动量定理与动量守恒定律·典型例题解析
高考物理动量守恒定律试题经典及解析

5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到 108K 时,可
以发生“氦燃烧”。
①完成“氦燃烧”的核反应方程:
4 2
He
___
8 4
Be
γ
。
②
8 4
Be
是一种不稳定的粒子,其半衰期为
2.6×10-16s。一定质量的
8 4
Be
,经
7.8×10-16s
后所剩下的
8 4
Be
占开始时的
械能守恒定律有 m1gh=
1 2
m1 v02
(1
分)v0=
2gh ,解得:v0=4.0 m/s(1 分)
②设物块 B 受到的滑动摩擦力为 f,摩擦力做功为 W,则 f=μm2g(1 分)
W=-μm2gx 解得:W=-1.6 J(1 分)
③设物块 A 与物块 B 碰撞后的速度为 v1,物块 B 受到碰撞后的速度为 v,碰撞损失的机械
关数学知识辅助分析、求解。
4.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对 一下简化模型的计算可以粗略说明其原因.质量为 2m、厚度为 2d 的钢板静止在水平光滑 桌面上.质量为 m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成 厚度均为 d、质量均为 m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同 的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深 度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影
E
1 2
mv02
1 2
Mv2
M
m mv02
2M
E mc2
解得
m
高中物理-动量守恒定律经典例题详解

高中物理-动量守恒定律经典例题详解一 动量 冲量 动量定理1.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量答案B [解析] 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球的动量变化率,减小了球对手的冲击力,选项B 正确.二 动量守恒定律2. 一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是A BC D答案B [解析] 弹丸在爆炸过程中,水平方向的动量守恒,有m 弹丸v 0=34m v 甲+14m v 乙,解得4v 0=3v 甲+v 乙,爆炸后两块弹片均做平抛运动,竖直方向有h =12gt 2,水平方向对甲、乙两弹片分别有x 甲=v 甲t ,x 乙=v 乙t ,代入各图中数据,可知B 正确.3.如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A 和B 分别静止在圆弧轨道的最高点和最低点.现将A 无初速释放,A 与B 碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R =0.2 m ;A 和B 的质量相等;A 和B 整体与桌面之间的动摩擦因数μ=0.2.重力加速度g 取10 m/s 2.求:(1) 碰撞前瞬间A 的速率v ;(2) 碰撞后瞬间A 和B 整体的速率v ′; (3) A 和B 整体在桌面上滑动的距离l .[答案] (1)2 m/s (2)1 m/s (3)0.25 m [解析] 设滑块的质量为m . (1)根据机械能守恒定律有mgR =12m v 2解得碰撞前瞬间A 的速率有v =2gR =2 m/s.(2)根据动量守恒定律有m v =2m v ′解得碰撞后瞬间A 和B 整体的速率v ′=12v =1 m/s.(3)根据动能定理有12(2m )v ′2=μ(2m )gl 解得A 和B 整体沿水平桌面滑动的距离l =v ′22μg=0.25 m . 4.质量为2 kg 的小车以2 m/s 的速度沿光滑的水平面向右运动,若将质量为0 .5 kg 的砂袋以3 m/s 的水平速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )A .1.0 m/s ,向右B .1.0 m/s ,向左C .2.2 m/s ,向右D .2.2 m/s ,向左答案D [解析] 忽略空气阻力和分离前后系统质量的变化,卫星和箭体整体分离前后动量守恒,则有(m 1+m 2)v 0=m 1v 1+m 2v 2,整理可得v 1=v 0+m 2m 1(v 0-v 2),故D 项正确. 5.冰壶运动深受观众喜爱,图X291甲为2014年2月第22届索契冬奥会上中国队员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图乙.