计算机操作系统典型例题解析之五

计算机操作系统典型例题解析之五
计算机操作系统典型例题解析之五

计算机操作系统例题及解析之五

【例1】什么是文件?什么是文件系统?

答:文件是在逻辑上具有完整意义的信息集合,它有一个名字作标识。文件具有三个基本特征:文件的内容为一组相关信息、文件具有保存性、文件可按名存取。文件系统是操作系统中负责管理和存取文件的程序模块,也称为信息管理系统。它是由管理文件所需的数据结构(如文件控制块、存储分配表)和相应的管理软件以及访问文件的一组操作所组成。

【例2】什么是文件的物理结构和逻辑结构?

答:文件的逻辑结构是从用户观点出发所看到的文件组织形式,是用户可以直接处理的数据及其结构。文件的逻辑结构有两种形式:有结构的记录文件和无结构的流式文件。文件的物理结构是指文件在外存上的存储组织形式。文件的物理结构有三种形式:顺序结构、链接结构和索引结构。

【例3】假定盘块的大小为1KB,硬盘的大小为500MB,采用显示链接分配方式时,其FAT 需要占用多少存储空间?

答:FAT的每个表项对应于磁盘的一个盘块,其中用来存放分配给文件的下一个盘块的块号,故FAT的表项数目由物理盘块数决定,而表项的长度则由磁盘系统的最大盘块号决定(即它必须能存放最大的盘块号)。为了地址转换的方便,FAT表项的长度通常取半个字节的整数倍,所以必要时还必须由最大盘块号获得的FAT表项长度作一些调整。由题意可知,该硬盘共有500K个盘块,故FAT中共有500K个表项;如果盘块从1开始编号,为了能保存最大的盘块号500K,该FAT表项最少需要19位,将它扩展为半个字节的整数倍后,可知每个FAT表项需20位,即2.5个字节。因此,FAT需占用的存储空间的大小为:

2.5×500K=1250KB

【例4】存放在某个磁盘上的文件系统,采用混合索引分配方式,其FCB中共有13个地址项,第0~9个地址项为直接地址,第10个地址项为一次间接地址,第11个地址项为二次间接地址,第12个地址项为三次间接地址。如果每个盘块的大小为4K字节,若盘块号需要用4个字节来描述,请问该系统中允许的文件的最大长度是多少?

答:由题意可得,每个盘块最多存放4K/4=1K个盘块地址。在混合索引分配方式中,文件的FCB的直接地址中登记有分配给文件的前n块(0到n-1)的物理块号(本题中为10);一次间接地址中登记有一个一次间接块的块号,而在一次间接块中则登记有分配给文件的第n到第n+k-1块的块号(本题中k的值为1k);二次间接地址中登记有一个二次间接块的块号,其中可给出k个一次间接块的块号,而这些一次间接块被用来登记分配给文件的第n +k块到第n+k+k2-1块的块号;三次间接地址中则登记有一个三次间接块的块号,其中可给出k个二次间接块的块号,这些二次间接块有可给出k2个一个间接块的块号,而这些一次间接块则用来登记分配给文件的第n+k+k2块到n+k+k2+k3-1块的物理块号。则该系统中一个文件的最大长度是:

4K×(10+1K+1K×1K+1K×1K×1K)=40K +4M +4G +4T

【例5】什么是文件控制块?文件控制块中包含哪些信息?

答:文件系统在创建每个文件时设置用于文件描述和文件控制的数据结构,它与文件一一对应,称为文件说明或文件控制块FCB。它是随着文件的建立而诞生,随着文件的删除而消失,某些内容随着文件的使用而动态改变。一般文件控制块应包括如下三类内容:⑴有关文件存取控制的信息。例如,用户名、文件名、文件类型、文件属性。⑵有关文件结构的信息。例如,文件的逻辑结构、文件的物理结构、记录个数、文件在存储介质上的位置等。⑶有关文件管理的信息。例如,文件的建立日期、文件被修改的日期、文件保留期限和记帐信息等。

【例6】在实现文件系统时,为加快文件目录的检索速度,可利用“文件控制块分解法”。假设目录文件存放在磁盘上,每个盘块512字节。文件控制块占64字节,其中文件名占8字节。通常将文件控制块分解成两部分,第1部分占10字节(包括文件名和文件内部号),第2部分占54字节(包括文件内部号和文件其他描述信息)。

(1)假定某一目录文件共有254个文件控制块,试分别给出采用分解法前和分解法后,查找该目录的某一个文件控制块的平均访问磁盘次数。

(2)一般地,若目录文件分解前占用n个盘块,分解后改用m个盘块存放文件名和文件内部号,请给出访问磁盘次数减少的条件。

答:(1)采用分解法前,一个盘块存放[5l2/64]=8目录项,254个目录项需要32个盘块,查找一个文件的平均访问的盘块数:(1+32)/2=16.5次;采用分解法后,一个盘块存放[5l2/10]=51目录项,254个目录项需要5个盘块,查找一个文件的第1部分平均访问的盘块数:(1+5)/2=3次;查找第2部分需要访问磁盘1次,故查找一个文件控制块的平均访问磁盘次数是3+1=4次。(2)访问磁盘次数减少的条件为:(n+1)/2>(m+1)/2+1即 m<n-2

【例7】目前最广泛采用的目录结构是哪种?它有什么优点?

