立体几何中的轨迹问题
专题22立体几何中的轨迹问题-1

专题22 立体几何中的轨迹问题【题型归纳目录】题型一:由动点保持平行求轨迹题型二:由动点保持垂直求轨迹题型三:由动点保持等距(或定长)求轨迹题型四:由动点保持等角(或定角)求轨迹题型五:投影求轨迹题型六:翻折与动点求轨迹【典例例题】题型一:由动点保持平行求轨迹例1.(多选题)(2022·广东梅州·高一期末)1.如图,已知正方体1111ABCD A B C D -的棱长为2,点M 为1CC 的中点,点P 为正方形1111D C B A 上的动点,则( )A .满足MP //平面1BDA 的点PB .满足MP AM ^的点PC .存在点P ,使得平面AMP 经过点BD .存在点P 满足5PA PM +=例2.(多选题)(2022·重庆南开中学模拟预测)2.已知正四棱锥P ABCD -的侧面是边长为6的正三角形,点M 在棱PD 上,且2PM MD =,点Q 在底面ABCD 及其边界上运动,且//MQ 面PAB ,则下列说法正确的是( )A .点Q 的轨迹为线段B .MQ 与CD 所成角的范围为,32ππ⎡⎤⎢⎣⎦C .MQD .二面角M AB Q --例3.(多选题)(2022·全国·高一单元测试)3.已知正方体1111ABCD A B C D -的边长为2,M 为1CC 的中点,P 为侧面11BCC B 上的动点,且满足//AM 平面1A BP ,则下列结论正确的是( )A .1AM B M^B .1//CD 平面1A BPC .AM 与11A B 所成角的余弦值为23D .动点P 例4.(多选题)(2022·江苏扬州·高一期末)4.如图,正方体1111ABCD A B C D -的棱长为2,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且满足1//B F 平面1A BE ,则下列结论中正确的是( )A .平面1A BE 截正方体1111ABCD ABCD -所得截面面积为92B .点F 的轨迹长度为4πC .存在点F ,使得11B F CD ^D .平面1A BE 与平面11CDDC 所成二面角的正弦值为13例5.(2022·湖南师大附中三模)5.已知棱长为3的正四面体ABCD ,E 为AD 的中点,动点P 满足2PA PD =,平面a 经过点D ,且平面//a 平面BCE ,则平面a 截点P 的轨迹所形成的图形的周长为 .例6.(2022·山西·太原五中高一阶段练习)6.如图,在正四棱锥S ABCD -中,E 是BC 的中点,P 点在侧面SCD V 内及其边界上运动,并且总是保持PE ∥平面SBD .则动点P 的轨迹与SCD V 组成的相关图形最有可能是图中的( )A .B .C .D .例7.(2022·安徽省宣城中学高二期末)7.已知正方体1111ABCD A B C D -的棱长为2,E F 、分别是棱1AA 、11A D 的中点,点P 为底面四边形ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为( )A .2BCD .例8.(2022·河南安阳·高二期末(理))8.如图,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1//A F 平面1AD E ,下面说法中正确的是 (将所有正确的序号都填上)①存在一点F ,使得11//A F D E ;②存在一点F ,使得1A F BE ^;③点F 的轨迹是一条直线;④三棱锥1F AD E -的体积是定值.【方法技巧与总结】(1)线面平行转化为面面平行得轨迹(2)平行时可利用法向量垂直关系求轨迹题型二:由动点保持垂直求轨迹例9.(2022·湖北·高一期末)9.直四棱柱1111ABCD A B C D -的底面是边长为13AA =,点M 为1CC 的中点,点O 为1A M 的中点,则点O 到底面ABCD 的距离为 ;若P 为底面ABCD 内的动点,且1A P PM ^,则动点P 的轨迹长度为 .例10.(2022·湖南·雅礼中学二模)10.已知菱形ABCD 的各边长为2,60D Ð=o .如图所示,将ACB △沿AC 折起,使得点D 到达点S 的位置,连接SB ,得到三棱锥S ABC -,此时3SB =.则三棱锥S ABC -的体积为,E 是线段SA 的中点,点F 在三棱锥S ABC -的外接球上运动,且始终保持EF AC ^,则点F 的轨迹的周长为.例11.(2022·四川雅安·高一期末)11.点M 是棱长为2的正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为BC 边上中点,若1AM B N ^,则动点M 的轨迹的长度为 .例12.(多选题)(2022·湖北孝感·高二期末)12.如图,已知正方体ABCD —1111D C B A 的棱长为1,P 为正方形底面ABCD 内一动点,则下列结论正确的有( )A .三棱锥1B -11A D P 的体积为定值B .存在点P ,使得11D P AD ^C .若11D P B D ^,则P 点在正方形底面ABCD 内的运动轨迹是线段ACD .若点P 是AD 的中点,点Q 是1BB 的中点,过P ,Q 作平面α垂直于平面11ACC A ,则平面α截正方体111ABCD A B C D -的截面周长为例13.(多选题)(2022·全国·高二专题练习)13.已知棱长为4的正方体1111ABCD A B C D -中,14AM AB =uuuu r uuu r ,点P 在正方体的表面上运动,且总满足0MP MC ⋅=uuu r uuu u r,则下列结论正确的是( )A .点P 的轨迹所围成图形的面积为5B .点P 的轨迹过棱11A D 上靠近1A 的四等分点C .点P 的轨迹上有且仅有两个点到点C 的距离为6D .直线11B C 与直线MP 所成角的余弦值的最大值为35例14.(2022·全国·高一专题练习)14.在正方体1111ABCD A B C D -中,点P 在侧面11BCC B 及其边界上运动,并且总保持1AP BD ^,则动点P 的轨迹是 ( )A .线段1BC B .线段1BC C .1BB 中点与1CC 中点连成的线段D .CB 中点与11B C 中点连成的线段例15.(2022·河南许昌·三模(文))15.如图,在体积为3的三棱锥P-ABC 中,PA ,PB ,PC 两两垂直,1AP =,若点M 是侧面CBP 内一动点,且满足AM BC ^,则点M 的轨迹长度的最大值为( )A .3B .6C .D .例16.(2022·浙江·杭州市富阳区场口中学高二期末)16.如图,在直三棱柱111ABC A B C -中,ABC V 是边长为2的正三角形,13AA =,N 为棱11A B 上的中点,M 为棱1CC 上的动点,过N 作平面ABM 的垂线段,垂足为点O ,当点M 从点C 运动到点1C 时,点O 的轨迹长度为( )A .π2B .πC .3π2D 例17.(2022·浙江·高二阶段练习)17.已知正四棱锥S ABCD -AC ,DB 交于点O ,SO ^平面ABCD ,1SO =,E 为BC 的中点,动点P 在该棱锥的侧面上运动,并且PE AC ^,则点P 轨迹长度为( )A .1B C D .2例18.(2022·云南·昆明一中高三阶段练习(理))18.已知四面体ABCD ,2AB BC CD DA BD =====,二面角A BD C --为60°,E 为棱AD 中点,F 为四面体ABCD 表面上一动点,且总满足BD EF ^,则点F 轨迹的长度为.【方法技巧与总结】(1)可利用线线线面垂直,转化为面面垂直,得交线求轨迹(2)利用空间坐标运算求轨迹(3)利用垂直关系转化为平行关系求轨迹题型三:由动点保持等距(或定长)求轨迹例19.(2022·四川成都·高二期中(理))19.