(完整版)《演绎推理》教案1
演绎推理教案

演绎推理教案教案标题:演绎推理教案教学目标:1. 学生能够理解演绎推理的概念和原理;2. 学生能够应用演绎推理的方法解决问题;3. 学生能够分析和评估使用演绎推理的逻辑和证据。
教学重点:1. 演绎推理的定义和要素;2. 演绎推理的方法和技巧;3. 演绎推理的应用和评估。
教学准备:1. PowerPoint演示文稿;2. 演绎推理案例和题目;3. 学生练习题目;4. 教学评估表格。
教学过程:引入(5分钟):1. 通过提问引起学生对演绎推理的兴趣,并了解学生已有的知识和理解;2. 介绍演绎推理的概念和作用,以及在日常生活和学习中的应用。
讲解演绎推理的概念和要素(10分钟):1. 解释演绎推理是基于已有的事实和规则,通过逻辑推演得出结论的过程;2. 介绍演绎推理的三个要素:前提、推理规则和结论;3. 引导学生理解和分析演绎推理的逻辑关系和顺序。
示范演绎推理的方法和技巧(15分钟):1. 通过一个具体的案例,示范演绎推理的过程;2. 提供演绎推理的指导步骤和技巧,如将问题拆分为多个小问题,根据已有信息逐步推导;3. 解释常用的推理规则和逻辑关系,如假言推理、充分必要条件等。
实践演绎推理的练习(15分钟):1. 分发演绎推理的练习题目,并要求学生独立解答;2. 提供适当的时间和指导,鼓励学生运用刚刚学到的方法解决问题;3. 强调正确的解题思路和逻辑推理过程。
讨论和总结(10分钟):1. 学生彼此交流和讨论他们的解题思路和方法;2. 引导学生总结演绎推理的关键步骤和技巧;3. 回答学生提出的问题,并澄清误解。
评估(5分钟):1. 分发教学评估表格,评估学生对演绎推理的理解和应用水平;2. 对学生的答案和解题过程进行评分和评价;3. 就学生的表现提供积极的反馈和建议。
拓展练习(选修):1. 提供更复杂的演绎推理练习题目,挑战学生的思维能力和逻辑推理能力;2. 鼓励学生独立寻找和分析演绎推理的实际案例,扩展他们的应用能力。
初中物理演绎推理教案

初中物理演绎推理教案教学目标:1. 理解演绎推理的概念和特点;2. 学会使用演绎推理的方法解决物理问题;3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 演绎推理的定义和特点;2. 演绎推理在物理中的应用;3. 演绎推理的步骤和技巧。
教学过程:一、导入(5分钟)1. 引导学生思考:什么是推理?在日常生活中,我们是如何进行推理的?2. 学生分享自己的思考和经验。
二、新课导入(10分钟)1. 介绍演绎推理的定义和特点:演绎推理是一种从一般到特殊的推理方式,它从一般原理出发,通过逻辑推理得出特殊情况的结论。
2. 举例说明演绎推理在数学和物理中的应用。
三、演绎推理在物理中的应用(10分钟)1. 讲解演绎推理的步骤:提出问题、列出已知条件、应用原理、得出结论。
2. 通过具体物理问题引导学生运用演绎推理的方法解决问题。
四、课堂练习(10分钟)1. 给出一个物理问题,要求学生运用演绎推理的方法解决。
2. 学生独立思考,老师巡回指导。
五、总结和反思(5分钟)1. 学生总结演绎推理的步骤和技巧。
2. 学生分享自己在解决问题中的心得和体会。
六、作业布置(5分钟)1. 布置一道运用演绎推理解决问题的作业。
教学评价:1. 学生对演绎推理的概念和特点的理解程度;2. 学生运用演绎推理解决物理问题的能力;3. 学生对演绎推理的步骤和技巧的掌握情况。
教学反思:本节课通过讲解和练习,使学生了解了演绎推理的概念和特点,学会了运用演绎推理的方法解决物理问题。
但在教学过程中,要注意引导学生正确列出已知条件和应用原理,避免学生在推理过程中出现逻辑错误。
同时,要加强课堂练习的反馈,及时发现和纠正学生在解决问题中的错误。
人教版高二数学“演绎推理”教案

人教版高二数学“演绎推理”教案【导语】增加内驱力,从思想上重视高二,从心理上强化高二,使克服高考的这个关键环节过硬起来,是“志存高远”这四个字在高二年级的全部说明。