答:目前广泛采用的目录结构是多级树形目录结构。它具有以下优点:多级目录解决了重名问题,同一目录中的各文件名不能同名,但在不同目录中的文件名可以相同。多级目录有利于文件的分类。文件是若干有意义的相互关联的信息的集合,信息本身就具有某种层次关系的属性,树型目录结构能确切地反映这些层次关系。可以把某些具有相同性质的文件安排在同一个子目录下,使用文件更加方便。多级目录的层次结构关系便于制定保护文件的存取权限,有利于文件的保密。并且便于实现文件的共享。

【例8】有一计算机系统采用如下图所示的位示图(行号、列号都从0开始编号)来管理空闲盘块。如果盘块从1开始编号,每个盘块的大小为1KB。

(1)现要为文件分配两个盘块,试具体说明分配过程。

(2)若要释放磁盘的第300块,应如何处理?

1

2

3

4

5

6

进制位,得到其行号i1=2,列号j1=2;第二个值为0的二进制位,得到其行号i2=3,列号j2=6。计算出找到的两个空闲块的盘块号分别为:b1=i1×16+j1+1=2×16+2+1=35 b1=i2×16+j2+1=3×16+6+1=55修改位示图,令Map[2,2]=Map[3,6]=1,并将对应块35、55分配出去。(2)释放磁盘的第300块时,应进行如下处理:

计算出磁盘第300块所对应的二进制位的行号i和列号j:i=(300-1)/16=18,j=(300-1)Mod 16=11 修改位示图,令Map[18,11]=0,表示对应块为空闲块。

【例9】设某系统磁盘共有1600块,块号从0~1599,若用位示图管理这1600块的磁盘空间,问位示图需要多少个字节?

答:在位示图中,用1位二进制数描述1个磁盘块的状态。1600个磁盘块共需要1600位二进制数,每个字节长为8位,位示图需要:1600/8=200(字节)

【例10】系统中磁头停留在磁道号为70的磁道上,这时先后有4个进程提出了磁盘访问请求,要访问的磁盘的磁道号按申请到达的先后顺序依次为:45,68,28,90。移动臂的运动方向:沿磁道号递减的方向移动。若分别采用FCFS磁盘调度算法、SSTF算法,SCAN算法算法时,所需寻道长度分别为多少(走过多少柱面)?

答:FCFS磁盘调度算法:(70-45)+(68-45)+(68-28)+(90-28)=150;

SSTF算法:(70-68)+(90-68)+(90-45)+(45-28)=86

SCAN算法:(70-68)+(68-45)+(45-28)+(90-28)=104

练习题及参考答案

一、单项选择

1.位示图可用于( A )。

A、从磁盘空间的分配和回收

B、页式虚存中的页面置换

C、固定分区的存储管理

D、动态分区存储管理中空闲区的分配回收

2.逻辑文件存放在磁带上应组织成( C )。

A、索引文许

B、直接文件

C、顺序文件

D、链接文件

3.UNIX操作系统中,对磁盘存储空间的空闲块进行管理时采用( B )

A、位示图

B、空闲块成组链接法

C、FAT表

D、空闲块多级目录法

4.防止系统故障造成破坏,文件系统可以采用(A )。

A、建立副本和定时转储

B、对每个文件规定使用权限

C、为文件设置口令

D、把文件信息翻译成密文

5.对随机存取的文件只能在磁盘上组织成( B )。

A、顺序文件

B、索引文件

C、连续文件

D、链接文件

6.下列文件全属于物理文件的是(D )。

A、流式文件、串联文件

B、索引文件、记录式文件

C、流式文件、记录式文件

D、顺序文件、索引文件

7.最简单的文件目录是( C )。

A、最末一个结点是文件

B、容易实现“按名存取”

C、一级目录结构

D、多级目录结构8.在多级目录结构中,要访问一个文件时,必须指出文件的( C )。

A、父目录

B、当前目录

C、路径名

D、根目录

9.逻辑文件是由( D )确定的文件组织形式(即文件结构)。

A、外部设备

B、虚拟存储

C、绝对地址空间

D、用户按对信息处理要求10.存储设备与存储器之间进行信息交换的物理单位是(B )。

A、卷

B、块

C、文件

D、记录

11.逻辑文件中逻辑记录的长度由(A )因素决定。

A、文件的性质

B、存储介质的分块

C、文件的长度

D、主存块的大小12.磁头在移动臂带动下移动到指定柱面所花的时间是(A)。

A、寻找时间

B、延迟时间

C、传送时间

D、优化时间13.指定扇区旋转到磁头下所需的时间是(B )。

A、寻找时间

B、延迟时间

C、传送时间

D、优化时间14.由磁头进行读写完成信息传送的时间是(C )。

A、寻找时间

B、延迟时间

C、传送时间

D、优化时间15.(C )硬件设计就固定的。

A、寻找时间

B、延迟时间

C、传送时间

D、优化时间16.文件系统是指(D )

