边的一半求得12OQ a =,得到点Q 的轨迹,最后根据题意列出方程求出a 的值 . 【详解】由题意不妨设OP OC ⊥,又OP OA ⊥,底面OABC 是正方形,所以可将四棱锥P OABC -放在一个正方体内,所以DO ⊥面OABC ,又OE ⊂面OABC ,则DO OE ⊥,又DE 的中点为Q ,所以1122OQ DE a ==, 即Q 的轨迹是以O 为球心,12OQ a =为半径的球,且点Q 恒在正方体内部, 又因为8个一样的正方体放在一起,点Q 的轨迹就可以围成一个完整的球,所以Q 的轨迹是以O 为球心,12OQ a =为半径的球的18球面, 所以2114382a ππ⎛⎫⨯= ⎪⎝⎭,解得6a = 故选:B9.棱长为a 的正方体1111ABCD A B C D -中,点P 在平面..1111D C B A 内运动,点1B 到直线DP 的距离为定值,若动点P 的轨迹为椭圆,则此定值可能..为( ) A 3 B 3a C 6a D 6 【答案】A【分析】设1B DP α∠=,分析出点P 在以1DB 为轴的圆锥的侧面上,计算出3d a <,并分析出45,可得出6d ≠,由此可得出合适的选项.【详解】如下图所示:因为点1B 到直线DP 的距离为定值,所以,点P 在以1DB 为轴的圆锥的侧面上,因为点P 的轨迹为椭圆,即圆锥被平面1111D C B A 所截的截面为椭圆,设圆锥轴截面的半顶角为α,则点1B 到直线DP 的距离为1sin 3sin 3d B D a a αα==<,当截面与圆锥的母线平行时,即45α=时,截面为抛物线,不合乎题意, 所以,63sin 452d a ≠=. 综合选择,可知A 选项合乎题意.故选:A.10.(上海市建平中学期中)已知菱形ABCD 边长为2,60ABC ∠=︒,沿对角线AC 折叠成三棱锥B ACD '-,使得二面角B AC D '--为60°,设E 为B C '的中点,F 为三棱锥B ACD '-表面上动点,且总满足AC EF ⊥,则点F 轨迹的长度为( )A .23B .33C 3D 33【答案】D【分析】 在侧面B AC '上,点F 的轨迹是EP ,在侧面B CD '上,点F 的轨迹是EQ ,在底面ACD 上,点F 的轨迹是PQ ,求EPQ △的周长即可.【详解】。

相关文档
最新文档