物理动能定理的综合应用题20套(带答案)
高考物理动能与动能定理题20套(带答案)含解析

高考物理动能与动能定理题20套(带答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。
质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。
已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求:(1)剪断细绳前弹簧的弹性势能E p(2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。
【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】(1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有:0=m 1v 1-m 2v 2解得v 1=10m/s剪断细绳前弹簧的弹性势能为:2211221122p E m v m v =+ 解得E p =19.5J(2)设m 2向右减速运动的最大距离为x ,由动能定理得:-μm 2gx =0-12m 2v 22 解得x =3m <L =4m则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。
设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。
取向左为正方向。
根据动量定理得:μm 2gt =m 2v 0-(-m 2v 2)解得:t =3s该过程皮带运动的距离为:x 带=v 0t =4.5m故为了维持传送带匀速运动,电动机需对传送带多提供的电能为:E =μm 2gx 带解得:E =6.75J(3)设竖直光滑轨道AC 的半径为R 时小物体m 1平抛的水平位移最大为x 。
物理动能定理的综合应用题20套(带答案)及解析

【解析】
【分析】
对 m 受力分析,由共点力平衡条件可以求出动摩擦因数;以 m 为研究对象,求出最大加
速度,以系统为研究对象,由牛顿第二定律求出最大推力;对系统由动能定理求出最大速
度,然后由平抛运动规律求出最大水平位移.
【详解】
(1)对 m 由平衡条件得:mgsinθ-μ2mgcosθ=0 解得:μ2=tanθ (2)对 m 设其最大加速度为 am,由牛顿第二定律得 水平方向:Nsinθ+μ2Ncosθ=mam 竖直方向:Ncosθ-μ2Nsinθ-mg=0
解得:N=12.5N
(3)从
D
到
E,由动能定理知:
mg
Hale Waihona Puke 2R1 2mvE 2
1 2
mvD2
解得: vD 5m / s
从
B
到
D,由动能定理知
mgL
1 2
mvD2
1 2
mvB2
解得: vB 7m / s
对物块 L vB vD t 2
解得:t=1s;
s相对 L vt 6 2 1m 8m
由能量守恒定律知: Q mgL s相对
L ),
解得,
Q= 1 2
m(
0
2gh)2 ;
考点:动能定理
【名师点睛】本题考查了求物体速度、动摩擦因数、产生的热量等问题,分析清楚运动过
程,熟练应用动能定理即可正确解题.
6.如图所示,光滑斜面 AB 的倾角 θ=53°,BC 为水平面,BC 的长度 lBC=1.10 m,CD 为光滑
的 1 圆弧,半径 R=0.60 m.一个质量 m=2.0 kg 的物体,从斜面上 A 点由静止开始下滑,物 4
解得:Q=16J
高中物理动能定理的综合应用题20套(带答案)及解析

(1)滑块到达底端 B 时的速度大小 vB;
(2)滑块与传送带间的动摩擦因数 μ;
(3)此过程中,由于克服摩擦力做功而产生的热量 Q.
【答案】(1)
2gh (2) v02 2gh (3) m v0
2
2gh
2gl
2
【解析】
试题分析:(1)滑块在由
A
到
B
的过程中,由动能定理得:
mgh= 1 2
(1)求运动员在 AB 段下滑时受到阻力 Ff 的大小; (2)若运动员能够承受的最大压力为其所受重力的 6 倍,则 C 点所在圆弧的半径 R 至少应为 多大? 【答案】(1)144 N (2)12.5 m 【解析】
试题分析:(1)运动员在 AB 上做初速度为零的匀加速运动,设 AB 的长度为 x,斜面的倾 角为 α,则有 vB2=2ax
mvB2
0
,
解得:
=
B
2gh ;
(2)滑块在由 B 到 C 的过程中,由动能定理得:μmgL= 1 mv02− 1 mvB2,
2
2
解得, =v02 2gh ; 2gL
(3)产生的热量:Q=μmgL
L 相对, 相对
0 B 2
2 g
= ( 0
2gh)2 2 g
(或
(0 v02
2 gh )2 2gh
(3)传送带的速度大于或等于 v1,则滑块回到水平轨道时的速度大小仍为 v1
mgs
0
1 2
mv12
得 s=0.9m,即滑块在水平轨道上滑行的路程为 0.9m,则最后停在离 B 点 0.2m 处。
若传送带的速度 7 m/s <v<3m/s,则滑块将回到 B 点,滑上圆弧轨道后又滑到水平轨道,
高考物理动能定理的综合应用题20套(带答案)

(2)滑块落在地面上时速度的大小;
(3)滑块在整个轨道上运动时克服摩擦力做的功.