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图丙中的哪幅图( )图X291答案B [解析] 两个质量相等的冰壶发生正碰,碰撞前后都在同一直线上,选项A 错误;碰后冰壶A 在冰壶B 的左边,选项C 错误;碰撞过程中系统的动能可能减小,也可能不变,但不能增大,所以选项B 正确,选项D 错误.6.下图X292是“牛顿摆”装置,5个完全相同的小钢球用轻绳悬挂在水平支架上,5根轻绳互相平行,5个钢球彼此紧密排列,球心等高.用1、2、3、4、5分别标记5个小钢球.当把小球1向左拉起一定高度,如图甲所示,然后由静止释放,在极短时间内经过小球间的相互碰撞,可观察到球5向右摆起,且达到的最大高度与球1的释放高度相同,如图乙所示.关于此实验,下列说法中正确的是()图X292A.上述实验过程中,5个小球组成的系统机械能守恒,动量守恒B.上述实验过程中,5个小球组成的系统机械能不守恒,动量不守恒C.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球4、5一起向右摆起,且上升的最大高度高于小球1、2、3的释放高度D.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同答案D[解析] 5个小球组成的系统发生的是弹性正碰,系统的机械能守恒,系统在水平方向的动量守恒,总动量并不守恒,选项A、B错误;同时向左拉起小球1、2、3到相同的高度,同时由静止释放并与4、5碰撞后,由机械能守恒和水平方向的动量守恒知,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同,选项C错误,选项D正确.三动量综合问题7. 如图所示,水平地面上静止放置一辆小车A,质量m A=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量m B =2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到v t=2 m/s.求:(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.答案(1)2.5 m/s2(2)1 m/s(3)0.45 m[解析] (1)以A为研究对象,由牛顿第二定律有F=m A a①代入数据解得a=2.5 m/s2②(2)对A、B碰撞后共同运动t=0.6 s的过程,由动量定理得Ft=(m A+m B)v t-(m A+m B)v③代入数据解得v =1 m/s ④(3)设A 、B 发生碰撞前,A 的速度为v A ,对A 、B 发生碰撞的过程,由动量守恒定律有m A v A =(m A +m B )v ⑤A 从开始运动到与B 发生碰撞前,由动能定理有Fl =12m A v 2A ⑥ 由④⑤⑥式,代入数据解得l =0.45 m ⑦8.如图所示,质量分别为m A 、m B 的两个弹性小球A 、B 静止在地面上,B 球距地面的高度h =0.8 m ,A 球在B 球的正上方,先将B 球释放,经过一段时间后再将A 球释放,当A 球下落t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零,已知m B =3m A ,重力加速度大小g 取10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:(1)B 球第一次到过地面时的速度; (2)P 点距离地面的高度.答案解:(ⅰ)设B 球第一次到达地面时的速度大小为v B ,由运动学公式有v B =2gh ①将h =0.8 m 代入上式,得v 1=4 m/s.②(ⅱ)设两球相碰前后,A 球的速度大小分别为v 1和v ′1(v ′1=0),B 球的速度分别为v 2和v ′2,由运动学规律可得v 1=gt ③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变,规定向下的方向为正,有m A v 1+m B v 2=m B v ′2④12m A v 21+12m B v 22=12m v ′22⑤ 设B 球与地面相碰后速度大小为v ′B ,由运动学及碰撞的规律可得v ′B =v B ⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v ′2B -v 222g⑦联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m .⑧9. 一中子与一质量数为A (A >1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A.A +1A -1B.A -1A +1C.4A(A +1)2 D.