作者高二频道为正在拼搏的你整理了《人教版高二数学“演绎推理”教案》期望你爱好!【篇一】教学目标:1.了解演绎推理的含义。
2.能正确地运用演绎推理进行简单的推理。
3.了解合情推理与演绎推理之间的联系与差别。
教学重点:正确地运用演绎推理、进行简单的推理。
教学难点:了解合情推理与演绎推理之间的联系与差别。
教学进程:一、复习:合情推理归纳推理从特别到一样类比推理从特别到特别从具体问题动身――视察、分析比较、联想――归纳。
类比――提出料想二、问题情境。
视察与摸索1.所有的金属都能导电铜是金属,所以,铜能够导电2.一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除。
3.三角函数都是周期函数,tan是三角函数,所以,tan是周期函数。
提出问题:像这样的推理是合情推理吗?二、学生活动:1.所有的金属都能导电←————大条件铜是金属,←-----小条件所以,铜能够导电←――结论2.一切奇数都不能被2整除←————大条件(2100+1)是奇数,←――小条件所以,(2100+1)不能被2整除。
←―――结论3.三角函数都是周期函数,←——大条件tan是三角函数,←――小条件所以,tan是周期函数。
←――结论三、建构数学演绎推理的定义:从一样性的原理动身,推出某个特别情形下的结论,这种推理称为演绎推理。
1.演绎推理是由一样到特别的推理;2.“三段论”是演绎推理的一样模式;包括(1)大条件——已知的一样原理;(2)小条件——所研究的特别情形;(3)结论——据一样原理,对特别情形做出的判定.三段论的基本格式M—P(M是P)(大条件)S—M(S是M)(小条件)S—P(S是P)(结论)3.三段论推理的根据,用集合的观点来知道:若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P。
演绎推理(教案)上课用

演绎推理(教案)上课用一、教学目标1. 让学生理解演绎推理的定义和特点。
2. 培养学生运用演绎推理解决实际问题的能力。
3. 提高学生分析问题、逻辑思维的能力。
二、教学内容1. 演绎推理的定义和分类。
2. 演绎推理的基本形式和结构。
3. 演绎推理的方法和技巧。
4. 演绎推理在实际问题中的应用。
三、教学重点与难点1. 重点:演绎推理的定义、分类、基本形式和结构。
2. 难点:演绎推理的方法和技巧,以及在实际问题中的应用。
四、教学方法1. 讲授法:讲解演绎推理的定义、分类、基本形式和结构。
2. 案例分析法:分析实际问题,引导学生运用演绎推理解决问题。
3. 互动教学法:分组讨论、回答问题,提高学生参与度。
五、教学准备1. 教案、PPT、教学素材。
2. 投影仪、音响设备。
3. 纸、笔、黑板。
【课堂导入】教师通过一个简单的实例,引导学生思考演绎推理的概念,激发学生的兴趣。
【知识讲解】(时间:20分钟)1. 演绎推理的定义和分类:介绍演绎推理的定义,讲解演绎推理的分类,如全称命题、特称命题等。
2. 演绎推理的基本形式和结构:讲解演绎推理的基本形式,如三段论、逆否命题等,以及演绎推理的结构。
【案例分析】(时间:15分钟)教师展示几个实际问题,引导学生运用演绎推理解决问题,培养学生运用演绎推理的能力。
【课堂互动】(时间:10分钟)学生分组讨论,回答问题,提高学生参与度,巩固所学知识。
【课堂小结】(时间:5分钟)教师总结本节课的主要内容,强调演绎推理的方法和技巧。
【课后作业】1. 复习本节课的内容,掌握演绎推理的定义、分类、基本形式和结构。
2. 完成课后练习题,巩固所学知识。
六、教学拓展1. 演绎推理在数学中的应用:介绍演绎推理在数学证明、定理推导等方面的应用。
2. 演绎推理在生活中的应用:举例说明演绎推理在解决生活中的问题,如逻辑谜题、判断真假等。
七、课堂练习(时间:15分钟)1. 教师出示一些实际问题,学生独立运用演绎推理解决问题。
演绎推理(教案)上课用

演绎推理(教案)上课用一、教学目标1. 让学生理解演绎推理的定义和特点。
2. 培养学生运用演绎推理解决实际问题的能力。
3. 提高学生分析问题、逻辑思维的能力。