【答案】(1) (2)v=6m/s (3)
【解析】
【详解】
(1)小球从B到C做平抛运动,则竖直方向上有:
解得:
(2)竖直速度:
m/s
则落在地面上时速度的大小为:
6m/s
(3)对A到B运用动能定理得:
(1)小物块从C点运动到D点经历的时间t;
(2)小物块从C点飞出时速度的大小vC;
(3)小物块从A点运动到C点的过程中克服摩擦力做的功。
【答案】(1)t=0.3s (2)vC=2.0m/s (3)0.1J
【解析】
【详解】
(1)小物块从C水平飞出后做平抛运动,由
得小物块从C点运动到D点经历的时间 s
(2)小物块从C点运动到D,由
(3)小球离开圆弧后做平抛运动根据动能定理可知:
解得:
4.如图,固定在竖直平面内的倾斜轨道AB,与水平光滑轨道BC相连,竖直墙壁CD高 ,紧靠墙壁在地面固定一个和CD等高,底边长 的斜面,一个质量 的小物块 视为质点 在轨道AB上从距离B点 处由静止释放,从C点水平抛出,已知小物块在AB段与轨道间的动摩擦因数为 ,达到B点时无能量损失;AB段与水平面的夹角为 重力加速度 , ,
【答案】(1)0.15;(2)10m;24J
【解析】
【详解】
(1)设小球与斜面间的动摩擦因数为 ,小球第一次由静止从的 点下滑和碰撞弹回上升到速度为零的过程,由动能定理得:
解得:
(2)球最终一定停在 处,小球从 处静止下滑到最终停在 处的全过程
由动能定理得:
所以小球通过的总路程为:
高中物理动能定理的综合应用专项训练100(附答案)

高中物理动能定理的综合应用专项训练100(附答案)一、高中物理精讲专题测试动能定理的综合应用1.某人欲将质量50kg m =的货箱推上高 1.0m h =的卡车,他使用的是一个长 5.0mL =的斜面(斜面与水平面在A 处平滑连接)。
假设货箱与水平面和斜面的动摩擦因数均为0.30μ=。
(说明把货箱做质点处理,当sin 0.2θ=时,cos 0.98θ=)(1)如果把货箱静止放在这个斜面上,则货箱受到的摩擦力多大?(2)如果用平行于斜面的力在斜面上把货箱匀速向上推,所需的推力是多大?(3)如果把货箱放在水平面上的某处,用水平力推力20 4.010N F =⨯推它并在A 处撤去此力,为使货箱能到达斜面顶端,需从距A 点至少多远的地方推动货箱?【答案】(1)100N ;(2)247N ;(3)4.94m 【解析】 【分析】 【详解】(1)如果把货箱静止放在这个斜面上,则货箱受到的摩擦力为静摩擦力,大小为sin 50100.2N=100N f mg θ==⨯⨯(2)如果用平行于斜面的力在斜面上把货箱匀速向上推,所需的推力为cos sin 247N F mg mg μθθ=+=(3)设需从距A 点x 远的地方推动货箱,则由动能定理0cos 0F x mgx mg L mgh μμθ--⋅-=解得x =4.94m2.如图,与水平面夹角θ=37°的斜面和半径R =1.0m 的光滑圆轨道相切于B 点,且固定于竖直平面内。
质量m =0.5kg 的滑块从斜面上的A 点由静止释放,经B 点后沿圆轨道运动,通过最高点C 时轨道对滑块的弹力为滑块重力的5.4倍。
已知A 、B 两点间的高度差h =6.0m 。
(g =10m/s 2,sin37°=0.6,cos37°=0.8)求: (1)滑块在C 点的速度大小v C ; (2)滑块在B 点的速度大小v B ;(3)滑块在A 、B 两点间克服摩擦力做功W f 。
高考物理动能与动能定理题20套(带答案)含解析

高考物理动能与动能定理题20套(带答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s =的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v=5 m/s对滑块有:(x+L)=vt-12μ1gt2对木板有:x=12at2解得:t=1 s或t=73s(不合题意,舍去)故本题答案是:(1)70 N (2)1 m/s2(3)1 s【点睛】分析受力找到运动状态,结合运动学公式求解即可.3.如图所示,在娱乐节目中,一质量为m=60 kg的选手以v0=7 m/s的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A时速度刚好水平,并在传送带上滑行,传送带以v=2 m/s匀速向右运动.