A、文件的集合

B、文件的目录

C、实现文件管理的一组软件

D、文件、文件管理文件的软件及数据结构的总体17.从用户的角度看,引入文件系统的主要目的是(D )

A、实现虚拟存储

B、保存系统文档

C、保存拥护和系统文档

D、实现对文件的按名存取18.文件系统中用(C )管理文件

A、作业控制块

B、外页表

C、目录

D、软硬件结合的方法19.为了解决不同用户文件的“命名冲突”问题,通常在文件系统中采用(B )

A、约定方法

B、多级目录

C、路径

D、索引

20.磁盘上的文件以(A )为单位读写

A、块

B、记录

C、柱面

D、磁道

21.磁带上的文件一般只能(A )

A、顺序存取

B、随机存取

C、按键存取

D、按字节为单位存取22.使用文件前必须先(B )文件

A、命名

B、打开

C、建立

D、备份

二、多项选择题

1.关于一级目录结构说法正确的是(ABD)。

A、一级目录结构是最简单的目录结构

B、所有的文件都登记在同一个文件目录中

C、一级目录结构简单,管理复杂

D、一级目录不支持文件重名

E、容易实现文件共享2.关于二级目录结构说法正确的是(BDE)。

A、二级目录第一级为主文件目录,主文件目录以文件名为索引

B、第二级目录为用户文件目录,用户文件目录为本用户每一个文件设置一个目录项

C、二级目录结构复杂,管理简单

D、二级目录支持文件重名

E、容易实现文件共享3.树形目录的优点有(ABCD)。

A、解决了重名问题

B、有利于文件的分类

C、提高检索文件的速度

D、能进行存取权限的控制

E、管理简单,容易实现

4.下列文件中不属于物理文件的是(CE)。

A、连续文件

B、链接文件

C、记录式文件

D、索引文件

E、流式文件

5.顺序结构文件的特点是( AE)。

A、磁盘存储空间的利用率不高

B、便于用户户扩充文件

C、存储空间不必连续

D、便于随机存取

E、存取信息速度快

6.文件的保密是指防止他人窃取文件,采用(CE)方法实现文件保密。

A定时转储B、建立副本C、为文件设置口令D、规定文件使用权限E、将文件译成密文

三、填空题

1.文件管理系统是通过把它所管理的信息(程序和数据)组织成一个个文件的方式来实现其管理的。

2.文件是在逻辑上具有完整意义的信息集合,它有一个名字作标识。

3.把用户概念中的文件称为文件的逻辑结构,或称逻辑文件。文件的物理结构是指文件在外存上的存储组织形式,这与存储介质的性质有关。

4.用户通过对文件的存取来完成对文件的各种操作,顺序存取是按照文件的逻辑地址顺序存取,随机存取允许根据存取命令把读写指针移到欲读写处来读写。按键存取是按键存取法首先搜索到要进行存取的记录的逻辑位置,再将其转换到相应的物理地址后进行存取。5.无结构的流式文件是相关的有序字符的集合,字符是构成文件的基本单位。这种文件常常按长度来读取所需信息,也可以用插入的特殊字符作为分界。

6.顺序存储存储设备是严格依赖信息的物理位置进行定位和读/写的存储设,磁带机是一

种典型的顺序存储设备;直接存取允许文件系统对应存储介质上的任意物理块。

7.对于记录式文件,把若干个逻辑记录合成一组存入一块的工作称“记录的成组”,每块中的逻辑记录个数称“块因子”。从一组逻辑记录中把一个逻辑记录分离出来的操作称“记录的分解”。

8.文件系统在创建每个文件时为其建立了一个文件目录,也称为文件说明或文件控制块FCB。文件目录是为文件设置用于文件描述和文件控制的数据结构。

9.系统要在内存中为该用户保存一些表目,“系统打开文件表”放在内存,用于保存已打开文件的目录项。每个进程一个都有一个“用户打开文件表”。

10.打开文件的主要工作是:根据文件路径名查目录;根据打开方式、共享说明和用户身份检查访问合法性;根据文件号查系统打开文件表,看文件是否已被打开。如果是,共享计数加1,否则,信息填入系统打开文件表空表项,共享计数置为1;在用户打开文件表中取一空表项,填写打开方式等,并指向系统打开文件表对应表项。

11关闭文件的主要工作是:将活动文件表中该文件的“当前使用用户数”减1,若为0,则撤销此表目;若活动文件表目内容已被改过,则应先将表目内容写回外存上相应表目中,以使文件目录保待最新状态。

12.用户请求读文件信息时依次调用:“打开文件”、“读文件”、“关闭文件”。

13.存取控制表就是对存取控制矩阵中的一行进行压缩,可让每一个文件附加一个简单的表格,它规定了对该文件的可访问性(权限);可以对存取控制矩阵中的按列进行压缩。每列一张表,称为用户访问权限表,在该表中列出该用户对每个文件的访问权限