二、教学重点与难点1. 教学重点:演绎推理的定义、方法和应用。
2. 教学难点:演绎推理在实际问题中的应用。
三、教学方法1. 采用讲授法,讲解演绎推理的基本概念和方法。
2. 运用案例分析法,让学生通过实例掌握演绎推理的应用。
3. 开展小组讨论法,培养学生合作解决问题的能力。
四、教学准备1. 教案、PPT、教学案例。
2. 学生分组,每组4-5人。
3. 笔记本、笔等学习用品。
五、教学过程1. 导入新课:通过一个有趣的谜语,引发学生对演绎推理的兴趣。
2. 讲解演绎推理的基本概念:介绍演绎推理的定义、特点和基本方法。
3. 案例分析:分析几个典型案例,让学生了解演绎推理在实际问题中的应用。
4. 小组讨论:让学生分组讨论,运用演绎推理解决实际问题。
5. 总结与评价:对学生的讨论进行点评,总结演绎推理的关键点和注意事项。
6. 课后作业:布置一道运用演绎推理解决问题的作业,巩固所学知识。
7. 教学反思:根据学生的反馈,调整教学方法和内容,提高教学效果。
六、教学内容与课时安排1. 教学内容:本节课主要讲解演绎推理的基本形式,包括三段论、假言推理和选言推理。
2. 课时安排:共2课时,每课时45分钟。
七、教学过程第一课时1. 导入新课:回顾上节课的内容,引入本节课的主题。
2. 讲解演绎推理的基本形式:a. 三段论:介绍三段论的结构和规则。
b. 假言推理:讲解假言推理的定义和条件。
c. 选言推理:介绍选言推理的种类和应用。
3. 案例分析:分析几个典型案例,让学生了解演绎推理在实际问题中的应用。
4. 小组讨论:让学生分组讨论,运用演绎推理解决实际问题。
第二课时1. 复习导入:回顾上节课的内容,引入本节课的主题。
2. 课堂练习:布置一道运用演绎推理解决问题的练习题,巩固所学知识。
演绎推理教案(优秀范文5篇)

演绎推理教案(优秀范文5篇)第一篇:演绎推理教案教学目标:1、理解演绎推理的含义及特点,会将推理写成三段论的形式2、理解并掌握演绎推理的基本模式和并判断正确与否4、能够利用三段论进行相关的演绎推理4、正确理解合情推理与演绎推理的区别用联系教学重点:演绎推理的含义与三段论推理及合情推理和演绎推理的区别与联系教学难点:演绎推理的判断和应用授课方法:讲授法,合作学习法,讲练结合法、自学指导法等教学过程:一、新课引入:1.合情推理有哪两种?期望学生回答:归纳推理和类比推理2.讨论:合情推理的结论正确吗?期望学生回答:合情推理的结论不一定正确,有待进一步证明。
那么有什么能使结论正确的推理形式呢?3.问题导入:① 所有的金属都能够导电,铀是金属,所以铀能导电②奇数都不能被2整除,2+1是奇数,所以2+1不能被2整除③ 三角函数都是周期函数,100 100tana是三角函数,所以tana是周期函数讨论:上述例子的推理形式与我们学过的合情推理一样吗?同学们还能举出类似的例子吗?以此导入新课二、演绎推理:1.概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。
2.特点:由一般到特殊的推理。
3.一般模式:三段论大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.常用格式:大前提——M是P小前提——S是M结论——S是P4.探究探究1把演绎推理写成三段论(小组解决,老师点评)例:所有的金属都能够导电,铀是金属,所以铀能导电大前提:所有的金属能够导电小前提:铀是金属结论:铀能够导电练习:(1)正整数是自然数,3是正整数,所以3是自然数(2)矩形的对角线相等,正方形是矩形,所以正方形的对角线相等(3)0.332是有理数(4)函数y=2x+5的图像是一条直线方法点评:对命题进行分析,找出大前提、小前提、结论然后根据三段论推理的模式进行改写探究2.演绎推理的正误判断分析下面几个推理是否正确,说明为什么?1(1)因为指数函数y=ax是增函数,而y=()x是指数函数,所以y=()x是增2函数(2)因为无理数是无限不循环小数,而π是无限不循环小数,所以π是无理数(3)因为过不共线的三点有且仅有一个平面而A、B、C为空间三点所以过A、B、C三点只能确定一个平面期望学生回答:以上几个推理都是错误的因为(1)大前提错误(2)推理形式错误(3)小前提错误点评:演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论才一定是正确的5.合情推理与演绎推理的区别及联系学生自己先做总结然后再看课本P33页三、例题讲评例1.如图所示,在锐角三角形ABC中,AD⊥BC,BE⊥AC,D,E为垂足,AM求证:AB的中点M到D,E的距离相等。