已知绳子的悬挂点到抓手的距离为L=6 m,传送带两端点A、B间的距离s=7 m,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小;(2)选手在传送带上从A运动到B的时间;(3)选手在传送带上克服摩擦力做的功.【答案】(1)5 m/s (2)3 s (3)360 J【解析】试题分析:(1)设选手放开抓手时的速度为v1,则-mg(L-Lcosθ)=mv12-mv02,v1=5m/s(2)设选手放开抓手时的水平速度为v2,v2=v1cosθ①选手在传送带上减速过程中 a=-μg② v=v2+at1③④匀速运动的时间t2,s-x1=vt2⑤选手在传送带上的运动时间t=t1+t2⑥联立①②③④⑤⑥得:t=3s(3)由动能定理得W f=mv2-mv22,解得:W f=-360J故克服摩擦力做功为360J.考点:动能定理的应用4.如图所示,一质量为M 、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧相连,弹簧的另一端固定在墙上.平板上有一质量为m 的小物块以速度v 0向右运动,且在本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为μ,弹簧弹性势能E p 与弹簧形变量x 的平方成正比,重力加速度为g.求:(1)当弹簧第一次伸长量达最大时,弹簧的弹性势能为E pm ,小物块速度大小为03v 求该过程中小物块相对平板运动的位移大小; (2)平板速度最大时弹簧的弹力大小;(3)已知上述过程中平板向右运动的最大速度为v.若换用同种材料,质量为2m的小物块重复上述过程,则平板向右运动的最大速度为多大?【答案】(1)2049pm E v g mg μμ-;(2)mg μ;(3)2v 【解析】 【分析】(1)对系统由能量守恒求解小物块相对平板运动的位移;(2)平板速度最大时,处于平衡状态,弹力等于摩擦力;(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时弹力等于摩擦力,结合能量转化关系解答. 【详解】(1)弹簧伸长最长时平板速度为零,设相对位移大小为s ,对系统由能量守恒12mv 02=12m(03v)2+E pm +μmgs 解得s =2049pm E v g mgμμ- (2)平板速度最大时,处于平衡状态,f =μmg 即F =f =μmg.(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时 μmg =kx对木板由动能定理得μmgx =E p 1+12Mv 2 同理,当m′=12m ,平板达最大速度v′时,2mg μ=kx′12μmgx′=E p 2+12Mv′2 由题可知E p ∝x 2,即E p 2=14E p 1解得v′=12v.5.夏天到了,水上滑梯是人们很喜欢的一个项目,它可简化成如图所示的模型:倾角为θ=37°斜滑道AB 和水平滑道BC 平滑连接(设经过B 点前后速度大小不变),起点A 距水面的高度H =7.0m ,BC 长d =2.0m ,端点C 距水面的高度h =1.0m .一质量m =60kg 的人从滑道起点A 点无初速地自由滑下,人与AB 、BC 间的动摩擦因数均为μ=0.2.(取重力加速度g =10m/s 2,sin 37°=0.6,cos 37°=0.8,人在运动过程中可视为质点),求: (1)人从A 滑到C 的过程中克服摩擦力所做的功W 和到达C 点时速度的大小υ; (2)保持水平滑道端点在同一竖直线上,调节水平滑道高度h 和长度d 到图中B ′C′位置时,人从滑梯平抛到水面的水平位移最大,则此时滑道B′C′距水面的高度h ′.【答案】(1) 1200J ;45当h '=2.5m 时,水平位移最大 【解析】 【详解】(1)运动员从A 滑到C 的过程中,克服摩擦力做功为:11W f s mgd μ=+ f 1=μmg cos θ s 1=sin H hθ- 解得W =1200J mg (H -h )-W =12mv 2 得运动员滑到C 点时速度的大小v =45(2)在从C 点滑出至落到水面的过程中,运动员做平抛运动的时间为t ,h '=12gt 2 下滑过程中克服摩擦做功保持不变W =1200J 根据动能定理得:mg (H -h ')-W =12mv 02运动员在水平方向的位移:x =v 0t x当h '=2.5m 时,水平位移最大.6.