14.为了保证系统信息的安全和防止偶发事故造成的系统“崩溃”、自然因素造成的数据丢失或某些不负责任的用户经常误删他人的文件,文件系统经常采用建立副本和转储的方法来保护文件。

15.为了解决文件系统的不一致问题,一些计算机带有一个实用程序以检验文件系统的一致性。系统启动时,特别是崩溃之后重新启动,可以运行该程序。一致性检查分为两种:和块的一致性检查、文件的一致性检查。

16.对于采用移动磁头的磁盘要访问某特定的物理块时,所用时间一般包括三部分:查找时间、等待时间、传输时间。

动量冲量和动量定理典型例题精析

动量、冲量和动量定理·典型例题精析 [例题1]质量为m的物体,在倾角为θ的光滑斜面上由静止开始下滑.如图7-1所示.求在时间t内物体所受的重力、斜面支持力以及合外力给物体的冲量. [思路点拨]依冲量的定义,一恒力的冲量大小等于这力大小与力作用时间的乘积,方向与这力的方向一致.所以物体所受各恒力的冲量可依定义求出.而依动量定理,物体在一段时间t内的动量变化量等于物体所受的合外力冲量,故合外力给物体的冲量又可依动量定理求出. [解题过程]依冲量的定义,重力对物体的冲量大小为 I G=mg·t, 方向竖直向下. 斜面对物体的支持力的冲量大小为 I N=N·t=mg·cosθ·t,

方向垂直斜面向上. 合外力对物体的冲量可分别用下列三种方法求出. (1)先根据平行四边形法则求出合外力,再依定义求出其冲量. 由图7-1(2)知,作用于物体上的合力大小为F=mg·sinθ,方向沿斜面向下. 所以合外力的冲量大小 I F=F·t=mg·sinθ·t. 方向沿斜面向下. (2)合外力的冲量等于各外力冲量的矢量和,先求出各外力的冲量,然后依矢量合成的平行四边形法则求出合外力的冲量. 利用前面求出的重力及支持力冲量,由图7-1(3)知合外力冲量大小为 方向沿斜面向下.

或建立平面直角坐标系如图7-1(4),由正交分解法求出.先分别求出合外力冲量I F在x,y方向上分量I Fx,I Fy,再将其合成. (3)由动量定理,合外力的冲量I F等于物体的动量变化量Δp. I F=Δp=Δmv=mΔv=m(at)=mgsinθ·t. [小结] (1)计算冲量必须明确计算的是哪一力在哪一段时间内对物体的冲量. (2)冲量是矢量,求某一力的冲量除应给出其大小,还应给出其方向. (3)本题解提供了三种不同的计算合外力冲量的方法.

(完整版)二项式定理典型例题解析

二项式定理 概 念 篇 【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开. 解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3 +C 44(- 2b )4 =a 4-8a 3b +24a 2b 2-32ab 3+16b 4. 说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略. 【例2】展开(2x - 223x )5 . 分析一:直接用二项式定理展开式. 解法一:(2x -223x )5=C 05(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-2 23x )3+ C 4 5 (2x )(-223x )4+C 55(-2 23x )5 =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 分析二:对较繁杂的式子,先化简再用二项式定理展开. 解法二:(2x -223x )5=105 332)34(x x =10321x [C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5 ] = 10 321 x (1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便. 【例3】在(x -3)10的展开式中,x 6的系数是 . 解法一:根据二项式定理可知x 6的系数是C 4 10. 解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10- r (-3)r . 令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410. 上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确. 如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 4 10. 说明:要注意区分二项式系数与指定某一项的系数的差异. 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项

余弦定理练习题及答案解析

1.在△ABC中,已知a=4,b=6,C=120°,则边c的值是() A.8B.217 C.6 2 D.219 解析:选D.根据余弦定理,c2=a2+b2-2ab cos C=16+36-2×4×6cos 120°=76,c=219. 2.在△ABC中,已知a=2,b=3,C=120°,则sin A的值为() A. 57 19 B. 21 7 C. 3 38D.- 57 19 解析:选A.c2=a2+b2-2ab cos C =22+32-2×2×3×cos 120°=19. ∴c=19. 由a sin A= c sin C得sin A= 57 19. 3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________. 解析:设底边边长为a,则由题意知等腰三角形的腰长为2a,故顶角的余弦值为4a2+4a2-a2 2·2a·2a= 7 8. 答案:7 8 4.在△ABC中,若B=60°,2b=a+c,试判断△ABC的形状.解:法一:根据余弦定理得 b2=a2+c2-2ac cos B. ∵B=60°,2b=a+c, ∴(a+c 2) 2=a2+c2-2ac cos 60°, 整理得(a-c)2=0,∴a=c. ∴△ABC是正三角形. 法二:根据正弦定理, 2b=a+c可转化为2sin B=sin A+sin C. 又∵B=60°,∴A+C=120°, ∴C=120°-A, ∴2sin 60°=sin A+sin(120°-A), 整理得sin(A+30°)=1, ∴A=60°,C=60°. ∴△ABC是正三角形. 课时训练一、选择题 1.在△ABC中,符合余弦定理的是() A.c2=a2+b2-2ab cos C B.c2=a2-b2-2bc cos A C.b2=a2-c2-2bc cos A D.cos C=a2+b2+c2 2ab 解析:选A.注意余弦定理形式,特别是正负号问题. 2.(2011年合肥检测)在△ABC中,若a=10,b=24,c=26,则最大角的余弦值是() A.12 13 B. 5 13