演绎推理(教案)上课用

新授课:2。
1。
2 演绎推理教学目标重点: 了解演绎推理的含义,能利用“三段论”进行简单的推理。
难点: 掌握演绎推理的基本方法。
知识点:理解演绎推理的概念,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理。
能力点:通过典型例子,让学生亲身体验演绎推理的实施步骤与必要性.教育点:通过大量的实例,体会一般到特殊的探究路程,体会探究的乐趣,激发学生的学习热情,培养学生的归纳概括能力.自主探究点:如何发现推理过程中的错误.考试点:用三段论解决问题.易错易混点:演绎推理和合情推理的联系与区别。
拓展点:引导学生总结“三段论”的基本思想.一、引入新课(一)复习回顾:合情推理1.归纳推理是由特殊到一般的推理;类比推理是由特殊到特殊的推理。
2.一般过程:从具体问题出发------观察、分析、比较、联想------归纳、类比------提出猜想.3。
合情推理的结论不一定成立.(二)创设情境:歌德是18世纪德国的一位著名的文艺大师。
有一位与其文艺思想相左的文艺批评家,生性古怪,态度傲慢.-天,歌德与他“狭路相逢",不期而遇。
这位文艺批评家见歌德迎面走来,不仅没有有礼貌地打招呼,反而目中无人,高傲地往前直走,并卖弄聪明地大声说:“我从来不给傻子让路!”面对这十分尴尬的情景,歌德镇定自若、笑容可掬,谦恭地闪避一旁,并机智而礼貌地答道:“呵呵,我可恰恰相反。
"故作聪明的文艺批评家顿时怔然,讨了个没趣,只得默然离去。
在这故事里,无论是文艺批评家还是歌德,各自都只说了一句,而且话语非常简练,极为深刻,话中有理,语中有刺。
他们的对话,体现了演绎推理的三段论法.【设计意图】通过已学知识的回顾,进一步认识归纳推理和类比推理这两种合情推理的基本方法。
通过一个有趣的小故事,激发了学生的学习热情,提高了学生的发散思维能力;同时又让学生初步感知演绎推理,体会到学习数学的实用性,使学生保持良好的、积极的情感体验.学生会觉得有趣,增加对逻辑推理的兴趣,对学好逻辑推理是有帮助的.二、探究新知在日常生活和数学学习中,我们还经常以某些一般的判断为前提,得出一些个别的、具体的判断。
(完整版)《演绎推理》教案1

§2.1.2演绎推理教学目标:1. 知识与技能:了解演绎推理的含义。
2. 过程与方法:能正确地运用演绎推理进行简单的推理。
3. 情感、态度与价值观:了解合情推理与演绎推理之间的联系与差别。
教学重点:正确地运用演绎推理进行简单的推理教学难点:了解合情推理与演绎推理之间的联系与差别。
教具准备:与教材内容相关的资料。
教学设想:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.教学过程:学生探究过程:一.复习:合情推理归纳推理从特殊到一般类比推理从特殊到特殊从具体问题出发――观察、分析比较、联想――归纳。
类比――提出猜想二.问题情境。
观察与思考1所有的金属都能导电铜是金属,所以,铜能够导电2.一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.3.三角函数都是周期函数,tan α是三角函数,所以,tan α是周期函数。
提出问题:像这样的推理是合情推理吗?二.学生活动:1.所有的金属都能导电←————大前提铜是金属, ←-----小前提所以,铜能够导电←――结论2.一切奇数都不能被2整除←————大前提(2100+1)是奇数,←――小前提所以,(2100+1)不能被2整除.←―――结论3.三角函数都是周期函数, ←——大前提tan α是三角函数,←――小前提所以,tan α是周期函数。