如图,已知棱长为2的正方体A ′B ′C ′D ′-ABCD ,M 是正方形BB ′C ′C 的中心,P 是△A ′C ′D 内(包括边界)的动点,满足PM =PD ,则点P 的轨迹长度为 .例20.(多选题)(2022·山东·模拟预测)20.如图,正方体1111ABCD A B C D -的棱长为2,点M 是其侧面11ADD A 上的一个动点(含边界),点P 是线段1CC 上的动点,则下列结论正确的是( )A .存在点P ,M ,使得平面11B D M 与平面PBD 平行B .存在点P ,M ,使得二面角--M DC P 大小为23πC .当P 为棱1CC 的中点且PM =时,则点M 的轨迹长度为23πD .当M 为1A D 中点时,四棱锥M ABCD -例21.(多选题)(2022·福建·莆田二中模拟预测)21.在棱长为1的正方体1111ABCD A B C D -中,点M 是11A D 的中点,点P ,Q ,R 在底面四边形ABCD 内(包括边界),1PB ∥平面1MC D R 到平面11ABB A 的距离等于它到点D 的距离,则( )A .点PB .点QC .PQ 12-D .PR 例22.(2022·江西·模拟预测(理))22.已知正方体1111ABCD A B C D -的棱长为3,点P 在11A C B △的内部及其边界上运动,且DP P 的轨迹长度为( )AB .2πC .D .3π例23.(多选题)(2022·辽宁·高一期末)23.如图,正方体1111ABCD A B C D -棱长为2,点M 是其侧面11ADD A 上的动点(含边界),点P 是线段1CC 上的动点,下列结论正确的是( )A .存在点P ,M ,使得平面11B D M 与平面PBD 平行B .当点P 为1CC 中点时,过1A PD ,,点的平面截该正方体所得的截面是梯形C .过点A ,P ,M 的平面截该正方体所得的截面图形不可能为五边形D .当P 为棱1CC 的中点且PM =时,则点M 的轨迹长度为2π3例24.(2022·河南安阳·模拟预测(文))24.在四边形ABCD 中,//BC AD ,12AB BC CD AD ===,P 为空间中的动点,2PA PB AB ===,E 为PD 的中点,则动点E 的轨迹长度为( )A B C D 例25.(2022·四川达州·高二期末(理))25.正方体1111ABCD A B C D -的棱长为1,点P 在正方体内部及表面上运动,下列结论错误的是( )A .若点P 在线段1D C 上运动,则AP 与1AB 所成角的范围为ππ,32⎡⎤⎢⎥⎣⎦B .若点P 在矩形11BDD B 内部及边界上运动,则AP 与平面11BDD B 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦C .若点P 在11D B C △内部及边界上运动,则AP D .若点P 满足1AP =,则点P 轨迹的面积为π2例26.(2022·江西省乐平中学高一期末)26.已知正方体1111ABCD A B C D -1,,B D C 的平面为a ,点P 是平面a内的动点,1A P =P 的轨迹长度等于( )A .πB C D .2π【方法技巧与总结】(1)距离,可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹(2)利用空间坐标计算求轨迹参考答案:1.AD【分析】利用线面平行的判定定理可以证得点P 的轨迹,进而判断A ;建立空间直角坐标系,得到(2,0,0)A ,(0,2,1)M ,P 为正方形1111D C B A 上的点,可设(,,2)P x y ,且02x ££,02y ££,进而对BCD 各个选项进行计算验证即可判断并得到答案.【详解】对于A ,取11B C 的中点Q ,11D C 的中点N ,又点M 为1CC 的中点,由正方体的性质知1//MQ A D ,//NQ BD ,MQ NQ Q =I ,1A D BD D Ç=,所以平面//MQN 平面1BDA ,又MP Ì平面MQN ,MP \∥平面1BDA ,故点P 的轨迹为线段NQ ==A 正确;对B ,方法一:在平面11BCC B 中过M 作ME AM ^,交11B C 于E ,设1C E x =,则3AM =,ME =,AE ==由222AM ME AE +=,可解得12x =,同理,在平面11DCC D 中过M 作MF AM ^,交11D C 于F ,可得112C F =,因为ME MF M =I ,所以AM ^平面MEF ,因为MP AM ^,所以MP Ì平面MEF ,所以点P 的轨迹为线段EF ,故B 不正确;方法二:以D 为原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,则(2,0,0)A ,(0,2,1)M ,设(,,2)P x y ,且02x ££,02y ££,(2,,2)AP x y =-uuu r ,(,2,1)MP x y =-uuu r ,(2,2,1)AM =-uuuu r ()22212230AM MP x y x y ⋅=-+-+=-+-=uuuu r uuu r ,即32y x =+,又02x ££,02y ££,则点P 的轨迹为线段EF ,30,,22E æöç÷èø,1,2,22F æöç÷èø且EF ==B 错误;对于C ,方法一:取1DD 中点G ,连接,AG MG ,正方体中,易得//AB MG ,所以平面ABM 截正方体的截面为平面ABMG ,显然P Ï平面ABMG ,故不存在点P ,使得平面AMP 经过点B ,故C 错误;方法二:设(,,2)P x y ,且02x ££,02y ££,若平面AMP 经过点B ,则DP aDA bDB cDM =++uuu r uuu r uuu r uuuu r ,且1a b c ++=,又(,,2),(2,0,0),(2,2,0),(0,2,1)DP x y DA DB DM ====uuu r uuu r uuu r uuuu r ,所以()()()(),,22,0,02,2,00,2,1x y a b c =++,即()(),,222,22,x y a b b c c =++,因此222221x a b y b c c a b c =+ìï=+ïí=ïï++=î,从而2x =-,不合题意,所以不存在点P ,使得平面AMP 经过点B ,故C 错误;对于D ,方法一:延长1CC 至M ¢,令11C M C M ¢=,则MP M P ¢=,所以PA PM PA PM AM ¢¢+=+³,因为4AM ¢==>,所以存在点P 满足5PA PM +=,故D 正确.方法二:点M 关于平面1111D C B A 的对称点的为(0,2,3)M ¢,三点共线时线段和最短,故4PA PM AM ==¢³>+,故存在点P 满足5PA PM +=,故D 正确.故选:AD.2.ACD【分析】作出与面PAB 平行且过MQ 的平面,即可得出点Q 的轨迹判断A ,当点Q 在E 处时,异面直线所成角小于3π可判断B ,当MQ NE ^时求出MQ 可判断C ,作出二面角的平面角求正切值判断D 即可.