(A +1)2(A -1)2答案A [解析] 本题考查完全弹性碰撞中的动量守恒、动能守恒.设碰撞前后中子的速率分别为v 1,v ′1,碰撞后原子核的速率为v 2,中子的质量为m 1,原子核的质量为m 2,则m 2=Am 1.根据完全弹性碰撞规律可得m 1v 1=m 2v 2+m 1v ′1,12m 1v 21=12m 2v 22+12m 1v ′21,解得碰后中子的速率v ′1=⎪⎪⎪⎪⎪⎪m 1-m 2m 1+m 2v 1=A -1A +1v 1,因此碰撞前后中子速率之比v 1v ′1=A +1A -1,A 正确.10.如图X296所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的14光滑圆弧轨道平滑相连,木块A 、 B 静置于光滑水平轨道上,A 、B 的质量分别为1.5kg 和0.5 kg.现让A 以6 m/s 的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s ,碰后的速度大小变为4 m/s.当A 与B 碰撞后会立即粘在一起运动,g 取10 m/s 2,求:(1)在A 与墙壁碰撞的过程中,墙壁对A 的平均作用力的大小; (2)A 、B 滑上圆弧轨道的最大高度.图X296答案(1)50 N (2)0.45 m[解析] (1)设水平向右为正方向,当A 与墙壁碰撞时根据动量定理有 Ft =m A v ′1-m A ·(-v 1) 解得F =50 N.(2)设碰撞后A 、B 的共同速度为v ,根据动量守恒定律有 m A v ′1=(m A +m B )vA 、B 在光滑圆形轨道上滑动时,机械能守恒,由机械能守恒定律得 12(m A +m B )v 2=(m A +m B )gh 解得h =0.45 m.四 力学观点的综合应用11.如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案(1)3 m/s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J [解析] (1)P 1、P 2碰撞过程动量守恒,有m v 1=2m v解得v =v 12=3 m/s碰撞过程中损失的动能为ΔE =12m v 21-12(2m )v 2解得ΔE =9 J.(2)由于P 与挡板的碰撞为弹性碰撞.故P 在AC 间等效为匀减速运动,设P 在AC 段加速度大小为a ,碰后经过B 点的速度为v 2 ,由牛顿第二定律和运动学规律,得μ(2m )g =2ma3L =v t -12at 2v 2=v -at解得v 1=2v =6L +μgt 2t v 2=6L -μgt 22t由于2 s ≤t ≤4 s 所以解得v 1的取值范围10 m/s ≤v 1≤14 m/sv 2的取值范围1 m/s ≤v 2≤5 m/s所以当v 2=5 m/s 时,P 向左经过A 点时有最大速度 v 3=v 22-2μgL则P 向左经过A 点时有最大动能E =12(2m )v 23=17 J. 12. 冰球运动员甲的质量为80.0 kg.当他以5.0 m/s 的速度向前运动时,与另一质量为100 kg 、速度为3.0 m/s 的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1 )碰后乙的速度的大小; (2)碰撞中总机械能的损失. [答案] (1)1.0 m/s (2)1400 J[解析] (1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V ′.由动量守恒定律有m v -MV =MV ′①代入数据得V ′=1.0 m/s ②(2)设碰撞过程中总机械能的损失为ΔE ,应有12m v 2+12MV 2=12MV ′2+ΔE ③ 联立②③式,代入数据得ΔE =1400 J ④。
专题:动量定理 动量守恒定律

专题:动量定理动量守恒定律考点一:动量定理的理解及应用【典例1】质量的篮球从距地板高处由静止释放,与水平地板撞击后反弹上升的最大高度,从释放到弹跳至h高处经历的时间,忽略空气阻力,重力加速度,求:篮球与地板撞击过程中损失的机械能;篮球对地板的平均撞击力.强化训练一1.蹦床运动有“空中芭蕾“之称,某质量的运动员从空中落下,接着又能弹起高度,此次人与蹦床接触时间,取,求:运动员与蹦床接触时间内,所受重力的冲量大小I;运动员与蹦床接触时间内,受到蹦床平均弹力的大小F。
2.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目一个质量为60kg的运动员,从离水平网面高处自由下落,着网后沿竖直方向蹦回离水平网面高处已知运动员与网接触的时间为若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小取3.如图所示,物块A和B通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定滑轮两侧,质量分别为、。