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

余弦定理内容以及解析

余弦定理详解 余弦定理定义及公式 余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理。是勾股定理在一般三角形情形下的推广。 a2=b2+c2-2bccosA 余弦定理证明 如上图所示,△ABC,在c上做高,根据射影定理,可得到: 将等式同乘以c得到: 运用同样的方式可以得到: 将两式相加: 向量证明

正弦定理和余弦定理 正弦定理 a/sinA=b/sinB=c/sinC=2R (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。 余弦定理 是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三 边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起 来更为方便、灵活。 直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值 在△DEF中有余弦定理:DE2=DF2+EF2-2DF?EFcos∠DFE.拓展到空间,类比三角形的余弦定理,在斜三棱柱ABC-A1B1C1的中ABB1A1与BCC1B1所成的二面角的平面角为θ,则得到的类似的关系式是_____. 答案: . 解析: 由平面和空间中几何量的对应关系,和已知条件可写出类比结论 解:平面中的点、线、面分别对应空间中的线、面、体,平面中的长度对应空间中的面积,平面中线线的夹角,对应空间中的面面的夹角 故答案为: 证明如下:如图斜三棱柱ABC-A1B1C1 设侧棱长为a 做面EFG垂直于侧棱AA1、BB1、CC1,则∠EFG=θ 又∵ 在△EFG中,根据余弦定理得:EG2=EF2+FG2-2EF?FG?COSθ

-冲量 动量动量定理练习题(带答案)

2016年高三1级部物理第一轮复习-冲量动量动量定理 1.将质量为0.5 kg的小球以20 m/s的初速度竖直向上抛出,不计空气阻力,g取10 m/s2.以下判断正确的是() A.小球从抛出至最高点受到的冲量大小为10 N·s B.小球从抛出至落回出发点动量的增量大小为0 C.小球从抛出至落回出发点受到的冲量大小为0 D.小球从抛出至落回出发点受到的冲量大小为20 N·s 解析:小球在最高点速度为零,取向下为正方向,小球从抛出至最高点受到的冲量I=0-(-m v0)=10 N·s,A正确;因不计空气阻力,所以小球落回出发点的速度大小仍等于20 m/s,但其方向变为竖直向下,由动量定理知,小球从抛出至落回出发点受到的冲量为:I=Δp=m v-(-m v0)=20 N·s,D正确,B、C均错误. 答案:AD 2.如图所示,倾斜的传送带保持静止,一木块从顶端以一定的初速度匀加速下滑到底端.如果让传送带沿图中虚线箭头所示的方向匀速运动,同样的木块从顶端以同样的初速度下滑到底端的过程中,与传送带保持静止时相比() A.木块在滑到底端的过程中,摩擦力的冲量变大 B.木块在滑到底端的过程中,摩擦力的冲量不变 C.木块在滑到底端的过程中,木块克服摩擦力所做的功变大 D.木块在滑到底端的过程中,系统产生的内能数值将变大 解析:传送带是静止还是沿题图所示方向匀速运动,对木块来说,所受滑动摩擦力大小不变,方向沿斜面向上;木块做匀加速直线运动的加速度、时间、位移不变,所以选项A错,选项B正确.木块克服摩擦力做的功也不变,选项C错.传送带转动时,木块与传送带间的相对位移变大,因摩擦而产生的内能将变大,选项D正确. 答案:BD 3.如图所示,竖直环A半径为r,固定在木板B上,木板B放在水平地面上,B的左右两侧各有一挡 板固定在地上,B不能左右运动,在环的最低点静置一小球C,A、B、C的质量 均为m.给小球一水平向右的瞬时冲量I,小球会在环内侧做圆周运动,为保证小 球能通过环的最高点,且不会使环在竖直方向上跳起,瞬时冲量必须满足() A.最小值m4gr B.最小值m5gr C.最大值m6gr D.最大值 m7gr

二项式定理典型例题

二项式定理典型例题-- 例1 在二项式n x x ?? ? ??+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T 为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 例2 求62)1(x x -+展开式中5x 的系数. 分析:62)1(x x -+不是二项式,我们可以通过22)1(1x x x x -+=-+或)(12x x -+把它看成二项式展开. 解:方法一:[]6 262)1()1(x x x x -+=-+ -+++-+=4 4256)1(15)1(6)1(x x x x x 其中含5x 的项为55145355566C 15C 6C x x x x =+-. 含5 x 项的系数为6. 例3 求证:(1)1212C C 2C -?=+++n n n n n n n ;