【详解】对于A ,取点N ,E ,使得2AN ND =,2BE EC =,连接,ME NE ,MN ,如图,由线段成比例可得//,//MN PA NE AB ,PA Ì平面PAB ,MN Ë平面PAB ,所以//MN 平面PAB ,同理可得//NE 平面PAB ,又,NE MN Ì平面MNE ,MN NE N Ç=,所以平面//MNE 平面PAB ,故当点Q ME Î时,总有//MQ 面PAB ,所以点Q 的轨迹为线段,故A 正确;对于B ,由//CD NE 知MQ 与CD 所成角即为MQ 与NE 所成角,在MEN V 中,1π2,6,33MN PA NE AB MNE PAB ====Ð=Ð=,由余弦定理可得ME =1cos 2MEN Ð==>,可知π3MEN Ð<,即Q 运动到E 点时,异面直线所成的角小于π3,故B 错误;对于C ,当MQ NE ^时,MQ 最小,此时πsin 23MQ MN =⋅==C 正确;对于D ,二面角M AB Q --即平面MAB 与底面ABCD 所成的锐角,连接,AC BD 相交于O ,连接PO ,取点H ,使得2OH HD =,连接MH ,过H 作HG AB ^于G ,连接MG ,如图,由正四棱锥可知,^PO 面ABCD ,由2OH HD =,2PM MD =知//MH PO,1133MH PO \==´HG AB ^可得//HG AD ,556GH AD \==,MH ^Q 面ABCD ,AB MH \^,又HG AB ^,HG MH H =I ,AB \^平面MHG ,AB MG \^,MGH \Ð即为二面角的平面角,tan MH MGH GH \Ð==故D 正确.故选:ACD3.BCD 【分析】建立空间直角坐标系,利用空间夹角公式、空间向量数量积的运算性质逐一判断即可.【详解】如图建立空间直角坐标系,设正方体棱长为2,则1(0,0,2),(0,2,2),(0,0,0),(2,1,0),(,,0)A A B M P x y ,所以1(0,2,2),(,,0),(2,1,2)A B BP x y AM =--==-uuur uuu r uuuu r ,由//AM 平面1A BP ,得1AM a A B bBP =+uuuu r uuur uuu r ,即022122bx a by a +=ìï-+=íï-=-î,化简可得:320x y -=,所以动点P 在直线320x y -=上,对于选项A :11(2,1,2),(2,1,0),221(1)(2)030AM B M AM B M =-=-⋅=´+´-+-´=¹uuuu r uuuu r uuuu r uuuu r ,所以AM uuuu r 与1B M uuuur 不垂直,所以A 选项错误;对于选项B :111//,CD A B A B Ì平面11,A BP CD Ë平面1A BP ,所以1//CD 平面1A BP ,B 选项正确;对于选项C:11112(0,0,2),cos ,3A B AM A B >=-<==uuuu r uuuu r uuuu r ,C 选项正确;对于选项D :动点P 在直线320x y -=上,且P 为侧面11BCC B 上的动点,则P 在线段1PB 上,14,2,03P æöç÷èø,所以1PB ==D 选项正确;故选:BCD.4.AC【分析】取CD 中点G ,连接BG 、EG ,计算截面1A EGB 的面积后判断A 的正误,取11C D 中点M ,1CC 中点N ,则点F 的运动轨迹为线段MN ,故可判断B 的正误,取MN 的中点F ,则可判断11B F CD ^,故可判断C 的正误,而11B FC Ð即为平面1B MN 与平面1,CDD C 所成二面角,计算其正弦值后可判断D 的正误.【详解】取CD 中点G ,连接BG 、EG ,则等腰梯形1A EGB 为截面,而1A E GB ==,1A B EG ==故梯形1A EGB92=,A 正确;取11C D 中点M ,1CC 中点N ,连接11,,,,B M B N MN NE MG ,则1111//,=NE A B NE A B ,故四边形11A B NE 为平行四边形,则得11//B N A E ,而1B N Ë平面1A BE ,1A E Ì平面1A BE ,故1B N //平面1A BE ,同理1//B M 平面1A BE ,而111=B N B M B I ,11,B N B M Ì平面1B MN ,故平面1//B MN 平面1A BE ,∴点F 的运动轨迹为线段MNB 错误;取MN 的中点F,则11B N B M ==,∴1B F MN ^,∵1//MN CD ,∴11B F CD ^,C 正确;因为平面1//B MN 平面1A BE 且1MN C F ^,1MN B F ^,∴11B FC Ð即为平面1B MN 与平面1CDDC所成二面角,11111sin B C B FC B F Ð===,D 错误.故选:AC.5.【分析】设BCD △的外心为O ,以O 为坐标原点可建立空间直角坐标系,设(),,P x y z ,根据2PA PD =可求得P点轨迹是以G æççè为球心,2为半径的球;延长,,AB AF AC 到点,,M Q N ,使得AB BM =,AF FQ =,AC CN =,由面面平行的判定可证得平面//BCE 平面MND ,则平面MND 为平面a ,可知点G 到平面DMN 的距离d 即为点G 到直线DQ 的距离,由向量坐标运算可知DG DQ ^,得到1d =,由此可求得截面圆半径,利用圆周长的求法可求得结果.【详解】设BCD △的外心为O ,BC 的中点为F ,过O 作BC 的平行线,则以O 为坐标原点,可建立如图所示空间直角坐标系,BCD QV 为等边三角形,3BC =,23OD DF \==OA \=,(A \,()D,0,F æöç÷ç÷èø,设(),,P x y z ,由2PA PD =得:((2222224x y z x y z ⎡⎤++=++⎢⎥⎣⎦,整理可得:2224x y z ææ++=ççççèè,\动点P的轨迹是以G æççè为球心,2为半径的球;延长,,AB AF AC 到点,,M Q N ,使得AB BM =,AF FQ =,AC CN =,则//CE DN ,//BE MD ,又,DN MD Ì平面MND ,,CE BE Ë平面MND ,//CE \平面MND ,//BE 平面MND ,由CE BE E =∩,,CE BE Ì平面BCE ,\平面//BCE 平面MND ,即平面MND 为平面a ,则点G 到平面DMN 的距离d 即为点G 到直线DQ的距离,DG æ=ççèuuur Q,(0,DQ =-uuur ,220DG DQ \⋅=-+=uuur uuur ,即DG DQ ^,\点G 到直线DQ 的距离1d DG ==uuur ,\截面圆的半径r ==\球被平面a截得的截面圆周长为2r π=,即平面a 截点P的轨迹所形成的图形的周长为.故答案为:.【点睛】关键点点睛:本题考查立体几何中的动点轨迹相关问题的求解,解题关键是能够利用空间向量法求得动点所满足的轨迹方程,从而确定动点轨迹为球,利用平面截球所得截面圆周长的求法可求得结果.6.A【分析】先分别取CD 、S C 的中点M 、N ,再证明面EMN ∥面SBD ,可知当P 在MN 上移动时,PE Ì面EMN ,能够保持PE ∥平面SBD ,进而得到选项A 符合题意.【详解】分别取CD 、S C 的中点M 、N ,连接MN ,ME ,NE ,又∵E 是BC 的中点,∴EM BD ∥,EN SB ∥,又∵,EM EN Ë面SBD ,,BD SB Ì面SBD , ∴EM ∥面SBD ,EN ∥面SBD ,又∵EM EN E =I , ,EM EN Ì平面EMN ,∴面EMN ∥面SBD ,∴当P 在MN 上移动时,PE Ì面EMN ,此时能够保持PE ∥平面SBD ,则动点P 的轨迹与SCD V 组成的相关图形是选项A故选:A .7.B【分析】取BC 的中点G ,连接11,,G D G AD A ,易证1//AD 平面BEF ,1//GD 平面BEF ,从而得到平面1//AD G 平面BEF ,即可得到P 的轨迹为线段AG ,再求其长度即可.【详解】取BC 的中点G ,连接11,,G D G AD A ,如图所示:E F 、分别是棱1AA 、11A D 的中点,所以1//EF AD ,又因为EF Ì平面BEF ,1AD Ë平面BEF ,所以1//AD 平面BEF .因为1//FD BG ,1=FD BG ,所以四边形1FBGD 为平行四边形,所以1//FB GD .又因为FB Ì平面BEF ,1GD Ë平面BEF ,所以1//GD 平面BEF .