初始时A静止与水平地面上,B悬于空中。
先将B竖直向上再举高未触及滑轮然后由静止释放。
一段时间后细绳绷直绷直的时间极短,A、B以大小相等的速度一起运动,之后B恰好可以和地面接触。
取。
从释放到细绳绷直时的运动时间t;的最大速度v的大小;初始时B离地面的高度H。
4.某游乐园入口旁有一喷泉,喷出的水柱将一质量M的卡通玩具稳定地悬停在空中。
为计算方便起见,假设水柱从横截面积为S的喷口持续以速度竖直向上喷出;玩具底部为平板面积略大于;水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开。
忽略空气阻力。
已知水的密度为,重力加速度大小为g。
求喷泉单位时间内喷出的水的质量;玩具在空中悬停时,其底面相对于喷口的高度。
考点二:动量守恒定律的理解及应用【典例2】在光滑水平面上静止有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,滑块CD上表面是光滑的圆弧,他们紧靠在一起,如图所示一个可视为质点的物块P,质量也为m,它从木板AB的右端以初速度滑上木板,过B点时速度为,然后又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高点C处若物体P与木板AB间的动摩擦因数为,求:物块滑到B处时木板AB的速度的大小;木板AB的长度L;滑块CD最终速度的大小.【典例3】如图所示,在光滑的水平面上有一带半圆形光滑弧面的小车,质量为M,圆弧半径为R,从距车上表面高为H处静止释放一质量为m的小球,它刚好沿圆弧切线从A点落入小车,求小球到达车底B点时小车的速度和此过程中小车的位移;小球到达小车右边缘C点处,小球的速度.强化训练二1. 如图,在光滑的水平面上,有一质量为 的木板,木板上有质量为 的物块 它们都以 的初速度反向运动,它们之间有摩擦,且木板足够长,求:当木板向左的速度为 时,物块的速度是多大?木板的最终速度是多大?2. 如图所示,A 、B 两木块靠在一起放于光滑的水平面上,A 、B 的质量均为 。
动量冲量和动量定理典型例题精析

动量、冲量和动量定理·典型例题精析[例题1]质量为m的物体,在倾角为θ的光滑斜面上由静止开始下滑.如图7-1所示.求在时间t内物体所受的重力、斜面支持力以与合外力给物体的冲量.[思路点拨]依冲量的定义,一恒力的冲量大小等于这力大小与力作用时间的乘积,方向与这力的方向一致.所以物体所受各恒力的冲量可依定义求出.而依动量定理,物体在一段时间t内的动量变化量等于物体所受的合外力冲量,故合外力给物体的冲量又可依动量定理求出.[解题过程]依冲量的定义,重力对物体的冲量大小为I G=mg·t,方向竖直向下.斜面对物体的支持力的冲量大小为I N=N·t=mg·cosθ·t,方向垂直斜面向上.合外力对物体的冲量可分别用如下三种方法求出.(1)先根据平行四边形法如此求出合外力,再依定义求出其冲量.由图7-1(2)知,作用于物体上的合力大小为F=mg·sinθ,方向沿斜面向下.所以合外力的冲量大小I F=F·t=mg·sinθ·t.方向沿斜面向下.(2)合外力的冲量等于各外力冲量的矢量和,先求出各外力的冲量,然后依矢量合成的平行四边形法如此求出合外力的冲量.利用前面求出的重力与支持力冲量,由图7-1(3)知合外力冲量大小为方向沿斜面向下.或建立平面直角坐标系如图7-1(4),由正交分解法求出.先分别求出合外力冲量I F在x,y方向上分量I Fx,I Fy,再将其合成.(3)由动量定理,合外力的冲量I F等于物体的动量变化量Δp.I F=Δp=Δmv=mΔv=m(at)=mgsinθ·t.[小结] (1)计算冲量必须明确计算的是哪一力在哪一段时间内对物体的冲量.(2)冲量是矢量,求某一力的冲量除应给出其大小,还应给出其方向.(3)此题解提供了三种不同的计算合外力冲量的方法.[例题2]一质量为100g的小球从0.80m高处自由下落到一厚软垫上.假如从小球接触软垫到小球陷至最低点经历了0.20 s,如此这段时间内软垫对小球的冲量为多少(取g=10 m/s2,不计空气阻力)?[思路点拨]小球从落至软垫至陷到最低点,即速度变为零的过程中,受重力和软垫对它的作用力,软垫对球的作用力在此过程中是变力,但动量定理对于变力依然适用.因此可以用动量定理求软垫对球的冲量.[解题过程]小球落至软垫前,只受重力作用,故可由自由落体公式求出小球落至软垫时的速度大小为方向竖直向下.小球接触软垫后除受重力mg外,还受软垫对它的作用力F,在这两力合力冲量作用下,小球动量变为零(此时小球陷至最低点).取竖直向上为正方向,小球的初动量为p=-mv(负号表示小球刚与软垫接触时速度方向竖直向下,因而初动量方向竖直向下,与所取正方向相反,此处v仅表示小球速度的大小).