动量守恒定律的典型例题
物理动量守恒定律题20套(带答案)

考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是 两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系 统,由系统动量守恒列出等式,联立求解
2.一质量为 的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧
代入数据解得:E 损=0.25J 答:①碰后 A 球的速度为 1.0m/s; ②碰撞过程中 A、B 系统损失的机械能为 0.25J. 【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.
9.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
Q
物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
高中物理-动量守恒定律经典例题详解

高中物理-动量守恒定律经典例题详解一 动量 冲量 动量定理1.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量答案B [解析] 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球的动量变化率,减小了球对手的冲击力,选项B 正确.二 动量守恒定律2. 一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是A BC D答案B [解析] 弹丸在爆炸过程中,水平方向的动量守恒,有m 弹丸v 0=34m v 甲+14m v 乙,解得4v 0=3v 甲+v 乙,爆炸后两块弹片均做平抛运动,竖直方向有h =12gt 2,水平方向对甲、乙两弹片分别有x 甲=v 甲t ,x 乙=v 乙t ,代入各图中数据,可知B 正确.3.如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A 和B 分别静止在圆弧轨道的最高点和最低点.现将A 无初速释放,A 与B 碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R =0.2 m ;A 和B 的质量相等;A 和B 整体与桌面之间的动摩擦因数μ=0.2.重力加速度g 取10 m/s 2.求:(1) 碰撞前瞬间A 的速率v ;(2) 碰撞后瞬间A 和B 整体的速率v ′; (3) A 和B 整体在桌面上滑动的距离l .[答案] (1)2 m/s (2)1 m/s (3)0.25 m [解析] 设滑块的质量为m . (1)根据机械能守恒定律有mgR =12m v 2解得碰撞前瞬间A 的速率有v =2gR =2 m/s.(2)根据动量守恒定律有m v =2m v ′解得碰撞后瞬间A 和B 整体的速率v ′=12v =1 m/s.(3)根据动能定理有12(2m )v ′2=μ(2m )gl 解得A 和B 整体沿水平桌面滑动的距离l =v ′22μg=0.25 m . 4.质量为2 kg 的小车以2 m/s 的速度沿光滑的水平面向右运动,若将质量为0 .5 kg 的砂袋以3 m/s 的水平速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )A .1.0 m/s ,向右B .1.0 m/s ,向左C .2.2 m/s ,向右D .2.2 m/s ,向左答案D [解析] 忽略空气阻力和分离前后系统质量的变化,卫星和箭体整体分离前后动量守恒,则有(m 1+m 2)v 0=m 1v 1+m 2v 2,整理可得v 1=v 0+m 2m 1(v 0-v 2),故D 项正确. 5.冰壶运动深受观众喜爱,图X291甲为2014年2月第22届索契冬奥会上中国队员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图乙.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图丙中的哪幅图( )图X291答案B [解析] 两个质量相等的冰壶发生正碰,碰撞前后都在同一直线上,选项A 错误;碰后冰壶A 在冰壶B 的左边,选项C 错误;碰撞过程中系统的动能可能减小,也可能不变,但不能增大,所以选项B 正确,选项D 错误.6.下图X292是“牛顿摆”装置,5个完全相同的小钢球用轻绳悬挂在水平支架上,5根轻绳互相平行,5个钢球彼此紧密排列,球心等高.用1、2、3、4、5分别标记5个小钢球.当把小球1向左拉起一定高度,如图甲所示,然后由静止释放,在极短时间内经过小球间的相互碰撞,可观察到球5向右摆起,且达到的最大高度与球1的释放高度相同,如图乙所示.关于此实验,下列说法中正确的是()图X292A.