下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为L ,撞车后共同滑行的距离825l L =.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍.(1)设卡车与故障车相撞前的速度为v 1两车相撞后的速度变为v 2,求12v v(2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生. 【答案】(1)1254v v = (2)32L L '=【解析】(1)由碰撞过程动量守恒12)Mv M m v +=( 则1254v v =① (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ 两车相撞前卡车动能变化22011122Mv Mv MgL μ-= ② 碰撞后两车共同向前滑动,动能变化221()0()2M m v M m gl μ+-=+ ③ 由②式22012v v gL μ-=由③式222v gL μ=又因825l L =可得203v gL μ= 如果卡车滑到故障车前就停止,由2010'2Mv MgL μ-= ④ 故3'2L L =这意味着卡车司机在距故障车至少32L 处紧急刹车,事故就能够免于发生.7.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6 m/s 的速度运动,运动方向如图所示.一个质量为2 kg 的物体(物体可以视为质点),从h=3.2 m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,物体向左最多能滑到传送带左右两端AB的中点处,重力加速度g=10 m/s2,求:(1)物体由静止沿斜面下滑到斜面末端需要多长时间;(2)传送带左右两端AB间的距离l至少为多少;(3)上述过程中物体与传送带组成的系统产生的摩擦热为多少;(4)物体随传送带向右运动,最后沿斜面上滑的最大高度h′为多少?【答案】(1)1.6s (2)12.8m (3)160J (4)h′=1.8m【解析】(1)mgsinθ=ma, h/sinθ=,可得t="1.6" s.(2)由能的转化和守恒得:mgh=μmgl/2,l="12.8" m.(3)在此过程中,物体与传送带间的相对位移:x相=l/2+v带·t,又l/2=,而摩擦热Q=μmg·x相,以上三式可联立得Q="160" J.(4)物体随传送带向右匀加速,当速度为v带="6" m/s时向右的位移为x,则μmgx=,x="3.6" m<l/2,即物体在到达A点前速度与传送带相等,最后以v带="6" m/s的速度冲上斜面,由=mgh′,得h′="1.8" m.滑块沿斜面下滑时由重力沿斜面向下的分力提供加速度,先求出加速度大小,再由运动学公式求得运动时间,由B点到最高点,由动能定理,克服重力做功等于摩擦力做功,由此可求得AB间距离,产生的内能由相互作用力乘以相对位移求得8.如图所示,在方向竖直向上、大小为E=1×106V/m的匀强电场中,固定一个穿有A、B 两个小球(均视为质点)的光滑绝缘圆环,圆环在竖直平面内,圆心为O、半径为R=0.2m.A、B用一根绝缘轻杆相连,A带的电荷量为q=+7×10﹣7C,B不带电,质量分别为m A=0.01kg、m B=0.08kg.将两小球从圆环上的图示位置(A与圆心O等高,B在圆心O的正下方)由静止释放,两小球开始沿逆时针方向转动.重力加速度大小为g=10m/s2.(1)通过计算判断,小球A 能否到达圆环的最高点C ? (2)求小球A 的最大速度值.(3)求小球A 从图示位置逆时针转动的过程中,其电势能变化的最大值. 【答案】(1)A 不能到达圆环最高点 (2)223m/s (3)0.1344J 【解析】 【分析】 【详解】试题分析:A 、B 在转动过程中,分别对A 、B 由动能定理列方程求解速度大小,由此判断A 能不能到达圆环最高点; A 、B 做圆周运动的半径和角速度均相同,对A 、B 分别由动能定理列方程联立求解最大速度;A 、B 从图示位置逆时针转动过程中,当两球速度为0时,根据电势能的减少与电场力做功关系求解.