因为111GD AD D =I ,所以平面1//AD G 平面BEF .因为点P 为底面四边形ABCD 内(包括边界)的一动点,直线1D P 与平面BEF 无公共点,所以P 的轨迹为线段AG =故选:B8.①②④【分析】取11B C 的中点G ,1BB 的中点H ,连接1A G ,1A H ,GH ,由面面平行的性质可判断①③④,由线面垂直的性质可判断②,【详解】如图,取11B C 的中点G ,1BB 的中点H ,连接1A G ,1A H ,GH ,则平面1//AGH 平面1AD E ,所以点F 在线段GH 上运动,即点F 的轨迹是线段GH ,故③错误.当点F 位于点H 时,11//A F D E ,故①正确.取AD 的中点N ,BC 的中点M ,连接1A N ,MN ,1B M ,则BE ^平面11A B MN ,设11GH B M F Ç=,则11A F BE ^,所以存在一点F 使得1A F BE ^,故②正确.平面1//AGH 平面1AD E ,所以点F 到平面1AD E 的距离是定值,所以三棱锥1F AD E -的体积是定值,故④正确.故答案为:①②④9.942π【分析】结合图像,根据正方形的性质即可求出点到平面的距离,再利用直径所对圆周角为直角的性质,将其迁移到空间中,得到P 点轨迹,即为以OP 的长为半径的球与平面ABCD 相交所截得的圆,再根据勾股定理,即可求解.【详解】解:由点O 为1A M 的中点可得,点O 到平面1111D C B A 的距离是点M 到平面1111D C B A 距离的一半,则点O 到平面1111D C B A 的距离为34,故点O 到平面ABCD 的距离为39344-=;1A P PM ^Q ,点O 为1A M 的中点,111524OP A M \===,设以O 为球心,OP 的长为半径的球与平面ABCD 所截得的圆的半径为r ,则3r ==,则动点P 的轨迹即为以正方形ABCD 的中心为圆心,3ABCD 内的圆弧,如图,R 为QP 中点,所以HR QP ^,所以cos RH QHR QH Ð===,所以23QHP QHR πÐ=Ð=,P 点轨迹所形成的圆弧长为32423πππæö´-´=ç÷èø.故答案为:94;2π.10.【分析】取AC 中点M ,由题可得AC ^平面SMB ,进而可得三棱锥S ABC -的高3sin 2h SBM SB Ð=⋅=,利用锥体体积公式可得三棱锥的体积,设点F 轨迹所在平面为a ,则F 轨迹为平面a 截三棱锥的外接球的截面圆,利用球的截面性质求截面圆半径即得.【详解】取AC 中点M ,则,,AC BM AC SM BM SM M ^^=I ,∴AC ^平面SMB ,SM MB ==,又3SB =,∴30SBM MSB ÐÐ==o ,则三棱锥S ABC -的高3sin 2h SBM SB Ð=⋅=,三棱锥S ABC -体积为213232V =´=作EH AC H ^于,设点F 轨迹所在平面为a ,则平面a 经过点H 且AC a ^,设三棱锥S ABC -外接球的球心为,,O SAC BAC V V 的中心分别为12,O O ,易知1OO ^平面2,SAC OO ^平面BAC ,且12,,,O O O M 四点共面,由题可得1121602OMO O MO ÐÐ==o,113O M SM =解Rt 1OO M △,得11OO M =,则三棱锥S ABC -外接球半径r =,易知O 到平面a 的距离12d MH ==,故平面a 截外接球所得截面圆的半径为1r ==∴截面圆的周长为12l r π=,即点F ..11【分析】分别取1DD 、1CC 的中点G 、H ,连接BH 、AG 、GH ,证明A 、B 、G 、H 四点共面,并计算出球心到平面ABGH 的距离,可计算得出截面圆的半径,利用圆的周长公式可求得结果.【详解】如图,正方体1111ABCD A B C D -的内切球O 的半径1R =,由题意,分别取1DD 、1CC 的中点G 、H ,连接BH 、AG 、GH ,在正方体1111ABCD A B C D -中,四边形ABHG 为平行四边形,所以A 、B 、G 、H 四点共面,则CH BN =,1BC BB =,1190C CB B BN Ð=Ð=o,所以,1BCH B BN @△△,所以,1BNB BHC Ð=Ð,1B N BH \^,AB ^Q 平面11BB C C ,1B N Ì平面11BB C C ,1AB B N \^,AB BH B =Q I ,1B N \^平面BAGH ,所以,动点M 的轨迹就是平面BAGH 截内切球O 的交线, 取1BB 的中点E ,连接,EG BD ,则四边形BEGD 为平行四边形,易知点O 为EG 的中点,过点E 在平面11BB C C 内作EF BH ^,AB ^Q 平面11BB C C ,EF Ì平面11BB C C ,则EF AB ^,AB BH B =Q I ,EF \^平面BAGH ,sin sin EBF BHC Ð=Ð=,所以,sin EF BE EBF =Ð=因为点O 为EG 的中点,则O 到平面BAGH 的距离为d =,截面圆的半径r ==所以动点M 的轨迹的长度为截面圆的周长2r π=【点睛】关键点点睛:本题解题关键是确定出M 的轨迹是平面BAGH 截内切球O 的交线,在利用球中的勾股定理即可解决.12.ACD【分析】结合选项逐个求解,体积问题利用锥体体积公式可得,垂直问题利用向量求解,截面周长根据截面形状可求.【详解】对于A ,P 为正方形底面ABCD 时,三棱锥111P A B D -的高不变,底面积也不变,所以体积为定值,所以A 正确;对于B ,以D 为坐标原点,建立如图所示的空间直角坐标系,设(),,0P x y ,则()()10,0,1,1,0,0D A ,()1,,1D P x y =-uuuu r ,()11,0,1AD =-uuuu r;若11D P AD ^,则110D P AD ⋅=uuuu r uuuu r,即1x =-,与题意矛盾,所以B 不正确;对于C ,()11,1,1DB =uuuu r,由11D P B D ^得1x y +=,所以P 的轨迹就是线段AC ,所以C 正确;对于D ,因为1,BD AC BD AA ^^,所以BD ^平面11ACC A ;因为平面a ^平面11ACC A ,所以//BD 平面a ;以BD 为参照线作出平面a 与正方体各个侧面的交线,如图,易知每个侧面的交线均相等,,所以截面周长为D 正确.故选:ACD.【点睛】正方体中的动点问题,可以借助空间向量来处理,把位置关系,角度关系转化为向量运算.13.ACD【分析】首先根据动点P 满足的条件及正方体的结构特征得到动点P 的轨迹,然后利用轨迹的特征判断选项A ,B ,C ,对于选项D ,将线线角转化为线面角,运用线面角的定义找出线面角进行求解.【详解】如图,过点M 作1//MF AA ,在AD 上取一点N ,使MN MC ^,连接,NC EC FC ,,过点N 作1//NE AA ,连接EF ,易知//MF NE ,\ ,,,E F M N 四点共面;又MF MC ^Q ,MN MF M =I ,MC \^面MNEF ,即点P 的轨迹为矩形MNEF (不含点M ),设AN x =,则MN =又5MC ==QNC ==222MN MC NC \+= 解得 34x =,即34AN =54MN \=, NC =对于A ,矩形MNEF 的面积为:5454S MN MF =⋅=´=,A 正确;对于B ,134A E AN ==,B 错误;对于C ,CF ==在Rt CMN V 中,C 到MN 的距离范围是:5æççèMN \上存在一点到点C 的距离为6;在Rt CMF V 中,C 到MF 的距离范围是:(MF \上存在一点到点C 的距离为6;但在Rt CNE V 、Rt CEF V 中不存在到点C 的距离为6的点,C 正确;对于D ,直线11B C 与直线MP 所成的最小角就是直线11B C 与平面MNEF 所成的角,11//B C BC Q \直线11B C 与平面MNEF 所成的即是直线BC 与平面MNEF 所成的角,延长,NM CB 交于点G ,则MGB Ð即是直线BC 与平面MNEF 所成的角,//AN GB Q AN AMGB MB \= 94GB \= 在Rt MGC V 中,4sin 5MC MGC GC Ð== 3cos 5MGC \Ð=,D 正确;故选:ACD.