上述实验过程中,5个小球组成的系统机械能守恒,动量守恒B.上述实验过程中,5个小球组成的系统机械能不守恒,动量不守恒C.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球4、5一起向右摆起,且上升的最大高度高于小球1、2、3的释放高度D.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同答案D[解析] 5个小球组成的系统发生的是弹性正碰,系统的机械能守恒,系统在水平方向的动量守恒,总动量并不守恒,选项A、B错误;同时向左拉起小球1、2、3到相同的高度,同时由静止释放并与4、5碰撞后,由机械能守恒和水平方向的动量守恒知,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同,选项C错误,选项D正确.三动量综合问题7. 如图所示,水平地面上静止放置一辆小车A,质量m A=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量m B =2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到v t=2 m/s.求:(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.答案(1)2.5 m/s2(2)1 m/s(3)0.45 m[解析] (1)以A为研究对象,由牛顿第二定律有F=m A a①代入数据解得a=2.5 m/s2②(2)对A、B碰撞后共同运动t=0.6 s的过程,由动量定理得Ft=(m A+m B)v t-(m A+m B)v③代入数据解得v =1 m/s ④(3)设A 、B 发生碰撞前,A 的速度为v A ,对A 、B 发生碰撞的过程,由动量守恒定律有m A v A =(m A +m B )v ⑤A 从开始运动到与B 发生碰撞前,由动能定理有Fl =12m A v 2A ⑥ 由④⑤⑥式,代入数据解得l =0.45 m ⑦8.如图所示,质量分别为m A 、m B 的两个弹性小球A 、B 静止在地面上,B 球距地面的高度h =0.8 m ,A 球在B 球的正上方,先将B 球释放,经过一段时间后再将A 球释放,当A 球下落t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零,已知m B =3m A ,重力加速度大小g 取10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:(1)B 球第一次到过地面时的速度; (2)P 点距离地面的高度.答案解:(ⅰ)设B 球第一次到达地面时的速度大小为v B ,由运动学公式有v B =2gh ①将h =0.8 m 代入上式,得v 1=4 m/s.②(ⅱ)设两球相碰前后,A 球的速度大小分别为v 1和v ′1(v ′1=0),B 球的速度分别为v 2和v ′2,由运动学规律可得v 1=gt ③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变,规定向下的方向为正,有m A v 1+m B v 2=m B v ′2④12m A v 21+12m B v 22=12m v ′22⑤ 设B 球与地面相碰后速度大小为v ′B ,由运动学及碰撞的规律可得v ′B =v B ⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v ′2B -v 222g⑦联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m .⑧9. 一中子与一质量数为A (A >1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A.A +1A -1B.A -1A +1C.4A(A +1)2 D.(A +1)2(A -1)2答案A [解析] 本题考查完全弹性碰撞中的动量守恒、动能守恒.设碰撞前后中子的速率分别为v 1,v ′1,碰撞后原子核的速率为v 2,中子的质量为m 1,原子核的质量为m 2,则m 2=Am 1.根据完全弹性碰撞规律可得m 1v 1=m 2v 2+m 1v ′1,12m 1v 21=12m 2v 22+12m 1v ′21,解得碰后中子的速率v ′1=⎪⎪⎪⎪⎪⎪m 1-m 2m 1+m 2v 1=A -1A +1v 1,因此碰撞前后中子速率之比v 1v ′1=A +1A -1,A 正确.10.如图X296所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的14光滑圆弧轨道平滑相连,木块A 、 B 静置于光滑水平轨道上,A 、B 的质量分别为1.5kg 和0.5 kg.现让A 以6 m/s 的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s ,碰后的速度大小变为4 m/s.