←――结论三,建构数学演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式;包括⑴大前提---已知的一般原理;⑵小前提---所研究的特殊情况;(小前提)是二次函数函数12++=x x y ⑶结论-----据一般原理,对特殊情况做出的判断.三段论的基本格式M —P (M 是P ) (大前提)S —M (S 是M ) (小前提)S —P (S 是P ) (结论)3.三段论推理的依据,用集合的观点来理解:若集合M 的所有元素都具有性质P,S 是M 的一个子集,那么S 中所有元素也都具有性质P.四,数学运用例1.把“函数21y x x =++的图象是一条抛物线”恢复成完全三段论.解:二次函数的图象是一条抛物线 (大前提)例2.已知lg2=m,计算lg0.8解 (1) lgan=nlga(a>0)---------大前提lg8=lg23————小前提lg8=3lg2————结论lg(a/b)=lga-lgb(a>0,b>0)——大前提lg0.8=lg(8/10)——-小前提lg0.8=lg(8/10)——结论例3.如图;在锐角三角形ABC 中,AD ⊥BC, BE ⊥AC,D,E 是垂足,求证AB 的中点M 到D,E 的距离相等.解: (1)因为有一个内角是只直角的三角形是直角三角形, ——大前提在△ABC 中,AD ⊥BC,即∠ADB=90° —-小前提所以△ABD 是直角三角形 ——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提因为 DM 是直角三角形斜边上的中线, ——小前提所以 DM=21AB ——结论 同理 EM=21AB 所以 DM=EM.由此可见,应用三段论解决问题时,首先应该明确什么是大前提和小前提.但为了叙 述简洁,如果大前提是显然的,则可以省略.再来看一个例子.例4.证明函数2()2f x x x =-+在(,1)-∞内是增函数.分析:证明本例所依据的大前提是:在某个区间(a, b )内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增.小前提是2()2f x x x =-+的导数在区间(,1)-∞内满足'()0f x >,这是证明本例的关键.证明:'()22f x x =-+.当(,1)x ∈-∞时,有10x ->,所以'()222(1)0f x x x =-+=->.于是,根据“三段论”得,2()2f x x x =-+在(,1)-∞内是增函数.在演绎推理中,只要前提和推理形式是正确的,结论必定是正确的.还有其他的证明方法吗?思考:因为指数函数x y a =是增函数,——大前提 而1()2x y =是指数函数, ——小前提 所以1()2xy =是增函数. ——结论(1)上面的推理形式正确吗?(2)推理的结论正确吗?为什么?上述推理的形式正确,但大前提是错误的(因为当01a <<时,指数函数x y a =是减函数),所以所得的结论是错误的.“三段论”是由古希腊的亚里士多德创立的.亚里士多德还提出了用演绎推理来建立各门学科体系的思想.例如,欧几里得的《原本》.就是一个典型的演绎系统,它从10条公理和公设出发,利用演绎推理,推出所有其他命题.像这种尽可能少地选取原始概念和一组不加证明的原始命题(公理、公设),以此为出发点,应用演绎推理,推出尽可能多的结论的方法,称为公理化方法.继《原本》之后,公理化方法广泛应用于自然科学、社会科学领域.例如,牛顿在他的巨着《自然哲学的数学原理》中,以牛顿三定律为公理,运用演绎推理推出关于天体空间的一系列科学理论,建立了牛顿力学的一整套完整的理论体系.至此,我们学习了两种推理方式一一合情推理与演绎推理.思考: 合情推理与演绎推理的主要区别是什么?归纳和类比是常用的合情推理从推理形式上看,归纳是由部分到整体、个别到一般的推理,类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.