【点睛】本题考查动点轨迹,点、线、面位置关系,线线角、线面角以及几何体中一些线段的最值,考查了空间想象能力、逻辑思维能力、运算求解能力,属于难题.14.A【分析】1BD ^平面1ACB ,又点P 在侧面11BCC B 及其边界上运动,故点P 的轨迹为面1ACB 与面11BCC B 的交线1CB .【详解】连接111,,,,AC BD B C BA AB ,因为1,^^DD AC AC BD ,且1DD BD D =I ,所以AC ^平面1BDD ,1BD Ì平面1BDD ,所以1AC BD ^,因为11111,A D AB A B B A ^^,且1111A D A B A =I ,所以1AB ^平面11BA D ,1BD Ì平面11BA D ,所以11^AB BD ,且1AB AC A =I ,所以1BD ^平面1ACB ,AP Ì平面1ACB ,所以1BD AP ^,点P 的轨迹为面1ACB 与面11BCC B 的交线1CB ,故选:A.15.A【分析】根据题意可知,点M 的轨迹为Rt ABC △斜边上的高线,即可根据等面积法以及基本不等式求出点M 的轨迹长度的最大值.【详解】如图所示: ,因为PA ,PB ,PC 两两垂直,所以AP ^平面PCB ,即有^AP BC ,而AM BC ^,所以^BC 平面APM ,即BC PM ^,故点M 的轨迹为Rt ABC △斜边上的高线PD .因为三棱锥P-ABC 的体积为3,所以111332PB PC ´´´´=,即18PB PC ´=,由等积法可得,3PD ==£=,当且仅当PB PC ==故选:A .16.B【分析】根据条件先判断出点O 的轨迹为圆的一部分,再由弧长公式求解即可.【详解】取AB 中点P ,连接PC ,C 1N ,如图,因为PC ⊥AB ,PN ⊥AB ,且PN ∩PC =P ,所以AB ⊥平面1PCC N ,AB Ì平面ABM ,所以平面ABM ⊥平面1PCC N ,平面ABM ∩平面1PCC N = PM ,过N 作NO ⊥PM ,NO Ì平面1PCC N ,所以NO ⊥平面ABM ,当点M 从点C 运动到点C 1时,O 点是以PN 为直径的圆Q (部分),如图,当M 运动到点1C 时,O 点到最高点,此时11π3,3PC CC CPC ==Ð=,所以π6OPQ Ð=,从而2π3OQP Ð=,所以弧长2π3π32l =⋅=,即点O 的轨迹长度为π.故选: B 17.B【分析】取,,SC CD OC 的中点分别为,,G F H ,利用线面垂直的判定定理可得AC ^平面EFG ,进而可得点P 轨迹为折线,EG GF ,结合条件即得.【详解】取,,SC CD OC 的中点分别为,,G F H ,连接,,,EF EG FG GH ,则GH SO ,EF BD ∥,又SO ^平面ABCD ,BD AC ^,∴GH ^平面ABCD ,EF AC ^,∴GH AC ^,又EF GH H Ç=,∴AC ^平面EFG ,因为动点P 在该棱锥的侧面上运动,并且PE AC ^,故点P 轨迹为折线,EG GF ,由题可知1SO =,1,OB SB SA ===∴EG GF ==,故点P 故选:B.18【分析】取BD 中点O ,易知AOC Ð是二面角A BD C --的平面角,由线面垂直的判定可得BD ^平面AOC ,即有AOC Ð是二面角A BD C --的平面角,取CD ,OD 中点M ,N ,利用线面平行、面面平行的判定有面//AOC 面EMN ,进而有BD ^平面EMN ,即可知F 轨迹.【详解】取BD 中点O ,易得BD AO ^,BD CO ^,AO CO O =I ,所以BD ^平面AOC ,则AOC Ð是二面角A BD C --的平面角,即60AOC Ð=°,又AO CO ==AC =CD ,OD 中点M ,N ,所以//EM AO ,AO Ì面AOC ,EM Ë面AOC ,故//EM 面AOC ,又//MN CO ,同理://MN 面AOC ,而EM MN M Ç=,,EM MN Ì面EMN ,所以面//AOC 面EMN ,则BD ^平面EMN ,因为F 为四面体ABCD 表面上一动点,且总满足BD EF ^,所以点F 轨迹是△EMN19【分析】利用空间直角坐标系可知,平面A ′C ′D 内的P 满足0x y z +-=, PM =PD 的P 满足23x y z ++=,则可得32333x y x z -ì=ïïí+ï=ïî,P 是△A ′C ′D 内(包括边界),则302x ££,点P 的轨迹线段12PP .【详解】如图建立空间直角坐标系,则()()()()0,0,0,2,0,2,0,2,2,1,2,1D A C M ¢¢()()2,0,2,0,2,2DA DC ¢¢==uuur uuuu r设平面DA C ¢¢的法向量(),,n x y z =r则有220220x z y z +=ìí+=î,令1x =,则1,1y z ==-则()1,1,1n r=-设(),,P x y z ,则(),,DP x y z =uuu r∵n DP ^r uuu r,则0x y z +-=又∵PM =PD=整理得:23x y z ++=联立方程230x y z x y z ++=ìí+-=î,则32333x y x z -ì=ïïí+ï=ïî可得023********x x x ìï-íï+ïî,可得302x ££当0x =时,()10,1,1P ,当32x =时,233,0,22P æöç÷èø在空间中,满足PM =PD 的P 为过MD 的中点且与MD 垂直的平面a两个平面的公共部分为直线,即点P 的轨迹为a I 平面A ′C ′D 12PP =.20.ACD【分析】当M 为1AA 中点,P 为1CC 中点时,即可判断A 选项;由二面角--M DC P 的平面角为1ÐMDD 即可判断B 选项;取1DD 中点E ,先求出点M 在侧面11AA D D 内运动轨迹为以E 为圆心半径为2的劣弧,即可判断C 选项;先求出四棱锥M ABCD -外接球的半径,再将外接球的内接正四面体补成正方体即可判断D 选项.【详解】对于A 选项,当M 为1AA 中点,P 为1CC 中点时,易得11//BD B D ,又BD Ì平面PBD ,11B D Ë平面PBD ,则11//B D 平面PBD ,同理可得1//MB 平面PBD ,又1111MB B D B Ç=,则平面11B D M 与平面PBD 平行,故A 正确;对于B 选项,因为CD ^平面11ADD A ,DM Ì平面11ADD A ,则CD DM ^,又1CD DD ^,可知二面角--M DC P 的平面角为1ÐMDD ,显然其范围为0,2π⎡⎤⎢⎥⎣⎦,故B 错误;对于C 选项,取1DD 中点E ,连接,,PE ME PM ,则PE ^平面11,^AA D D PE ME ,则2===ME ,则点M 在侧面11AA D D 内运动轨迹为以E 为圆心半径为2的劣弧,分别交AD 、11A D 于2M 、1M ,则1123Ð=Ð=M ED M ED π,则123Ð=M EM π,劣弧21M M 的长为2233ππ´=.