(2))12(1 1C 11C 31C 21C 1210 -+=++++++n n n n n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质 n n n n n n 2C C C C 210 =++++ . 解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--?=--=-? =k n k n n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =?=+++=-----11111012)C C C (n n n n n n n 右边. (2))! ()!1(!)!(!!11C 11k n k n k n k n k k k n --=-?+=+ 11C 1 1)!()!1()!1(11+++=-++?+=k n n k n k n n . ∴左边112111C 1 1C 11C 11++++++++++= n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 例4 展开5 2232??? ? ?-x x . 例5 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开. 解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即 ∑=-?+=++=++100101010 10)(])[()(k k k k z y x C z y x z y x . 这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式k y x -+10)(展开, 不同的乘积k k k z y x C ?+-1010) ((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k k k z y x C ?+-1010)((10,,1,0 =k ). 其中每一个乘积展开后的项数由k y x -+10)(决定,

最新余弦定理教案设计

余弦定理 一、教材分析 本节主要研究xxxxxx,分两课时,这里是第一课时。它是在学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解三角形的基础上进行学习的。通过利用平面几何法、坐标法(两点的距离公式)、向量的模,正弦定理等方法推导余弦定理,学生会正确理解余弦定理的结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”问题,体会方程思想,理解余弦定理是勾股定理的特例, 从多视角思考问题和发现问题,形成良好的思维品质,激发学生探究数学,应用数学的潜能,培养学生思维的广阔性。 二、学情分析 本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。 本节内容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了"边"和"角"的互化,从而使"三角"与"几何"有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。教科书首先通过设问的方式,指出了"已知三角形的两边和夹角,无法用正弦定理去解三角形",进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完

动量定理习题

动量、冲量及动量定理一 1.两物体质量之比为m 1∶m 2=4∶1,它们以一定的初速度沿水平面在摩擦力作用下做减速滑行到停下来的过程中 (1)若两物体的初动量相同,所受的摩擦力相同,则它们的滑行时间之比为_______; (2)若两物体的初动量相同,与水平面间的动摩擦因数相同,则它们的滑行时间之比为_______; (3)若两物体的初速度相同,所受的摩擦力相同,则它们的滑行时间之比为_______; (4)若两物体的初速度相同,与水平面间的动摩擦因数相同,则它们的滑行时间之比为_______. 2. 从高为H 的平台上,同时水平抛出两个物体A 和B ,已知它们的质量m B =2m A ,抛出时的速度v A =2v B ,不计空气阻力,它们下落过程中动量变化量的大小分别为Δp A 和Δp B ,则( ) A.Δp A =Δp B B.Δp A =2Δp B C.Δp B =4Δp A D.Δp B =2Δp A 3.“蹦极”是一项勇敢者的运动,如图5-1-1所示,某人用弹性橡皮绳拴住身体自高空P 处自由下 落,在空中感受失重的滋味.若此人质量为60 kg ,橡皮绳长20 m ,人可看成质点,g 取10 m/s 2,求: (1)此人从点P 处由静止下落至橡皮绳刚伸直(无伸长)时,人的动量为_______; (2)若橡皮绳可相当于一根劲度系数为100 N/m 的轻质弹簧,则此人从P 处下落到_______m 时具有最大速度;(3)若弹性橡皮绳的缓冲时间为3 s ,求橡皮绳受到的平均冲力的大小. 4. 高压采煤水枪出水口的截面积为S ,水的射速为v ,射到煤层上后,水速度为零.若水的密度为ρ,求水对煤层的冲力. 5.将一质量为kg 1的物体以速度0v 抛出,若在抛出后s 5钟落地,不计空气阻力,试求此物体在落地前s 3内的动量变化。 6.玻璃杯同一高度下落下,掉在水泥地上比掉在草地上容易碎,这是由于玻璃杯与水泥地撞击的过程中( ) A .玻璃杯的动量较大 B .玻璃杯受到的冲量较大 C .玻璃杯的动量变化较大 D .玻璃杯的动量变化较快 7.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做出各种空中动作的运动项目。一个质量为kg 60的运动员,从离水平网面m 2.3高处自由落下,着网后又沿竖直方向蹦回离水平网面m 0.5高处。已知运动员与网接触的时间为s 2.1,若把这段时间内网对运动员的作用力当作恒力来处理,求此力的大小。 8.如图1所示,质量为M 的小车在光滑的水平面上以速度0v 向右做匀速直线运动,一个质量为m 的小球从高h 处自由下落,与小车碰撞后反弹上升的高度为仍为h 。设M ?m ,发生碰撞时弹力N F ?mg ,小球与车之间的动摩擦因数为μ,则小球弹起时的水平速度可能是 A .0v B .0 C .gh 22μ D .-v 0 9.一个质量为m=2kg 的物体,在F 1=8N 的水平推力作用下,从静止开始沿水平面运动了t 1=5s,然后推力减小为F 2=5N,方向不变,物体又运动了t 2=4s 后撤去外力,物体再经 过t 3=6s 停下来。试求物体在水平面上所受的摩擦力。 10.质量是60kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中.已