(1)设A 、B 在转动过程中,轻杆对A 、B 做的功分别为W T 和T W ', 根据题意有:0T T W W +'=设A 、B 到达圆环最高点的动能分别为E KA 、E KB 对A 根据动能定理:qER ﹣m A gR +W T1=E KA 对B 根据动能定理:1T B W m gR E '-= 联立解得:E KA +E KB =﹣0.04J由此可知:A 在圆环最高点时,系统动能为负值,故A 不能到达圆环最高点 (2)设B 转过α角时,A 、B 的速度大小分别为v A 、v B , 因A 、B 做圆周运动的半径和角速度均相同,故:v A =v B 对A 根据动能定理:221sin sin 2A T A A qER m gR W m v αα-+= 对B 根据动能定理:()2211cos 2T B B B W m gR m v α='-- 联立解得: ()283sin 4cos 49A v αα=⨯+- 由此可得:当3tan 4α=时,A 、B 的最大速度均为max 22/v s = (3)A 、B 从图示位置逆时针转动过程中,当两球速度为零时,电场力做功最多,电势能减少最多,由上可式得:3sinα+4cosα﹣4=0解得:24sin 25α=或sinα=0(舍去) 所以A 的电势能减少:84sin 0.1344625P E qER J J α=== 点睛:本题主要考查了带电粒子在匀强电场中的运动,应用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的速度和位移等;根据电场力对带电粒子做功,引起带电粒子的能量发生变化,利用动能定理进行解答,属于复杂题.9.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.10.如图所示,光滑轨道槽ABCD 与粗糙轨道槽GH 通过光滑圆轨道EF 平滑连接(D 、G 处在同一高度),组成一套完整的轨道,整个装置位于竖直平面内。
高考物理动能定理的综合应用题20套(带答案)含解析(1)

高考物理动能定理的综合应用题20套(带答案)含解析(1)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv=tan 45° 联立解得:h =0.2 m 【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=3m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;4.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J5.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .6.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。
高中物理动能定理的综合应用题20套(带答案)

一、高中物理精讲专题测试动能定理的综合应用
1.如图所示,倾角为 37°的粗糙斜面 AB 底端与半径 R=0.4 m 的光滑半圆轨道 BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A、C 两点等高.质量 m=1 kg 的滑块从 A 点由静止开始下滑,恰能滑到与 O 点等高的 D 点,g 取 10 m/s2,sin37°=0.6,cos37°=0.8.求:
A
运动至
C
的过程中,根据动能定理有:-μmgcos37°
2R sin 37
=
1 2
mvC2
-
1 2
mv02
③
由①②③式联立解得滑块从 A 点沿斜面滑下时的初速度 v0 需满足:v0≥ 3gR = 2 3 m/s
即 v0 的最小值为:v0min= 2 3 m/s
⑶滑块从 C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x= vt ④
【答案】(1)WF 40J (2)F=10N
【解析】
【详解】
(1)物块从斜面底端到最高点的过程,根据动能定理有:
WF
mgcos
h sin
mgh
0
解得拉力所做的功WF 40J
(2)WF Fx
由位移公式有 x 1 at2 2
由牛顿第二定律有 F mgcos mgsin ma
解得拉力的大小 F=10N.