小球的末动量 p′=0.由动量定理有解得小球自接触软垫起到陷至最低点这一过程中受到软垫平均作用大小为在这段时间内软垫对小球的冲量大小为方向竖直向上.[小结] (1)应用动量定理解题时,必须明确研究的哪一物体的哪一运动过程,因动量定理是针对一确定物体一确定过程而言.此题应用动量定理研究的是小球自落至软垫开始与其接触起至陷至最低点速度恰变为零这一过程.(2)在解决诸如此题和课本习题中用铁锤钉钉子这样的碰撞、打击一类问题时,物体所受的冲击力的变化极为迅速,难于用牛顿第二定律(结合运动学公式)求解,但用以力的冲量概念表述的动量定理解决起来如此极为方便.(3)在应用动量定理解决类似此题这样的碰撞、打击等问题时,不可随意忽略物体所受的重力,例如此题如忽略小球陷落过程中所受的重力,结果如此为I F·s,显然与正确结果有较大偏离,因而是错误的.[例题3]人从高台上跳下着地时,总是不自觉地先弯腿再站起来,为什么?[思路点拨]这是一道说明题,不要求给出计算结果,但对这类问题不应含混说上几句就算了事,而要做严格分析,即也要明确研究对象,确定研究过程,列出必要的方程,再做讨论,得出令人信服的结论.[解题过程]将人视为质量集中在重心的质点,分两种情况讨论:一为着地时不弯腿;一为着地时开始弯腿.台的高度一定,两种情况下,人着地时动量大小皆为p=mv,最后速度均变为零,因而动量为零.假如取竖直向上为正方向,两种情况下,人着地过程中的动量变化量均为Δp=0-(-mv)=mv.从开始着地到静止过程中,人受重力mg与地面作用力F,用F表示地面对人的作用力平均值,根据动量定理解得人着地过程中地面对人作用力的平均值由此式知,第一种情况,人落地后始终直立,人(视为质量集中于重的作用力,很容易造成伤害.第二种情况下,由于着地后弯腿,人的重心还要向下移动较长距离,速度经过较长时间变为零,Δt较大,故地面对[小结]解答说明、论证型的题目,首先要明确论点.如此题的论点是要求比拟人在两种不同情况下受到地面作用力大小.然后选择论据,论据的选择要正确有效,如此题选择的论据应是动量守恒,假如选择牛顿第二定律如此不能有效地论证.最后是论证,论证的过程即为推理的过程,推理要清晰严密.如此题就要先找出两种情况下,人的动量变化量Δp的关系与动量变化与所经历的时间Δt的关系,然后才能由动量定理推出两种情况下地面作用力F大小的关系.[例题4]质量m=5 kg的物体在恒定水平推力F=5 N的作用下,自静止开始在水平路面上运动,t1=2s后,撤去力F,物体又经t2=3 s停了下来,求物体运动中受水平面滑动摩擦力的大小.[思路点拨]此题中物体所经历的过程可分为两个阶段.第一阶段,物体在力F作用下自静止开始运动直至撤去力F;第二阶段,撤去力F后物体在滑动摩擦力f作用下减速运动,直至停下.如果用动量定理来求题,那么能否对包括两阶段在内的整个运动过程来应用定理呢?现给出两种方法求解这一问题:第一种方法,将整个运动过程分为两个阶段,分别用动量定理来处理.第二种方法,将整个运动作为一过程来应用动量定理.[解题过程]因物体在水平面上运动,故只需考虑物体在水平方向上受力即可,在撤去力F前,物体在水平方向上还受方向与物体运动方向相反的滑动摩擦力f,撤去力F后,物体只受摩擦力f.取物体运动方向为正方向.方法1设撤去力F时物体的运动速度为v.对于物体自静止开始运动至撤去力F这一过程,由动量定理有(F-f)t1=mv. (1)对于撤去力F直至物体停下这一过程,由动量定理有(-f)t2=0-mv. (2) 联立式(1)、(2)解得运动中物体所受滑动摩擦力大小为说明式(1)、(2)中f仅表示滑动摩擦力的大小,f前的负号表示f与所取正方向相反.方法2将物体整个运动过程视为在一变化的合外力作用下的运动过程.在时间t1内物体所受合外力为(F-f),在时间t2内物体所受合外力-f,整个运动时间t1+t2内,物体所受合外力冲量为(F-f)t1+(-f)t2.对物体整个运动过程应用动量定理有(F-f)t1+(-f)t2=0,说明冲量是矢量,由矢量运算法如此可知合外力对物体的冲量等于物体所受各外力冲量的矢量和.所以求物体运动过程中所受合外力冲量又可用下述方法得出:即先求物体在运动过程所受各外力冲量,再取其矢量和即为合外力冲量.例如,就此题中物体整个运动时间t1+t2内,力F的冲量为Ft1,力f的冲量为(-f)(t1+t2).整个运动过程中物体所受合外力冲量为Ft1+(-f)(t1+t2).这一结果与解法(2)给出的结果一样.[小结] (1)此题解法2再次明确动量定理适用于变力作用过程.(2)合外力在一段时间t内的冲量等于这段时间t内各分段时间t i(t=t1+t2+…+t i+…)内冲量的矢量和,又等于这段时间t内各外力对物体冲量的矢量和.(3)此题求解时,显然对整个过程应用动量定理来处理,解起来更为简捷.*[例题5]采煤中有一种方法是用高压水流将煤层击碎将煤采下.