人们在认识世界的过程中,需要通过观察、将积累的知识加工、整理,使之条理化、实验等获取经验;也需要辨别它们的真系统化.合情推理和演绎推理分别在这两个环节中扮演着重要角色.就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结明思路等的发现,主要靠合情推理.因此,我们不仅要学会证明,也要学会猜想.巩固练习:第35页 练习第 1,2,3,4,题作业:第35页 练习 第5题 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1.2演绎推理教学目标:
1. 知识与技能:了解演绎推理的含义。
2. 过程与方法:能正确地运用演绎推理进行简单的推理。
3. 情感、态度与价值观:了解合情推理与演绎推理之间的联系与差别。
教学重点:正确地运用演绎推理进行简单的推理
教学难点:了解合情推理与演绎推理之间的联系与差别。
教具准备:与教材内容相关的资料。
教学设想:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.教学过程:
学生探究过程:
一.复习:合情推理
归纳推理从特殊到一般
类比推理从特殊到特殊
从具体问题出发――观察、分析比较、联想――归纳。
类比――提出猜想
二.问题情境。
观察与思考
1所有的金属都能导电
铜是金属,
所以,铜能够导电
2.一切奇数都不能被2整除,
(2100+1)是奇数,
所以,(2100+1)不能被2整除.
3.三角函数都是周期函数,
tan α是三角函数,
所以,tan α是周期函数。
提出问题:像这样的推理是合情推理吗?
二.学生活动:
1.所有的金属都能导电←————大前提
铜是金属, ←-----小前提
所以,铜能够导电←――结论
2.一切奇数都不能被2整除←————大前提
(2100+1)是奇数,←――小前提
所以,(2100+1)不能被2整除.←―――结论
3.三角函数都是周期函数, ←——大前提
tan α是三角函数,←――小前提
所以,tan α是周期函数。
←――结论
三,建构数学
演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.
1.演绎推理是由一般到特殊的推理;
2.“三段论”是演绎推理的一般模式;包括
⑴大前提---已知的一般原理;
⑵小前提---所研究的特殊情况;
(小前提)是二次函数函数12++=x x y ⑶结论-----据一般原理,对特殊情况做出的判断.
三段论的基本格式
M —P (M 是P ) (大前提)
S —M (S 是M ) (小前提)
S —P (S 是P ) (结论)
3.三段论推理的依据,用集合的观点来理解:
若集合M 的所有元素都具有性质P,S 是M 的一个子集,那么S 中所有元素也都具有性质P.
四,数学运用
例1.把“函数21y x x =++的图象是一条抛物线”恢复成完全三段论.
解:二次函数的图象是一条抛物线 (大前提)
例2.已知lg2=m,计算lg0.8
解 (1) lgan=nlga(a>0)---------大前提
lg8=lg23————小前提
lg8=3lg2————结论
lg(a/b)=lga-lgb(a>0,b>0)——大前提
lg0.8=lg(8/10)——-小前提
lg0.8=lg(8/10)——结论
例3.如图;在锐角三角形ABC 中,AD ⊥BC, BE ⊥AC,
D,E 是垂足,求证AB 的中点M 到D,E 的距离相等.
解: (1)因为有一个内角是只直角的三角形是直角三
角形, ——大前提
在△ABC 中,AD ⊥BC,即∠ADB=90° —-小前提
所以△ABD 是直角三角形 ——结论
(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提
因为 DM 是直角三角形斜边上的中线, ——小前提
所以 DM=
21AB ——结论 同理 EM=2
1AB 所以 DM=EM.