高中物理动量定理试题经典及解析

高中物理动量定理试题经典及解析 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略

二项式定理典型例题

二项式定理典型例题-- 典型例题一 例1 在二项式n x x ??? ? ?+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 17页 系数和为n 3. 典型例题四 例4 (1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:

动量定理练习题

【典型例题】 1.关于冲量、动量与动量变化的下述说法中正确的是( ) A .物体的动量等于物体所受的冲量 B .物体所受外力的冲量大小等于物体动量的变化大小 C .物体所受外力的冲量方向与物体动量的变化方向相同 D .物体的动量变化方向与物体的动量方向相同 2.A 、B 两个物体静止在光滑水平面上,当分别受到大小相等的水平力作用,经相等时间,则正确的是( ) A .A 、 B 所受的冲量相同 B .A 、B 的动量变化相同 C .A 、B 的末动量相同 D .A 、B 的末动量大小相同 3.在光滑的水平面上, 两个质量均为m 的完全相同的滑块以大小均为P 的动量相向运动, 发生正碰, 碰后系统的总动能不可能是( ) A .0 B . p 2/m C . p 2/2m D .2p 2/m 4.2005年7月26日,美国“发现号”航天飞机从肯尼迪航天中心发射升空,飞行中一只飞鸟撞上了航天飞机的外挂油箱,幸好当时速度不大,航天飞机有惊无险.假设某航天器的总质量为10 t ,以8 km/s 的速度高速运行时迎面撞上一 只速度为10 m/s 、质量为5 kg 的大鸟,碰撞时间为1.0×10-5 s ,则撞击过程中的平均作用力约为( ) A.4×109 N B .8×109 N C.8×1012 N D.5×106 N 5.在光滑的水平面的同一直线上,自左向右地依次排列质量均为m 的一系列小球,另一质量为m 的小球A 以水平向右的速度v 运动,依次与上述小球相碰,碰后即粘合在一起,碰撞n 次后,剩余的总动能为原来的1/8,则n 为( ) A .5 B .6 C .7 D .8 6.如图所示,质量为m 的小车静止于光滑水平面上,车上有一光滑的弧形轨道,另一质量为m 的小球以水平初速沿轨道的右端的切线方向进入轨道,则当小球再次从轨道的右端离开轨道后,将作( ) A .向左的平抛运动; B .向右的平抛运动; C .自由落体运动; D .无法确定. 7.质量M =100 kg 的小船静止在水面上,船首站着质量m 甲=40 kg 的游泳者甲,船尾站着质量m 乙=60 kg 的游泳者乙,船首指向左方,若甲、乙两游泳者同时在同一水平线上甲朝左、乙朝右以3 m/s 的速率跃入水中,则( ) A .小船向左运动,速率为1 m/s B .小船向左运动,速率为0.6 m/s C .小船向右运动,速率大于1 m/s D .小船仍静止 8.如图所示,两个质量都为M 的木块A 、B 用轻质弹簧相连放在光滑的水平地面上,一颗质量为m 的子弹以速度v 射向A 块并嵌在其中,求弹簧被压缩后的最大弹性势能。 【针对训练】 1.A 、B 两球质量相等,A 球竖直上抛,B 球平抛,两球在运动中空气阻力不计,则下述说法中正确的是( ) A .相同时间内,动量的变化大小相等,方向相同 B .相同时间内,动量的变化大小相等,方向不同 C .动量的变化率大小相等,方向相同 D .动量的变化率大小相等,方向不同 2.在水平地面上有一木块,质量为m ,它与地面间的滑动摩擦系数为μ。物体在水平恒力F 的作用下由静止开始运动,经过时间t 后撤去力F 物体又前进了时间2t 才停下来。这个力F 的大小为( ) A .μmg B .2μmg C .3μmg D .4μmg 3.甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s ,p 乙=7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则关于甲球动量的大小和方向判断正确的是( ) A .p 甲′=2kg ·m/s ,方向与原来方向相反 B .p 甲′=2kg ·m/s ,方向与原来方向相同 C .p 甲′=4 kg ·m/s ,方向与原来方向相反 D .p 甲′=4 kg ·m/s ,方向与原来方向相同 4.篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前.这样做可以( ) A .减小球对手的冲量 B .减小球的动量变化率 C .减小球的动量变化量 D .减小球的动能变化量