故C 正确;对于D 选项,当M 为1A D 中点时,易知AMD V 为等腰直角三角形,AM DM ^,又AB ^平面11ADD A ,则AB DM ^,又,AB AM Ì平面ABM ,AB AM A =I ,则DM ^平面ABM ,则DM BM ^,又DC BC ^,可知四棱锥M ABCD-外接球的球心即为BD 的中点,所以四棱锥M ABCD -,设四棱锥M ABCD -外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体的面对角线,故正,正方体的体对角线为外接球的直径,所以223ö⋅=÷÷ø,得2163x =,所以正四面体的表面积为2142x ´⋅=D 正确.故选:ACD.21.BCD【分析】对于A ,取BC 的中点N ,连接AN ,1B N ,根据面面平行的判定可证得平面1//ANB 平面1DMC ,从而得点P 的轨迹为线段AN ,解三角形计算可判断;对于B ,连接DQ ,由勾股定理得12DQ =,从而有点Q 的轨迹是以点D 为圆心,以12为半径的14圆,由圆的周长计算可判断;对于C ,过点D 作'DP AN ^于'P ,交点Q 的轨迹于'Q ,此时''P Q 的长度就是PQ 长度的最小值,由三角形相似计算得'DP ,由此可判断;对于D ,由已知得点R 到直线AB 的距离等于它到点D 的距离,根据抛物线的定义知点R 的轨迹是以点D 为焦点,以AB 为准线的抛物线,以AD 的中点为坐标原点O ,过点O 且垂直于AD 的直线为x 轴建立平面直角坐标系,则抛物线的方程为22x y =,设与直线AN 平行且与抛物线相切的直线l 的方程为:2+0x y n -=, 联立22+02x y n x y -=ìí=î,整理得()2244+2+0y n y n -=,由0D =,解得14n =-,再根据平行线间的距离可求得PR 长度的最小值.【详解】解:对于A ,取BC 的中点N ,连接AN ,1B N ,则1//AN MC ,11//AB DC ,所以//AN平面1DMC ,1//AB 平面1DMC ,又//AN 平面1DMC ,1//AB 平面1DMC ,1AN AB A =I ,所以平面1//ANB 平面1DMC ,又点P 在底面四边形ABCD 内(包括边界),1PB ∥平面1MC D ,所以点P 的轨迹为线段AN ,因为AN ===,所以点PA 不正确;对于B ,连接DQ ,因为Q 在底面ABCD上,1D Q =2==,解得12DQ =,所以点Q 的轨迹是以点D 为圆心,以12为半径的14圆,如下图所示,所以点Q 的轨迹的长度为112424ππ´´´=,故B 正确;对于C ,过点D 作'DP AN ^于'P ,交点Q 的轨迹于'Q ,此时''P Q 的长度就是PQ 长度的最小值,而'',B AP D BAN ADP Ð=ÐÐ=Ð,所以'ABN DP A V :V ,所以'AD DPAN AB='1DP =,解得'DP =,所以''''12P Q DP DQ =-=,所以PQ12,故C 正确;对于D ,因为点R 到平面11ABB A 的距离等于它到点D 的距离,由正方体的特点得点R 到直线AB 的距离等于点R 到平面11ABB A 的距离,所以点R 到直线AB 的距离等于它到点D 的距离,根据抛物线的定义知点R 的轨迹是以点D 为焦点,以AB 为准线的抛物线,以AD 的中点为坐标原点O ,过点O 且垂直于AD 的直线为x 轴建立平面直角坐标系,如下图所示,则102D æöç÷èø,,102A æö-ç÷èø,,()10N ,,直线AB 的方程为12y =-,直线AN 的方程为210x y --=,则抛物线的方程为22x y =,设与直线AN 平行且与抛物线相切的直线l 的方程为:2+0x y n -=,联立22+02x y n x y -=ìí=î,整理得()2244+2+0y n y n -=,()22Δ4+2160n n =-=,解得14n =-,所以直线l 的方程为:1204x y --=,则直线AN 与直线l 的距离为:d ==,所以PR,故D 正确,故选:BCD.。
谈立体几何中动点轨迹问题的解题策略

立体几何中的动点轨迹问题是一个常见的问题类型,它涉及到空间几何中的点、线、面等元素的运动和变化。
解决这类问题的关键在于理解运动和变化的过程,并能够通过数学模型进行描述。
解题策略主要包括以下几个方面:
1. **建立空间坐标系**:为了更好地描述空间几何元素的位置和运动,需要建立一个适当的空间坐标系。
坐标系的建立应依据问题的具体情境和需求,通常选择一个固定点作为原点,并确定三个互相垂直的轴。
2. **确定动点的坐标**:在确定了坐标系之后,需要确定动点的坐标。
这可以通过设定动点的坐标变量来实现,例如设动点的坐标为$(x, y, z)$。
3. **分析运动过程**:在确定了动点的坐标后,需要分析动点的运动过程。
这包括了解动点的运动方向、速度、加速度等参数,以及这些参数与坐标变量的关系。
4. **建立数学模型**:通过分析运动过程,可以建立描述动点运动的数学模型。
这通常涉及到物理、几何、代数等多个方面的知识,需要根据具体问题进行选择和应用。
5. **求解数学模型**:建立了数学模型后,需要求解该模型以得到动点的轨迹方程。
这可能涉及到微积分、线性代数、解析几何等多个数学领域的知识,需要根据问题的复杂程度和要求进行选择和应用。
6. **验证答案**:最后,需要对得到的答案进行验证,以确保其正确性和有效性。
这可以通过将答案代入原问题中进行检验,或者通过与其他已知的答案进行比较来进行验证。
综上所述,解决立体几何中的动点轨迹问题需要综合运用空间几何、物理、数学等多个领域的知识,并能够根据具体问题进行选择和应用。
同时,还需要有一定的逻辑思维和分析能力,以更好地理解和解决这类问题。
立体几何中动点轨迹问题

立体几何中动点轨迹问题
利用三维几何的动点轨迹问题在各行各业有着重要的应用价值。
它在工程、科学技术、数学计算等许多领域有着重要的意义。
三维几何中的动点轨迹是指,当受力作用的粒子穿过物体时,根据物体的几何结构及力场的排列,形成其穿过物体的轨迹。
因此,可以根据这条轨迹来衡量力和物体之间的作用情况,从而可以对物体的几何结构进行各种复杂的计算。
更为重要的是,动点轨迹的计算并不仅仅体现在二维的计算上,而是可以达到真实的三维空间中,进行相对复杂的计算。
可以针对不同的物体及力场结构,研究其动点轨迹的特征,用于研究各种解释力学和其他相关问题。
此外,动点轨迹的计算可以在力学计算、结构分析、宽度计算、流体力学等计算领域大有裨益,可以帮助解决各类技术问题,提高决策效率。
总之,通过三维几何中的动点轨迹问题,可以研究几何结构、探究力学解释、分析流体力学等规律,为各行各业带来重要的实践价值。
例谈立体几何中轨迹问题

3根据截面图形求轨迹 . 例 3 正方体AB D— l E、 C A BCD ,
盼 别是A 、C的 中点 ,是 C 。 的 A, C P C上 动点 ( 括端点 )过E、 P 包 , D、 作正 方体
的截面 , 若截面 为四边形 , 点P 则 的轨
迹为( ) .
A直线 .
算题 , ) 略
2 3 5, × = . + = 2 3 6
解. 近年来 高考 中常见的题 型有 以下几类.
1利 用 圆锥 曲线 定 义 求轨 迹 . 点评 : 圆锥 曲 线 的 统 一 定 义 为 : 定 点 的距 离与 到 到
学思 想 与方法 , 综合性 强 , 能力 要求高 , 教师可集 中讲 定直线的距 离比为常数 的点的轨迹 , 该常数 叫做 圆锥 曲 线的 离心 率 , 表 示. < < 时 , 用e 当0 e l 为椭 圆; = 时, 当e l 为
点 评 : 面 图形确 定后 , 点 的轨 迹 也 是 确 定 的 , 截 动 此 4 立 函 数模 型 求 函数 解 析式 建
的轨迹是以c点 为焦点 , C 以B 为准线 的抛 物线 ( 在侧 面 线 与D 平 行 , E 由此 得 , 与c 当P 重合时 , 面过B 。 中 截 B的 点评 : 点在平 面 内运动的轨迹有 直线、 圆和 圆锥 曲 而 当截面过c时 , 。 截面也是四边形. 故选C .