由此可见,应用三段论解决问题时,首先应该明确什么是大前提和小前提.但为了叙 述简洁,如果大前提是显然的,则可以省略.再来看一个例子.
例4.证明函数2
()2f x x x =-+在(,1)-∞内是增函数.
分析:证明本例所依据的大前提是:在某个区间(a, b )内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增.
小前提是2()2f x x x =-+的导数在区间(,1)-∞内满足'()0f x >,这是证明本例的关
键.
证明:'
()22f x x =-+.
当(,1)x ∈-∞时,有10x ->,
所以'()222(1)0f x x x =-+=->.
于是,根据“三段论”得,2()2f x x x =-+在(,1)-∞内是增函数.
在演绎推理中,只要前提和推理形式是正确的,结论必定是正确的.
还有其他的证明方法吗?
思考:因为指数函数x y a =是增函数,——大前提 而1()2x y =是指数函数, ——小前提 所以1()2x
y =是增函数. ——结论
(1)上面的推理形式正确吗?
(2)推理的结论正确吗?为什么?
上述推理的形式正确,但大前提是错误的(因为当01a <<时,指数函数x y a =是减函数),所以所得的结论是错误的.“三段论”是由古希腊的亚里士多德创立的.亚里士多德还提出了用演绎推理来建立各门学科体系的思想.例如,欧几里得的《原本》.就是一个典型的演绎系统,它从10条公理和公设出发,利用演绎推理,推出所有其他命题.像这种尽可能少地选取原始概念和一组不加证明的原始命题(公理、公设),以此为出发点,应用演绎推理,推出尽可能多的结论的方法,称为公理化方法.
继《原本》之后,公理化方法广泛应用于自然科学、社会科学领域.例如,牛顿在他的巨着《自然哲学的数学原理》中,以牛顿三定律为公理,运用演绎推理推出关于天体空间的一系列科学理论,建立了牛顿力学的一整套完整的理论体系.至此,我们学习了两种推理方式一一合情推理与演绎推理.
思考: 合情推理与演绎推理的主要区别是什么?
归纳和类比是常用的合情推理从推理形式上看,归纳是由部分到整体、个别到一般的推理,类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.
人们在认识世界的过程中,需要通过观察、将积累的知识加工、整理,使之条理化、实验等获取经验;也需要辨别它们的真系统化.合情推理和演绎推理分别在这两个环节中扮演着重要角色.
就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结明思路等的发现,主要靠合情推理.因此,我们不仅要学会证明,也要学会猜想.
巩固练习:第35页 练习第 1,2,3,4,题
作业:第35页 练习 第5题 。
习题2。
1 第4题。
教学反思:
演绎推理具有如下特点:课本第33页 。
演绎推理错误的主要原因是
(1).大前提不成立;(2) .小前提不符合大前提的条件。
在课堂上,要让学生领悟到:解答演绎推理题时的方法技巧:
1、紧扣题干内容,不要对题中陈述的事实提出任何怀疑,不要被与题中陈述不一致的常理所干扰。
试题中所给的陈述有的合乎常理,有的可能不太合乎常理。
但你心中必须明确,这段陈述在此次考试中被假设是正确的、不容置疑的。
考生不能对试题所陈述的事实的正误提出怀疑,也不能自作聪明地以自己具备的这方面的知识进行推理,得出答案,而完全忽视试题中所陈述的事实。
2、依靠形式逻辑有关推论法则严格推理,注意大前提、小前提、结论三者之间的关系。
在演绎推理题中,前提与结论之间有必然性的联系,结论不能超出前提所界定的范围。
因此,在解答此种试题时,必须紧扣题干部分陈述的内容,正确答案应与所给的陈述相符。
必须注意的是,此类试题的备选答案具有很强的迷惑性,即各个选项几乎都是有道理的,但有道理并不等于与这段陈述直接相关。
正确的答案应与陈述直接有关,即从陈述中直接推出。
3、必要时,可以在草稿纸上用自己设计的符号来表示推论过程,帮助你记住一些重要信息和推出正确结论。