当A 与B 碰撞后会立即粘在一起运动,g 取10 m/s 2,求:(1)在A 与墙壁碰撞的过程中,墙壁对A 的平均作用力的大小; (2)A 、B 滑上圆弧轨道的最大高度.图X296答案(1)50 N (2)0.45 m[解析] (1)设水平向右为正方向,当A 与墙壁碰撞时根据动量定理有 Ft =m A v ′1-m A ·(-v 1) 解得F =50 N.(2)设碰撞后A 、B 的共同速度为v ,根据动量守恒定律有 m A v ′1=(m A +m B )vA 、B 在光滑圆形轨道上滑动时,机械能守恒,由机械能守恒定律得 12(m A +m B )v 2=(m A +m B )gh 解得h =0.45 m.四 力学观点的综合应用11.如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案(1)3 m/s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J [解析] (1)P 1、P 2碰撞过程动量守恒,有m v 1=2m v解得v =v 12=3 m/s碰撞过程中损失的动能为ΔE =12m v 21-12(2m )v 2解得ΔE =9 J.(2)由于P 与挡板的碰撞为弹性碰撞.故P 在AC 间等效为匀减速运动,设P 在AC 段加速度大小为a ,碰后经过B 点的速度为v 2 ,由牛顿第二定律和运动学规律,得μ(2m )g =2ma3L =v t -12at 2v 2=v -at解得v 1=2v =6L +μgt 2t v 2=6L -μgt 22t由于2 s ≤t ≤4 s 所以解得v 1的取值范围10 m/s ≤v 1≤14 m/sv 2的取值范围1 m/s ≤v 2≤5 m/s所以当v 2=5 m/s 时,P 向左经过A 点时有最大速度 v 3=v 22-2μgL则P 向左经过A 点时有最大动能E =12(2m )v 23=17 J. 12. 冰球运动员甲的质量为80.0 kg.当他以5.0 m/s 的速度向前运动时,与另一质量为100 kg 、速度为3.0 m/s 的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1 )碰后乙的速度的大小; (2)碰撞中总机械能的损失. [答案] (1)1.0 m/s (2)1400 J[解析] (1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V ′.由动量守恒定律有m v -MV =MV ′①代入数据得V ′=1.0 m/s ②(2)设碰撞过程中总机械能的损失为ΔE ,应有12m v 2+12MV 2=12MV ′2+ΔE ③ 联立②③式,代入数据得ΔE =1400 J ④。
动量守恒定律题目

动量守恒定律题目一、两小球在光滑水平面上沿同一直线相向运动,碰撞后两球均静止,则可以断定碰撞前( )A. 两球的速度大小相等B. 两球的质量相等C. 两球的动量大小相等、方向相反D. 两球的动量相等(答案:C)二、在光滑的水平面上,有甲、乙两辆小车,甲车上放一物体,用水平力F甲推甲车,同时用相同的水平力F乙推乙车,两车均从静止开始运动,在相同的位移内( )A. 甲车对物体的做功较多B. 乙车对物体的做功较多C. 甲、乙两车对物体做功一样多D. 无法确定(答案:A)三、一静止的原子核发生α衰变,生成一新原子核,已知衰变前后原子核的质量数分别为A和A−4,电荷数分别为Z和Z−2,则( )A. 衰变过程中释放的核能转变为新原子核的动能B. 衰变过程中释放的核能转变为α粒子和新原子核的动能之和C. 衰变前后原子核的质量亏损为Δm=4u(u为质子和中子的质量)D. 衰变前后核子数减少,所以质量数和电荷数都减小(答案:B)四、在光滑水平面上,有两个小球A、B沿同一直线相向运动,碰撞后有一球静止,则( )A. 若A球质量大于B球质量,则B球一定静止B. 若A球初速度大于B球初速度,则B球一定静止C. 若A球动量大于B球动量,则一定是A球静止D. 以上说法均不正确(答案:A)五、在光滑的水平面上,有两个质量相等的物体A和B,用水平力F1推A,同时用水平力F2推B,当它们相距一定距离时,两力同时撤去,则两物体( )A. 一定相碰B. 一定不相碰C. 若F1>F2,则一定相碰D. 若F1<F2,则一定相碰(答案:B)六、在光滑的水平面上停着一辆小车,小车上有一木块,现用一水平力拉小车,使小车和木块一起加速运动,则( )A. 小车对木块的摩擦力使木块加速B. 小车对木块的摩擦力方向与车加速度方向相同C. 小车受到的拉力与木块对小车的摩擦力是一对平衡力D. 