今有一采煤水枪,由枪口射出的高压水流速度为v,设水流垂直射向煤层的竖直外表,随即顺煤壁竖直流下,求水对煤层的压强(水的密度为ρ).[思路点拨]射向煤层的水流受到煤层的作用水平速度(因而动量)变为零后随即顺壁流下,如能求出此过程中煤层对水流的作用力,根据牛顿第三定律即可求出水对煤层的作用力,从而求水对煤层的压强.word[解题过程]设射向煤层水流截面为S,在时间Δt内有质量为ρSv·Δt的水撞击煤层,动量变为零,设煤层对水流作用力为F.取煤层对水作用力方向为正,对于上述这局部水由动量定理有F·Δt=0-(-ρSvΔt·v),得F=ρSv2.由牛顿第三定律知,水对煤层作用力大小F′=F=ρSv2,所以煤层外表受到水流压强为[小结]解决此类连续体产生的持续作用问题时,关键在于:①正确选取研究对象——Δt时间内动量发生变化的物质;②根据题意正确地表示出其质量与动量变化量.11 / 11。
动量定理题型及例题讲解

动量定理题型及例题讲解动量定理是物理学中的一个重要定理,它描述了力、质量和时间之间的关系。
动量定理指出,在一个惯性系中,外力的冲量等于物体动量的增量。
下面我将介绍动量定理的题型和例题讲解。
一、动量定理题型动量定理题型一般可分为以下三种:1. 动量守恒定律应用题动量守恒定律是指在一个系统内,若不存在外力作用,则系统的总动量保持不变。
在这类题型中,考生需要根据动量守恒定律,计算出系统的总动量,然后根据动量定理,求解外力对系统的作用。
2. 动量定理公式应用题在这类题型中,考生需要根据动量定理,计算出物体的动量增量,然后根据动量守恒定律,求解外力对物体的作用。
3. 碰撞问题应用题碰撞问题是物理学中的一个重要问题,它涉及到动量守恒定律和动量定理。
在这类题型中,考生需要根据动量守恒定律和动量定理,计算出碰撞前后物体的动量变化,然后根据碰撞原理,求解外力对物体的作用。
二、动量定理例题讲解下面我们来看几个动量定理的例题:1. 动量守恒定律应用题例题:一个质量为 2 千克的物体,以 5 米/秒的速度沿水平面滑行,如果在物体表面放置一个弹簧,求弹簧的弹力。
解析:根据动量守恒定律,由于物体的速度不变,系统的总动量守恒。
因此,外力的冲量等于物体的动量增量。
即:I = m * v其中,I 为外力的冲量,m 为物体的质量,v 为物体的速度。
根据题意,可知:I = m * v = 2 * 5 = 10 J因此,外力对物体的作用为:F = I / a = 10 / 1 = 10 N。
2. 动量定理公式应用题例题:一个质量为 2 千克的物体,以 5 米/秒的速度沿水平面滑行,如果在物体表面放置一个弹簧,求弹簧的弹力。
解析:根据动量定理,在外力作用期间,物体的动量增量为:p = m * v"其中,p 为物体的动量,m 为物体的质量,v"为物体的速度。
根据题意,可知:v" = v - at其中,a 为物体的水平加速度,t 为物体滑行的时间。
08 动量定理及动量守恒定律高考真题分项详解(原卷版)

十年高考分类汇编专题08动量定理及动量守恒定律(2011-2020)目录题型一、动量与动量定理的综合应用 (1)题型二、动量守恒定律与能量的综合应用模型一(碰撞类) (4)题型三、动量守恒定律与能量的综合应用模型二(弹簧类) (9)题型四、动量守恒定律与能量的综合应用模型三(反冲类) (10)题型五、动量守恒定律与能量的综合应用模型四(子弹木块、板块类) (12)题型六、动量守恒定律与能量的综合应用模型五(轨道类) (13)题型七、实验:验证动量守恒定律 (15)题型一、动量与动量定理的综合应用1.(2020江苏).一只质量为1.4kg的乌贼吸入0.1kg的水,静止在水中。
遇到危险时,它在极短时间内把吸入的水向后全部喷出,以2m/s的速度向前逃窜。
求该乌贼喷出的水的速度大小v。
2.(2020全国1).行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。
若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是()A. 增加了司机单位面积的受力大小B. 减少了碰撞前后司机动量的变化量C. 将司机的动能全部转换成汽车的动能D. 延长了司机的受力时间并增大了司机的受力面积3.(2018全国2)高空坠物极易对行人造成伤害.若一个50 g的鸡蛋从一居民楼的25层坠下,与地面的撞击时间约为2 ms,则该鸡蛋对地面产生的冲击力约为()A. 10 NB. 102 NC. 103 ND. 104 N4.(2018北京)2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB与弯曲滑道BC平滑衔接,滑道BC高h=10 m,C是半径R=20 m圆弧的最低点,质量m=60 kg的运动员从A处由静止开始匀加速下滑,加速度a=4.5 m/s2,到达B点时速度vB=30 m/s.取重力加速度g=10 m/s2.(1)求长直助滑道AB的长度L;(2)求运动员在AB段所受合外力的冲量的I大小;(3)若不计BC段的阻力,画出运动员经过C点时的受力图,并求其所受支持力FN的大小.5.(2018江苏)如图所示,悬挂于竖直弹簧下端的小球质量为m,运动速度的大小为v,方向向下.经过时间t,小球的速度大小为v,方向变为向上.忽略空气阻力,重力加速度为g,求该运动过程中,小球所受弹簧弹力冲量的大小.6.(2017全国3)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。