【点睛】 本题考查了动能定理和平抛运动的综合,知道平抛运动水平方向和竖直方向上的运动规 律,以及能够熟练运用动能定理.
7.如图所示,倾角为 300 的光滑斜劈 AB 长 L1=0.4m,放在离地高 h=0.8m 的水平桌面上,B 点右端接一光滑小圆弧(图上未画出),圆弧右端切线水平,与桌面边缘的距离为 L2.现 有一小滑块从 A 端由静止释放,通过 B 点后恰好停在桌面边缘的 C 点,已知滑块与桌面间 的滑动摩擦因数 μ=0.2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理动能定理的综合应用题20套(带答案)一、高中物理精讲专题测试动能定理的综合应用1.为了备战2022年北京冬奥会,一名滑雪运动员在倾角θ=30°的山坡滑道上进行训练,运动员及装备的总质量m=70 kg.滑道与水平地面平滑连接,如图所示.他从滑道上由静止开始匀加速下滑,经过t=5s到达坡底,滑下的路程 x=50 m.滑雪运动员到达坡底后又在水平面上滑行了一段距离后静止.运动员视为质点,重力加速度g=10m/s2,求:(1)滑雪运动员沿山坡下滑时的加速度大小a;(2)滑雪运动员沿山坡下滑过程中受到的阻力大小f;(3)滑雪运动员在全过程中克服阻力做的功W f.【答案】(1)4m/s2(2)f = 70N (3)1.75×104J【解析】【分析】(1)运动员沿山坡下滑时做初速度为零的匀加速直线运动,已知时间和位移,根据匀变速直线运动的位移时间公式求出下滑的加速度.(2)对运动员进行受力分析,根据牛顿第二定律求出下滑过程中受到的阻力大小.(3)对全过程,根据动能定理求滑雪运动员克服阻力做的功.【详解】(1)根据匀变速直线运动规律得:x=1at22解得:a=4m/s2(2)运动员受力如图,根据牛顿第二定律得:mgsinθ-f=ma解得:f=70N(3)全程应用动能定理,得:mgxsinθ-W f =0解得:W f =1.75×104J【点睛】解决本题的关键要掌握两种求功的方法,对于恒力可运用功的计算公式求.对于变力可根据动能定理求功.2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理3.如图所示,AB是竖直面内的四分之一圆弧形光滑轨道,下端B点与水平直轨道相切.一个小物块自A点由静止开始沿轨道下滑,已知轨道半径为R=0.2m,小物块的质量为m=0.1kg,小物块与水平面间的动摩擦因数μ=0.5,g取10m/s2.求:(1)小物块在B点时受到的圆弧轨道的支持力大小;(2)小物块在水平面上滑动的最大距离.【答案】(1)3N (2)0.4m【解析】(1)由机械能守恒定律,得在B点联立以上两式得F N=3mg=3×0.1×10N=3N.(2)设小物块在水平面上滑动的最大距离为l,对小物块运动的整个过程由动能定理得mgR-μmgl=0,代入数据得【点睛】解决本题的关键知道只有重力做功,机械能守恒,掌握运用机械能守恒定律以及动能定理进行解题.4.某滑沙场的示意图如图所示,某旅游者乘滑沙橇从A点由静止开始滑下,最后停在水平沙面上的C点.设滑沙橇和沙面间的动摩擦因数处处相同,斜面和水平面连接处可认为是圆滑的,滑沙者保持一定姿势坐在滑沙橇上不动,若测得AC间水平距离为x,A点高为h,求滑沙橇与沙面间的动摩擦因数μ.【答案】h/x【解析】【分析】对A到C的全过程运用动能定理,抓住动能的变化量为零,结合动能定理求出滑沙橇与沙面间的动摩擦因数.【详解】设斜面的倾角为θ,对全过程运用动能定理得,因为,则有,解得.【点睛】本题考查了动能定理的基本运用,运用动能定理解题关键选择好研究的过程,分析过程中有哪些力做功,再结合动能定理进行求解,本题也可以结合动力学知识进行求解.5.