小车受到的拉力与小车对木块的摩擦力是一对作用力与反作用力(答案:A)七、在光滑的水平面上,一质量为m1的小球A沿水平方向以速度v0与质量为m2的静止小球B发生正碰,碰撞后,A球的动能变为原来的1/9,则小球B的速度可能是( )A. v0/3B. 2v0/3C. v0/9D. 8v0/9(答案:A;B)八、在光滑的水平面上,有两个质量相等的物体,中间用弹簧相连,开始时弹簧处于原长,现给它们一个大小相等、方向相反的水平恒力,当它们的距离增大到某一值时,保持恒力不变,突然撤去弹簧,则( )A. 两物体的速度均增大B. 两物体的速度均减小C. 两物体的加速度均增大D. 两物体的加速度均不变(答案:D)九、在光滑的水平面上,一质量为m的球A沿水平方向以速度v与原来静止的质量为2m的球B发生正碰,碰撞后,A球的动能变为原来的1/9,则球B的速度可能是( )A. v/3B. v/6C. 2v/3D. 2v/9(答案:A;C)十、在光滑的水平面上,有两个质量相等的物体A和B,用水平力F推A,同时用与F相同大小的水平力推B,当它们分别通过相同的位移时( )A. 若A、B均做匀加速直线运动,则力F对A、B所做的功一样多B. 若A做匀加速直线运动,B做匀速直线运动,则力F对A做的功较多C. 若A做匀加速直线运动,B做匀速直线运动,则力F对B做的功较多D. 若A、B均做匀速直线运动,则力F对A、B都不做功(答案:A;D)。
动量守恒定律大题专练(含答案)

动量守恒定律大题专练(含答案)1.在图中,地面被竖直线MN分隔成两部分。
M点左侧地面粗糙,动摩擦因数为μ=0.5,右侧光滑。
MN右侧空间有一范围足够大的匀强电场。
在O点用长为R-4=5m的轻质绝缘细绳,拴一个质量为mA=0.04kg,带电量为q=+2×10的小球A,在竖直平面内以v=10m/s的速度做顺时针匀速圆周运动,运动到最低点时与地面刚好不接触。
处于原长的弹簧左端连在墙上,右端与不带电的小球B接触但不粘连,B球的质量为mB=0.02kg,此时B球刚好位于M点。
现用水平向左的推力将B球缓慢推至P点(弹簧仍在弹性限度内),MP之间的距离为L=10cm,推力所做的功是W=0.27J,当撤去推力后,B球沿地面右滑恰好能和A球在最低点处发生正碰,并瞬间成为一个整体C(A、3B、C均可视为质点),碰后瞬间立即把匀强电场的场强大小变为E=6×10N/C,电场方向不变。
(取g=10m/s)求:1)A、B两球在碰前匀强电场的大小和方向。
2)碰撞后整体C的速度。
3)整体C运动到最高点时绳的拉力大小。
2.在图中,EF为水平地面,O点左侧是粗糙的、右侧是光滑的。
一轻质弹簧右端与墙壁固定,左端与静止在O点质量为m的小物块A连结,弹簧处于原长状态。
质量为m的物块B在大小为F的水平恒力的作用下由C处从静止开始向左运动,已知物块B与地面EO段间的滑动摩擦力大小为F,物块B运动到O点与物块A相碰并一起向右运动(设碰撞时间极短),运动到D点时撤去外力F。
已知CO=4S,OD=S。
求撤去外力后:1)弹簧的最大弹性势能。
2)物块B最终离O点的距离。
3.在图中,矩形盒B的质量为M,底部长度为L,放在水平面上,盒内有一质量为m的物体A,A与B、B与地面的动摩擦因数均为μ,开始时二者均静止,A在B的左端。
现瞬间使物体A获得一向右的水平初速度v,以后物体A与盒B的左右壁碰撞时,B始终向右运动。
当A与B的左壁最后一次碰撞后,B立刻停止运动,A继续向右滑行s(s<L)后也停止运动。
动量守恒定律经典例题

甲(含船)和球、乙(含船)和球、甲乙(含船 )和球
(2)若最终甲的速度为0,乙的速度为多少?
甲
乙
如图所示,光滑水平面上两小车中间夹一压缩了的轻弹
簧,两手分别按住小车,使它们静止,对两车及弹簧组
成的系统,下列说法中正确的是(
)
A.两手同时放开后,系统总动量始终为零
B.先放开左手,后放开右手,动量不守恒
(B)若A、B与平板车上表面间的动摩擦因数相 同,A、B、C组成的系统的动量守恒
(C)若A、B所受的摩擦力大小相等,A、B组成 的系统的动量守恒
(D)若A、B所受的摩擦力大小相等,A、B、C组 成的系统的动量守恒
BCD
如图所示,A、B两物体的质量比mA∶mB=3∶2, 它们原来静止在平板车C上,A、B间有一根被压 缩了的弹簧,A、B与长平板车的上表面间动摩擦 因数相同,地面光滑.当弹簧突然释放后,则有 A.A、B
A.当小球到达最低点时,木块有最大速率 B.当小球的速率最大时,木块有最大速率 C.当小球再次上升到最高点时,木块的速率为最大 D.当小球再次上升到最高点时,木块的速率为零
ABD
质量为M的小车中挂有一个单摆,摆球的质量为M0,小车和单摆 以恒定的速度V0沿水平地面运动,与位于正对面的质量为M1的 静止木块发生碰撞,碰撞时间极短,在此过程中,下列哪些说 法是可能发生的( ) A.小车、木块、摆球的速度都发生变化,分别为V1、V2和V3, 且满足:(M+M0)V0=MV1+M1V2+M0V3; B.摆球的速度不变,小车和木块的速度为V1、V2,且满足:
B.A、B、C系统动量守恒 C. D.小车向右运动
BC
热气球下面吊着一个篮子,向上做匀速直线 运动,剪断绳子后在篮子落地前,系统的动 量是否守恒?若篮子落地后呢?