2020年高考物理二轮专题复习附解答:动量定理与动量守恒定律(解析版)

动量定理与动量守恒定律一、选择题1.高空坠物极易对行人造成伤害。
若一个50 g 的鸡蛋从一居民楼的25层坠下,与地面的碰撞时间约为2 ms ,则该鸡蛋对地面产生的冲击力约为A .10 NB .102 NC .103 ND .104 N解析 根据自由落体运动和动量定理有2gh =v 2(h 为25层楼的高度,约70 m),Ft =mv ,代入数据解得F ≈1×103 N ,所以C 正确。
答案 C2.(多选)在光滑的水平面上,原来静止的物体在水平力F 的作用下,经过时间t 、通过位移L 后,动量变为p 、动能变为E k ,以下说法正确的是A .在力F 的作用下,这个物体若是经过时间3t ,其动量将等于3pB .在力F 的作用下,这个物体若是经过位移3L ,其动量将等于3pC .在力F 的作用下,这个物体若是经过时间3t ,其动能将等于3E kD .在力F 的作用下,这个物体若是经过位移3L ,其动能将等于3E k解析 根据p =mv ,E k =12mv 2 联立解得p =2mE k根据动能定理FL =12mv 2,位移变为原来的3倍,动能变为原来的3倍,根据p =2mE k ,动量变为原来的3倍,故B 错误,D 正确。
根据动量定理Ft =mv ,时间变为原来的3倍,动量变为原来的3倍,根据E k =p 22m,知动能变为原来的9倍,故A 正确,C 错误。
答案 AD3.(多选)质量为m 的物块甲以3 m/s 的速度在光滑水平面上运动,有一轻弹簧固定在其左侧,另一质量也为m 的物块乙以4 m/s 的速度与甲相向运动,如图所示,两物块通过弹簧相互作用(未超出弹簧弹性限度)并最终弹开,则A.在压缩弹簧的过程中,两物块组成的系统动量守恒B.当两物块相距最近时,甲物块的速度为零C.甲物块的速率可能为5 m/sD.当甲物块的速率为1 m/s时,乙物块的速率可能为2 m/s解析在压缩弹簧的过程中,两物块组成的系统所受合外力为零,系统动量守恒,选项A正确;当两物块相距最近时,两物块速度相等,甲物块的速度不为零,选项B错误;若甲物块的速率为5 m/s,根据动量守恒定律可得此时乙物块的速率为6 m/s或4 m/s,两物块组成的系统机械能增大,违反了能量守恒定律,选项C错误;当甲物块的速率为1 m/s,方向向左时,选取向右为速度的正方向,根据动量守恒定律,m·4 m/s-m·3 m/s=mv-m·1 m/s,解得乙物块的速率v=2 m/s,选项D正确。
专题06 动量和动量定理(解析版)

专题06 动量和动量定理1.(2021届广东省汕头市金山中学高三期中)冰壶运动深受观众喜爱,图1为2014年2月第22届索契冬奥会上中国队员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图2.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图中的哪幅图()A.B.C.D.【答案】B【解析】冰壶甲乙碰撞过程动量守恒,碰撞前系统动量水平向右,碰撞后合动量也必然水平向右,碰撞后冰壶在摩擦力作用下做匀减速直线运动,所以碰撞点即圆心到最后停靠点的连线代表碰撞后的速度方向,连线的长短代表碰撞后的速度大小.A图中,甲乙碰后的动量都斜向右上方,所以合动量不可能水平向右,不满足动量守恒定律选项A错.乙图中,碰撞后甲静止,乙水平向右运动,符合质量相等小球发生完全弹性碰撞的过程,选项B是可能的.选项C中,虽然甲乙动量都是水平向右,合动量也满足水平向右,但甲在后,乙在前,碰后甲不可能速度大于乙,即甲不可能在乙前面,选项C错,D选项,碰后甲的速度大于乙的速度,合动量水平向左,不符合动量守恒定律选项D错误。