高二物理动量定理的应用

动量定理的应用(2)·典型例题解析 【例1】 500g 的足球从1.8m 的高处自由下落碰地后能弹回到1.25m 高,不计空气阻力,这一过程经历的时间为1.2s ,g 取10m/s 2,求足球对地面的作用力. 解析:对足球与地面相互作用的过程应用动量定理,取竖直向下为 正,有-Δ=′-其中Δ=--=-×-×=--=,′=-=-××=(mg N)t mv mv t 1.2 1.21.20.60.50.1(s)v 2gh 210 1.2522221810 21251012h g h g .. -,==××=,解得足球受到向上的 弹力='+=+×=+=5(m /s)v 2gh 210 1.86(m /s)N mg 0.51055560(N)1v v v t ().(). -+?056501 由牛顿第三定律得足球对地面的作用力大小为60N ,方向向下. 点拨:本例也可以对足球从开始下落至弹跳到最高点的整个过程应用动量定理:mgt 总-N Δt =0-0,这样处理更为简便. 从解题过程可看出,当Δt 很短时,N 与mg 相比较显得很大,这时可略去重力. 【例2】如图51-1所示,在光滑的水平面上有两块前后并排且靠在一起的木块A 和B ,它们的质量分别为m 1和m 2,今有一颗子弹水平射向A 木块,已知子弹依次穿过A 、B 所用的时间分别是Δt 1和Δt 2,设子弹所受木块的阻力恒为f ,试求子弹穿过两木块后,两木块的速度各为多少? 解析:取向右为正,子弹穿过A 的过程,以A 和B 作为一个整体, 由动量定理得=+,=,此后,物体就以向右匀速运动,接着子弹要穿透物体. f t (m m )v v A v B 112A A A ??f t m m 1 12+ 子弹穿过B 的过程,对B 应用动量定理得f Δt 2=m 2v B -m 2v A , 解得子弹穿出后的运动速度=+.B B v B f t m m f t m ??11222 + 点拨:子弹穿过A 的过程中,如果只将A 作为研究对象,A 所受的冲量

余弦定理练习题(含答案)

余弦定理练习题 1.在△ABC 中,如果BC =6,AB =4,cos B =1 3 ,那么AC 等于( ) A .6 B .2 6 C .3 6 D .46 2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( ) D .2 3.在△ABC 中,a 2=b 2+c 2 +3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150° ? 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2 )tan B =3ac ,则∠B 的值为( ) 或5π6 或2π 3 5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b C .c D .以上均不对 6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 8.在△ABC 中,b =3,c =3,B =30°,则a 为( ) B .2 3 或2 3 D .2 ~ 9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________. 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数. 11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________. 12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________. 13.在△ABC 中,a =32,cos C =1 3 ,S △ABC =43,则b =________. 15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 2 4 ,则角C =________. 16.三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2 -23x +2=0的两根,且2cos(A +B )=1,求AB 的长. ` 18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为1 6 sin C ,求角C 的度数. : 19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π 4 )的值. 20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状. —

高考物理动量定理解题技巧及经典题型及练习题(含答案)

高考物理动量定理解题技巧及经典题型及练习题(含答案) 一、高考物理精讲专题动量定理 1.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小球A 以速度v 0=2m/s 向右运动与B 球发生弹性正碰,取重力加速度g =10m/s 2.求: (1)碰撞结束时A 球的速度大小及方向; (2)碰撞过程A 对B 的冲量大小及方向. 【答案】(1)-1m/s ,方向水平向左(2)3N·s ,方向水平向右 【解析】 【分析】A 与B 球发生弹性正碰,根据动量守恒及能量守恒求出碰撞结束时A 球的速度大小及方向;碰撞过程对B 应用动量定理求出碰撞过程A 对B 的冲量; 解:(1)碰撞过程根据动量守恒及能量守恒得:0A B mv mv Mv =+ 222 0111222 A B mv mv Mv =+ 联立可解得:1m/s B v =,1m/s A v =- 负号表示方向水平向左 (2)碰撞过程对B 应用动量定理可得:0B I Mv =- 可解得:3I N s =? 方向水平向右 2.如图所示,质量M =1.0kg 的木板静止在光滑水平面上,质量m =0.495kg 的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。质量m 0=0.005kg 的子弹以速度v 0=300m/s 沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g 取10m/s 2。求: (1)物块的最大速度v 1; (2)木板的最大速度v 2; (3)物块在木板上滑动的时间t . 【答案】(1)3m/s ;(2)1m/s ;(3)0.5s 。 【解析】 【详解】 (1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得: m 0v 0=(m +m 0)v 1 解得: v 1=3m/s

高考物理动量定理试题经典含解析

高考物理动量定理试题经典含解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 22 02v v aL -= 可解得:22 1002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv = -

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ?,重力加速度g 取210m /s ,求: (1)小球运动到圆弧轨道1最低端时,对轨道的压力大小; (2)小球落到圆弧轨道2上时的动能大小。 【答案】(1)2 5(22 +(2)62.5J 【解析】 【详解】 (1)设小球在圆弧轨道1最低点时速度大小为0v ,根据动量定理有 0I mv = 解得05m /s v = 在轨道最低端,根据牛顿第二定律, 20 v F mg m R -= 解得252N 2F ??=+ ? ?? ? 根据牛顿第三定律知,小球对轨道的压力大小为252N F ' ?=+ ?? (2)设小球从轨道1抛出到达轨道2曲面经历的时间为t , 水平位移: 0x v t = 竖直位移: 2 12 y gt =

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

相关文档
最新文档