力学应用动量守恒定律解题

力学应用动量守恒定律解题力学是物理学的一个重要分支,研究物体在运动过程中所受的力及其变化规律。
动量守恒定律是力学中的一条基本定律,表明在一个封闭系统中,当没有外力作用时,系统的总动量保持不变。
应用动量守恒定律可以解决许多实际问题,下面我将以几个例子来说明。
例题一:弹性碰撞假设有两个质量相同的小球,在光滑的水平面上碰撞。
初始时,小球A以速度va向右运动,小球B以速度vb向左运动。
碰撞后,小球A以速度va'向左运动,小球B以速度vb'向右运动。
我们可以利用动量守恒定律来求解碰撞后的速度。
根据动量守恒定律,碰撞前的总动量等于碰撞后的总动量。
设小球A和小球B的质量都为m,速度va为正值,速度vb为负值,则可以写出以下方程:mva + mvb = mva' + mvb'根据题意,可以得到小球A碰撞前的速度va和小球B碰撞前的速度vb都已知,碰撞后的速度va'和vb'是未知的,通过解方程可以求解出碰撞后的速度。
例题二:炮弹问题假设有一个炮弹以速度v0发射出去,形成一个抛物线轨迹。
我们可以利用动量守恒定律来解决炮弹问题。
在潜射前和潜射后,系统的总动量保持不变。
当炮弹发射前,炮弹和大炮的总动量为零;当炮弹发射后,炮弹和大炮的总动量仍为零,只是动量的方向相反。
利用动量守恒定律,我们可以得到以下方程:m0v0 = (m+m0) v其中,m0是炮弹的质量,v0是炮弹的初速度,m是大炮的质量,v是大炮的速度。
通过解方程,我们可以求解出炮弹的速度v和射程等相关参数。
这样,我们就可以用动量守恒定律解答炮弹问题。
例题三:汽车追尾问题假设有两辆质量分别为m1和m2的汽车,汽车1以速度v1追尾汽车2,两车发生完全弹性碰撞。
求解碰撞后两车的速度。
根据动量守恒定律,我们可以得到以下方程:m1v1 + m2v2 = m1v1' + m2v2'其中,v1和v2是碰撞前两车的速度,v1'和v2'是碰撞后两车的速度。
物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律的典型例题
【例1】
把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有哪些?
[] A.枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C.车.枪和子弹组成的系统动量守恒 D.车.枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小【例2】
一个质量M=1kg的鸟在空中v0=6m/s沿水平方向飞行,离地面高度h=20m,忽被一颗质量m=20g沿水平方向同向飞来的子弹击中,子弹速度v=300m/s,击中后子弹留在鸟体内,鸟立即死去,g=10m/s
2.求:鸟被击中后经多少时间落地;鸟落地处离被击中处的水平距离. 【例3】
一列车沿平直轨道以速度v0匀速前进,途中最后一节质量为m的车厢突然脱钩,若前部列车的质量为M,脱钩后牵引力不变,且每一部分所受摩擦力均正比于它的重力,则当最后一节车厢滑行停止的时刻,前部列车的速度为 [] 【例4】
质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二
个小球的质量为m2=50g,速率v2=10cm/s.碰撞后,小球m2恰好停止.那么,碰撞后小球m1的速度是多大,方向如何?