抛 物 线 ; > 时 . 双 曲 线. 当e l 为
例 1 如 图 ,在 正 方 体A C B D— ABCD 中 , 侧 面 BB C 内一 动 1 P是 1C 点 ,若P 到直线B 与直线 CD的距离 C 。 相等 ,则动点J p 的轨迹所在 的曲线是
( ) . d
立体几何中的轨迹判断问题(教案)

⽴体⼏何中的轨迹判断问题(教案)⽴体⼏何中的轨迹判断问题1. 已知平⾯//α平⾯β,直线l α?,点l P ∈,平⾯α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是() A. ⼀个圆 B. 两条平⾏直线 C. 四个点 D. 两个点解析:如图1,设点P 在平⾯β内的射影是O ,则OP 是α、β的公垂线,OP=4。
在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆⼼,3为半径的圆上。
⼜在β内到直线l 的距离等于29的点的集合是两条平⾏直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点。
因此所求点的轨迹是四个点,故选C 。
2.已知平⾯βα||,直线α?l ,点P l ∈,平⾯βα,之间的距离为8,则在β内到P 点的距离为10且到直线l 的距离为9的点的轨迹是( ) A .⼀个圆 B.两条直线 C.两个点 D.四个点解析:设Q 为β内⼀动点,点P 在β内射影为O ,过O, l 的平⾯与β的交线为l ', PQ=10,∴OQ==-228106点Q 在以O 为圆⼼6为半径圆上,过Q 作QM l '⊥于M ,⼜点Q到直线l 的距离为9∴QM=178922=-则点Q 在以l '平⾏距离为17的两条平⾏线上两条平⾏线与圆有四个交点∴这样的点Q 有四个,故答案选D 。
点评:本题以空间图形为背景,把⽴体⼏何问题转化到平⾯上,再⽤平⾯⼏何知识解决,要熟记⼀些平⾯⼏何点的轨迹。
3.如图2,定点A 和B 都在平⾯α内,定点P ,PB ,α⊥α?C 是α内异于A 和B 的动点。
且AC PC ⊥,那么动点C 在平⾯α内的轨迹是() A. ⼀条线段,但要去掉两个点 B. ⼀个圆,但要去掉两个点 C. ⼀个椭圆,但要去掉两个点 D. 半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即?=∠90ACB 。
立体几何中的动点轨迹问题

同理,在平面 AA1D1D 内满足条件的点的轨迹长度为52π.在平面 A1B1C1D1 内满足条件 的点的轨迹为以 A1 为圆心,A1F 为半径的14圆弧,长度为 2π×4×14=2π.同理,在平 面 ABCD 内满足条件的点的轨迹为以 A 为圆心,AE 为半径的圆弧,长度为 2π×3×14 =32π.故轨迹的总长度为52π+52π+2π+32π=172π.
的长度最小.因为 B1N1=D1N1= 5,B1D1=2 2,所以△B1N1D1 的边 B1D1 上的高为
52- 22= 3,则 S△B1N1D1=12×2 2× 3= 6,则当 B1N⊥D1N1 时,B1N 最
小,即 B1Nmin=2S△DB1N1N1 1D1=2
6=2 5
530.
总结 提炼
与平行有关的轨迹问题的解题策略 (1)线面平行转化为面面平行得轨迹; (2)平行时可利用法向量垂直关系求轨迹.
模型 3 动点保持等距关系
3 (2023·湖北联考节选)已知正方体 ABCD-A1B1C1D1 的棱长为 3,P 为正方体表 53
面上的一个动点,A1P=2 3,则点 P 的轨迹长度为___2__π__.
【解析】 如图,点 P 的轨迹一部分是在平面 ABB1A1,A1B1C1D1, ADD1A1 三个面内以 2 3为半径,圆心角为π6的三段圆弧,另一部分是 在平面 BCC1B1,CDD1C1,ABCD 三个面内以 3为半径,圆心角为π2 的三段圆弧.故点 P 的轨迹的长度为112×2π×2 3×3+14×2π× 3×3=523π.
点击对应数字即可跳转到对应题目
1
2
3
4
5
6
7
8
9
配套精练
2 . 如 图 , 正 方 体 ABCD - A1B1C1D1 的 棱 长 为 2 , E , F 分 别 为
立体几何中轨迹问题

立体几何中的轨迹问题立体几何是考查学生空间想象能力和转化能力,在立体几何中出现了一些轨迹问题,本人将这些问题作了如下归类,以供参考。
一、轨迹是抛物线例1.2004年高考北京卷(文),如图,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c内一动点,若点p到直线bc与直线c1d1的距离相等,则动点p的轨迹所在的曲线是()a.直线b.圆c.双曲线d.抛物线解:连接pc1,∵d1c1⊥面bb1c1c,又pc?奂面bb1c1c,∴d1c1⊥pc1,即可得线段pc1长为点p到c1d1的距离,原题意可转化为:在平面bb1c1c中,动点p到定点c1的距离与点p到定直线bc(点c1不在直线bc上)的距离相等.由抛物线定义可知:点p的轨迹所在的曲线是抛物线.例2.2004年高考北京卷(理),正方体abcd-a1b1c1d1的棱长为1,点m在棱ab上,且am=,点p是平面abcd上的动点,且点p到直线a1d1的距离与到点m的距离的平方差为1,则点p的轨迹是()a.抛物线b.双曲线c.直线d.以上都不对解:在正方形add1a1中过点e作ef⊥a1d1交ad于f,连接pf,pe,pm. ∵pe为点p到a1d1的距离∴pe⊥a1d1∴a1d1⊥efp面,又ad∥a1d1∴pf⊥ad即pf为点p到直线ad的距离.由条件和所作不难知ef⊥fp.pe2-pm2=ef2+pf2-pm2=1+pf2-pm2=1即:pf=pm,同样由抛物线定义可知:点p的轨迹所在的曲线是抛物线.二、轨迹是椭圆例3.由2004年高考北京卷,(文4)得变题1,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c内一动点,若点p到直线bc的距离是点p到直线c1d1的距离2倍,则动点p的轨迹是()a.线段b.椭圆的一部分c.双曲线的一部分d.抛物线的一部分解:变为在平面bb1c1c中,动点p到定点c1的距离与点p到定直线bc(点c1不在直线bc上)的距离之比为1∶2.由椭圆第二定义可知:点p的轨迹所在的曲线是椭圆(在正方形bb1c1c内),且离心率为.故本题选b.三、轨迹是双曲线例4.变题2,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c内一动点,若点p到直线bc的距离是点p到直线c1d1的距离一半,则动点p的轨迹是双曲线的一部分,且离心率为2.四、轨迹是线段例5.变题3,如图,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c 内一动点,且始终满足ap⊥d1b,则动点p的轨迹所在的曲线是() a.线段 b.椭圆的一部分c.双曲线的一部分d.抛物线的一部分解:连接ac,ab1,b1c,易证bd1⊥面ab1c,∴点p在线段b1c动,才能满足ap⊥d1b.故本题选a.例6.(2005年5月苏州市高三教学调研测试)如图,△adp为正三角形,四边形abcd为正方形,平面pad⊥平面abcd.m为平面abcd内的一动点,且满足mp=mc.点m在正方形abcd内的轨迹为(o为正方形abcd的中心)()解:空间中到p、c两点距离相等的点应在过线段pc中点且垂直于此线段pc的平面α上。
2023年高考数学----轨迹问题规律方法与典型例题讲解

2023年高考数学----轨迹问题规律方法与典型例题讲解【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例1.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D −的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为2④点M . 其中正确的命题个数为( ) A .1 B .2 C .3 D .4【答案】B【解析】连接,AC BD ,交于O ,则O 为,AC BD 中点,因为F 为1BD 的中点,所以1//FO DD , 由正方体的性质可知1DD ⊥平面ABCD , 所以FO ⊥平面ABCD , 因为DE ⊂平面ABCD , 所以FO DE ⊥,过点O 作PQ DE ⊥,分别交,BC AD 于,P Q ,过点,P Q 分别作11//,//PH BB QG AA ,分别交1111,B C A D 于点,H G ,连接GH , 所以,PQGH 四点共面,且//,GQ PH GQ PH =, 所以,四边形PQGH 为平行四边形, 因为1AA ⊥平面ABCD ,所以PH ⊥平面ABCD ,PQ ⊂平面ABCD , 所以PH PQ ⊥所以,四边形PQGH 为矩形,因为PQ FO O =,,PQ FO ⊂平面PQGH , 所以DE ⊥平面PQGH ,因为点M 在正方体的表面上运动,且满足FM DE ⊥ 所以,当FM ⊂面PQGH 时,始终有FM DE ⊥, 所以,点M 的轨迹是矩形PQGH ,如下图,因为2DQO QDE QDE AED π∠+∠=∠+∠=,所以,DQO AED ∠=∠, 所以,AQO BED ∠=∠, 因为4OAQ EBD π∠=∠=,所以AOQ △∽BDE △,所以AQ AO BE BD =,即12AQ=,即14AQ = 所以14CP AQ ==,PQ =, 所以,点M 不可能是棱AD 的中点,点M 的轨迹是矩形PQGH ,轨迹长度为矩形PQGH的周长212⎫⎪⎪⎝⎭,1 故正确的命题为③④.