如图所示,倾斜轨道AB 的倾角为37°,CD 、EF 轨道水平,AB 与CD 通过光滑圆弧管道BC 连接,CD 右端与竖直光滑圆周轨道相连.小球可以从D 进入该轨道,沿轨道内侧运动,从E 滑出该轨道进入EF 水平轨道.小球由静止从A 点释放,已知AB 长为5R ,CD 长为R ,重力加速度为g ,小球与斜轨AB 及水平轨道CD 、EF 的动摩擦因数均为0.5,sin37°=0.6,cos37°=0.8,圆弧管道BC 入口B 与出口C 的高度差为l.8R .求:(在运算中,根号中的数值无需算出)(1)小球滑到斜面底端C 时速度的大小. (2)小球刚到C 时对轨道的作用力.(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R /应该满足什么条件? 【答案】(1285gR(2)6.6mg ,竖直向下(3)0.92R R '≤ 【解析】试题分析:(1)设小球到达C 点时速度为v ,a 球从A 运动至C 过程,由动能定理有0021(5sin 37 1.8)cos3752c mg R R mg R mv μ+-⋅=(2分) 可得 5.6c v gR 1分)(2)小球沿BC 轨道做圆周运动,设在C 点时轨道对球的作用力为N ,由牛顿第二定律2c v N mg m r-=, (2分) 其中r 满足 r+r·sin530=1.8R (1分) 联立上式可得:N=6.6mg (1分)由牛顿第三定律可得,球对轨道的作用力为6.6mg ,方向竖直向下. (1分) (3)要使小球不脱离轨道,有两种情况:情况一:小球能滑过圆周轨道最高点,进入EF 轨道.则小球b 在最高点P 应满足2P v m mg R '≥(1分) 小球从C 直到P 点过程,由动能定理,有2211222P c mgR mg R mv mv μ--'⋅=-(1分) 可得230.9225R R R ='≤(1分) 情况二:小球上滑至四分之一圆轨道的Q 点时,速度减为零,然后滑回D .则由动能定理有2102c mgR mg R mv μ--⋅='-(1分)2.3R R '≥(1分)若 2.5R R '=,由上面分析可知,小球必定滑回D ,设其能向左滑过DC 轨道,并沿CB 运动到达B 点,在B 点的速度为v B ,,则由能量守恒定律有22111.8222c B mv mv mg R mgR μ=+⋅+(1分) 由⑤⑨式,可得0B v =(1分)故知,小球不能滑回倾斜轨道AB ,小球将在两圆轨道之间做往返运动,小球将停在CD 轨道上的某处.设小球在CD 轨道上运动的总路程为S ,则由能量守恒定律,有212c mv mgS μ=(1分) 由⑤⑩两式,可得 S=5.6R (1分)所以知,b 球将停在D 点左侧,距D 点0.6R 处. (1分)考点:本题考查圆周运动、动能定理的应用,意在考查学生的综合能力.6.如图所示,质量m =2.0×10-4 kg 、电荷量q =1.0×10-6 C 的带正电微粒静止在空间范围足够大的电场强度为E1的匀强电场中.取g =10 m/s 2. (1)求匀强电场的电场强度 E1的大小和方向;(2)在t =0时刻,匀强电场强度大小突然变为E2=4.0×103N/C ,且方向不变.求在t =0.20 s 时间内电场力做的功;(3)在t =0.20 s 时刻突然撤掉第(2)问中的电场,求带电微粒回到出发点时的动能.