【例5】
甲.乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为M=30kg,乙和他的冰车的总质量也是30kg.游戏时,甲推着一质量为m=15km的箱子,和他一起以大小为v0=2m/s 的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免和乙相碰. 【例6】
两辆质量相同的小车A和B,置于光滑水平面上,一人站在A 车上,两车均静止.若这个人从A车跳到B车上,接着又跳回A 车,仍与A车保持相对静止,则此时A车的速率 [] A.等于零B.小于B车的速率 C.大于B车的速率D.等于B车的速率【例7】甲.乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度v,水平向后方的乙船上抛一沙袋,其质量为m.设甲船和沙袋总质量为M,乙船的质量也为M.问抛掷沙袋后,甲.乙两船的速度变化多少?
【分析】
由题意可知,沙袋从甲船抛出落到乙船上,先后出现了两个相互作用的过程,即沙袋跟甲船和沙袋跟乙船的相互作用过程.在这两个过程中的系统,沿水平方向的合外力为零,因此,两个系
统的动量都守恒.值得注意的是,题目中给定的速度选择了不同的参照系.船速是相对于地面参照系,而抛出的沙袋的速度v是相对于抛出时的甲船参照系. 【解】
取甲船初速度V的方向为正方向,则沙袋的速度应取负值.统一选取地面参照系,则沙袋抛出前,沙袋与甲船的总动量为MV. 沙袋抛出后,甲船的动量为(M-m)v甲,沙袋的动量为m(v甲m)v 甲+m(v甲v)=(M+m)v乙 .
(2)
联立(l).
(2)式解得则甲.乙两船的速度变化分别为【例8】
小型迫击炮在总质量为1000kg的船上发射,炮弹的质量为
2kg.若炮弹飞离炮口时相对于地面的速度为600m/s,且速度跟水平面成45°角,求发射炮弹后小船后退的速度?
【例9】
两块厚度相同的木块A和B,并列紧靠着放在光滑的水平面上,其质量分别为mA=
2.0kg,mB=0.90kg.它们的下底面光滑,上表面粗糙.另有质量mC=0.10kg的铅块C(其长度可略去不计)以vC=10m/s的速度恰好水平地滑到A的上表面(见图),由于摩擦,铅块最后停在本块B 上,测得B.C的共同速度为v=0.50m/s,求木块A的速度和铅块C离开A时的速度. 【分析】
C滑上A时,由于B与A紧靠在一起,将推动B一起运动.取C与A.B这一系统为研究对象,水平方向不受外力,动量守恒.滑上后,C在A的摩擦力作用下作匀减速运动,(A+B)在C的摩擦力作用下作匀加速运动.待C滑出A后,C继续减速,B在C的摩擦力作用下继续作加速运动,于是A与B分离,直至C最后停于B 上. 【解】
设C离开A时的速度为vC,此时A.B的共同速度为vA,对于C刚要滑上A和C刚离开A这两个瞬间,由动量守恒定律知mCvC=(mA+mB)vA+mCv C
(1)
以后,物体C离开A,与B发生相互作用.从此时起,物体A 不再加速,物体B将继续加速一段时间,于是B与A分离.当C相对静止于物体B上时,C与B的速度分别由v C和vA变化到共同速度v.因此,可改选C与B为研究对象,对于C刚滑上B和C.B 相对静止时的这两个瞬间,由动量守恒定律知 mCv
C+mBvA=(mB+mC)v
(2)
由(l)式得mCv C=mCvC-(mA+mB)vA 代入
(2)式mCv C-(mA+mC)vA+mBvA=(mB+mC)v. 得木块A的速度所以铅块C离开A时的速度【说明】
应用动量守恒定律时,必需明确研究对象,即是哪一个系统的动量守恒.另外需明确考察的是系统在哪两个瞬间的动量.如果
我们始终以(C+A+B)这一系统为研究对象,并考察C刚要滑上A 和C刚离开A,以及C.B刚相对静止这三个瞬间,由于水平方向不受外力,则由动量守恒定律知 mCvC=(mA+mB)vA+mCv
C=mAvA+(mB+mC)v. 同样可得【例10】
在静止的湖面上有一质量M=100kg的小船,船上站立质量
m=50kg的人,船长L=6m,最初人和船静止.当人从船头走到船尾(如图),船后退多大距离?(忽略水的阻力)
【例13】
一个静止的质量为M的原子核,放射出一个质量为m的粒子,粒子离开原子核时相对于核的速度为v0,原子核剩余部分的速率等于 []。