个数为2个. 故选:B例2.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D −的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( )A B .2CD .1【答案】A【解析】画出示意图如下:取1CC 中点N ,取11D C 中点M ,连接11,,,B M B N MN ME ,则11,ME B B ME B B =∥,则四边形1MEBB 为平行四边形,所以1B M ∥BE , 连接1D C ,则11,MN D C EF D C ∥∥,故MN ∥EF ,又1B M MN M BE EF E ⋂=⋂=, ,1,B M MN ⊂平面1B MN ,BE EF ⊂平面BEF, 所以平面BEF ∥平面B 1MN ,平面1B MN ∩平面11CDD C =MN ,所以P 点轨迹即为MN ,长度为11||||2MN D C == 证明:因为平面BEF ∥平面1B MN ,P 点是MN 上的动点,故1B P ⊂平面1B MN ,所以1B P ∥平面BEF ,满足题意. 故选:A .例3.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD −中,底面ABCD 是边长为2的正方形,PA ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD −所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆 【答案】D【解析】可将四棱锥P ABCD −补形成正方体ABCD PB CD ''−,如图①,直线AG 即体对角线AC ',易证AC '⊥平面PDB ,A 选项正确; 如图②,取CD 的中点H ,连接FH ,可知FH AC //,所以GFH ∠ (或其补角)与直线FG 和直线AC 所成的角相同,在FGH 中,FG GH FG ==,所以π3GFH ∠=,B 选项正确;如图③,延长EF 交直线CD 于点H ,交直线BC 于点I ,连接GI 交PB 于点M ,连接GH 交PD 于点N ,则五边形EFNGM 即为平面EFG 截 四棱锥P ABCD −所得的截面,C 选项正确;当12AGT S =△时,因为AG 所以点T 到AG 点T 在以AC 为轴,底面半径r =T 在平面ABCD 上,所以点T 的轨迹是椭圆.D 选项错误. 故选:D例4.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P −−的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线【答案】D【解析】连接AC 交BD 于O ,取11B D 中点1O ,连接1OO以O 为原点,分别以OA 、OB 、1OO 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图:令正方体边长为2,则11(,)A C A B ,(0,,)P y z =面11BD A 的一个法向量为1(2,AB =−,面11BB D 的一个法向量为(AC =− 则1(co 1s 2,AC AB −==,故二面角111A BD B −−的大小为π3又二面角11A BD P −−的大小(]0,παÎ,则π3α=或2π3α=由cos sin βα=,,可得π6β=又1(,)y z A P =−1111(1sin 2A P AB A P AB β⋅−===⋅整理得240z z +++= 即3)1y z z =−+,是双曲线. 故选:D例5.(2022·全国·高三专题练习)如图,正方体ABCD A B C D −''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧【答案】C【解析】由P 点的轨迹实际是一个正圆锥面和两个平面的交线,其中这个正圆锥面的中心轴即为AC ',顶点为A ,顶角的一半即为MAC '∠, 以A 点为坐标原点建立空间直角坐标系,则1(0,0,1),(1,1,0),(,1,1)2AC M ,可得1(1,1,1),(,1,0)2ACAM '=−=,1111cos MAC ⨯+⨯'∠===,设AC '与底面A BC D ''''所成的角为θ,则A C cos AC θ''===>',所以MAC θ'<∠,''''的交线是双曲线弧,所以该正圆锥面和底面A B C D同理可知,P点在平面CDD C''的交线是双曲线弧,故选:C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何中有关轨迹问题的探索
山东省平度九中数学组 孔祥朋 266700
立体几何中的轨迹问题,将立体几何与解析几何有机地结合起来,常涉及几何的定义,函数、数形结合、建模、化归等数学思想与方法,综合性强,能力要求高,现就将近年来高考常见的题型总结如下,以便教师在教学中总结题型和解题方法,以利于学生提高能力,开阔思路。
类型一.利用截面图形求轨迹
例题1:正方体ABCD-11B A 11D C ,E,F 分别是A 1A ,C 1C 的中点,P 是C 1C 上的动点(包括端点),过E,D,P 做正方体的截面,若截面为四边形,则点 P 的轨迹为( )
A.线段1c F, B,线段CF, C,线段CF 和一点1c D,线段1c F 和一点C.
【解析】由E 、D 、P 三点确定的平面与平面 B 11C B C 的交线与DE 平行,由此
得,当P 与C 重合时,截面过 B 1B 的中点,当P 上移到F 时,截面过 1B 点,此 :时点P 轨迹为线段CF ;而当截面过1C 时,截面也是四边形。
故选 C 。
变式:(13年安徽高考理)如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A,P,Q 的平面截该正方
体所得的截面记为S 。
则下列命题正确的是_________
(写出所有正确命题的编号)。
①当102CQ <<
时,S 为四边形②当12CQ =
时,S 为等腰梯形 ③当34CQ =
时,S 与11C D 的交点R 满足1113C R =④当314
CQ <<时,S 为六边形⑤当1CQ =时,S 的面积为
62 答案:(1) (2)(4)(5)
【点评】截面图形确定后,动点的轨迹也是确定的,此时可采取执果索因的方法,确定动点所位置。
类型二:利用圆锥曲线定义求轨迹。
例2、在正方体ABCD-A1B1C1D1中,P 是侧面BB1C1C 内一动点,若P 到直线BC 与直线C1D1的距离相等,则动点P 的轨迹所在的曲线是( )
A 、直线
B 、圆
C 、双曲线
D 、抛物线
【解析】在侧面 内点这P 到直线 的距离就是P 到点 的距离,因此,满足题意的点P 的轨迹是侧面内到点 的距离与到直线BC 的距离相等的点的集合,所以点P 的轨迹是以 点为焦点,以BC 为准线的抛物线(在侧面 内的部分)。
故选D 。
【点评】点在平面内运动的轨迹有直线、圆和圆锥曲线,直线与圆可由图形与定义直接得到,而圆锥曲线的判定方法较多,其中圆锥曲线的统一定义和圆锥曲线可由平面截立体几何图形得到是常用的方法,是由抛物线的定义得到.
类型三.建立坐标系求轨迹。
例题3:正方体ABCD-1A 1B 1C 1D 的棱长为1,点M 在棱AB 上,且AM=3
1,点P 是平
面ABCD 上的动点,且点P 到直线1A 1D 的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为( )
A.圆
B.抛物线
C.双曲线
D.直线
解析:在平面ABCD 内,以AB 为x 轴,A 为原点,建立平面直角坐标系,设点P 坐标为(x ,y ),则M (31,0),依题意得:(2x +1)-(2X -32X+91+2y )=1,化简得:2y =32x-91。
故选B.
点评:动点在运动过程中,有明显的等量与数量关系,可通过建立坐标系求出动点运动的轨迹方程。
类型四:建立函数模型求函数解析式。
例4、如图,动点P 在正方体 ABCD-1
111D C B A 的对角线B 1D 上,过点 P 作垂直于平面B 11D B D 的直线,与正方体表面相交于 MN .设 BP=X ,MN=Y ,则函数 Y=f(x)的图像大
致是( )
解析:因为B 1P =BP 32=
36X,设B 1D 中点为O,则当P ∈BO 时,MN=1M 1N =2B 1P 326X, 当P ∈O 1D 时,MN=1M 1N =2D 1P =326(3-x ),∴y=632x ,x ∈[0,23],或者y=63
2(3-X),X ∈[23,3].故选B. 【点评】动点在运动过程中,当确定一个量为自变量时,轨迹问题可转化为函数问题,通过建立函数模型求出函数解析式.
以上是我在教学中总结的立体几何中有关求轨迹问题的类型以及解决的方便,当然还有其它一些方面,这就需要我们在教学中不但总结和提高,供同行们商榷。