2.(2021届湖南省衡阳市第八中学高三月考)如图所示,垫球是排球运动中通过手臂的迎击动作,使来球从垫击面上反弹出去的一项击球技术,若某次从垫击面上反弹出去竖直向上运动的排球,之后又落回到原位置,设整个运动过程中排球所受阻力大小不变,则( )A .球从击出到落回的时间内,重力的冲量为零B .球从击出到落回的时间内,空气阻力的冲量为零C .球上升阶段阻力的冲量小于下降阶段阻力的冲量D .若不计阻力,球上升阶段动量的变化等于下降阶段动量的变化 【答案】CD【解析】整个过程中,重力不为零,作用时间不为零,根据G I mgt =,可知,重力冲量不为零,故A 错误; 由于整个过程中,阻力都做负功,所以上升阶段的平均速度大于下降阶段的平均速度,即上升过程所用时间比下降过程所用时间少,根据f I ft =可知上升阶段阻力冲量小于下降阶段阻力冲量,整个过程中阻力冲量不为零,故B 错误,C 正确;若不计空气阻力,并规定向上为正方向,设初速度为0v ,上升阶段,初速度为0v ,末速度为零,动量变化量为1000p mv mv ∆=-=-,下降阶段,初速度为零,末速度为0v -,动量变化量为2000p mv mv -∆=-=-,两者相等,故D 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量定理与动量守恒定律·典型例题解析
【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为
v 02
,物体与盒子右壁相碰后即粘在右壁上,求:
(1)物体在盒内滑行的时间;
(2)物体与盒子右壁相碰过程中对盒子的冲量.
解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt =
m mv t 0·-,=v v g
0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰
撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右.
v mv m
v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043
点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键.
【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上
挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4
C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大?
解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =
2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车
具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419
点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒.
【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离?
点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分.
参考答案
例例跟踪反馈...;;.×·3
m M +m L 4 M +m M
H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.
点拨:人和气球组成的系统总动量守恒,人沿绳子到达地面的过程中向下发生的位移为H ,此过程中气球向上发生位移为s ,两位移大小之和等于所求的绳长.
参考答案
例例跟踪反馈...;;.×·3
m M +m L 4 M +m M
H [] 1 C 2h 300v 49.110N s 04M m M 跟踪反馈
1.如图55-5所示,质量为m 的小球悬挂在质量为M 的小车上,小车静止在光滑的水平面上,现将小球拉到悬线呈水平位置时自由释放,小球向下摆动后陷入固定在车上的一块橡皮泥中,则此后小车的状态是
[ ]
A .向右匀速运动
B .向左匀速运动
C .静止不动
D .左右来回运动
2.质量为m 的木块和质量为M 的金属块用细线系在一起,悬浮在深水中的某一位置处于静止状态,若细线断裂,木块向上浮起h 的高度时与金属块之间的距离为_______.
3.在光滑的水平面上有三个完全相同的小球排成一条直线,第2、3两个小球静止并靠在一起,如图55-6所示:第1个小球以速度v 0,射向它们并发生正碰,已知在不存在第3个球时第一个球与静止的第二个球碰后第一个球的
速度为零,第二个球速度为v 0,现存在第三个球,则正碰后三球的速度分别为_______、_______、_______.
4.质量为130t ,速度为2m/s 的机车,与一节静止在水平轨道上的质量为70t 的车厢挂接,求挂接过程中车厢所受的冲量多大.
参考答案 例例跟踪反馈..
.;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M。