【答案】(1)2.0×103N/C ,方向向上 (2)8.0×10-4J (3)8.0×10-4J 【解析】 【详解】(1)设电场强度为E ,则:Eq mg =,代入数据解得:4362.01010/ 2.010/1010mg E N C N C q --⨯⨯===⨯⨯,方向向上 (2)在0t =时刻,电场强度突然变化为:32 4.010/E N C =⨯,设微粒的加速度为a ,在0.20t s =时间内上升高度为h ,电场力做功为W ,则:21qE mg ma -=解得:2110/a m s =根据:2112h a t =,解得:0.20=h m 电场力做功:428.010J W qE h -==⨯(3)设在0.20t s =时刻突然撤掉电场时粒子的速度大小为v ,回到出发点时的动能为k E ,则:v at =,212k E mgh mv =+解得:48.010J k E -=⨯7.如图所示,ABC 是一条长L =10m 的绝缘水平轨道,固定在离水平地面高h =1.25m 处,A 、C 为端点,B 为中点,轨道BC 处在方向竖直向上,大小E =5×105N/C 的匀强电场中,一质量m =0.5kg ,电荷量q =+1.0×10-5C 的可视为质点的滑块以初速度v 0=6m/s 在轨道上自A 点开始向右运动,经B 点进入电场,从C 点离开电场,已知滑块与轨道间动摩擦因数μ=0.2,g 取10m/s 2。
求:滑块(1)到达B 点时的速度大小; (2)从B 点运动到C 点所用的时间; (3)落地点距C 点的水平距离。
【答案】(1)4m/s (2)1.25s (3)2m 【解析】 【详解】(1)滑块从A 到B 的运动过程只受重力、支持力、摩擦力作用,只有摩擦力做功,故由动能定理可得:220112122B mg L mv mv μ-⋅-=所以滑块到达B 点时的速度大小204m/s B v v gL μ-==(2)滑块从B 运动到C 的过程受合外力F =μ(mg -qE )=0;故滑块从B 到C 做匀速运动;设从B 点运动到C 点所用的时间为t ,则有:152s 1.254B Lt s v === (3)滑块在C 点的速度v C =4m/s ;滑块从C 点做平抛运动,则平抛运动时间20.5ht s g'== 故落地点距C 点的水平距离x =v C t'=2m ;8.如图所示,水平轨道BC 的左端与固定的光滑竖直1/4圆轨道相切与B 点,右端与一倾角为300的光滑斜面轨道在C 点平滑连接(即物体经过C 点时速度的大小不变),斜面顶端固定一轻质弹簧,一质量为2Kg 的滑块从圆弧轨道的顶端A 点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压缩至D 点,已知光滑圆轨道的半径R=0.45m ,水平轨道BC 长为0.4m ,其动摩擦因数μ=0.2,光滑斜面轨道上CD 长为0.6m ,g 取10m/s 2,求①滑块第一次经过B 点时对轨道的压力 ②整个过程中弹簧具有最大的弹性时能;③滑块在水平轨道BC 上运动的总时间及滑块最终停在何处? 【答案】(1)60N (2)1.4J (3)2.25m【解析】(1)滑块从A 点到B 点,由动能定理可得:解得:3m/s滑块在B 点:解得:=60N由牛顿第三定律可得:物块对B 点的压力60N(2)滑块第一次到达D 点时,弹簧具有最大的弹性势能.滑块从A 点到D 点,设该过程弹簧弹力对滑块做的功为W ,由动能定理可得:解得:=1.4J(3)将滑块在BC 段的运动全程看作匀减速直线运动,加速度=2m/s 2则滑块在水平轨道BC 上运动的总时间1.5s滑块最终停止在水平轨道BC 间,设滑块在BC 段运动的总路程为s ,从滑块第一次经过B 点到最终停下来的全过程,由动能定理可得:解得=2.25m结合BC 段的长度可知,滑块最终停止在BC 间距B 点0.15m 处(或距C 点0.25m 处)9.城市中为了解决交通问题,修建了许多立交桥,如图所示,桥面为半径R =130m 的圆弧形的立交桥AB ,横跨在水平路面上,桥高h =10m 。