2013学而思杯数学解析(4年级)
小学数学竞赛:乘除法数字谜(二).教师版解题技巧 培优 易错 难

数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.模块一、与数论结合的数字谜 (1)、特殊数字【例 1】 如图,不同的汉字代表不同的数字,其中“变”为1,3,5,7,9,11,13这七个数的平均数,那么“学习改变命运”代表的多位数是 .1999998⨯学习改变命运变 【考点】与数论结合的数字谜之特殊数字 【难度】2星 【题型】填空 【关键词】学而思杯,4年级,第9题 【解析】 “变”就是7,19999987285714÷= 【答案】285714【例 2】 右边是一个六位乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是______ 。
例题精讲知识点拨教学目标5-1-2-3.乘除法数字谜(二)杯小9望99999×赛赛希学【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空 【关键词】希望杯,4年级,初赛,20题 【解析】 赛×赛的个位是9,赛=3或7,赛=3,小学希望杯赛=333333,不合题意,舍去;故赛=7,小学希望杯赛=999999÷7=142857【答案】142857【例 3】 右面算式中相同的字母代表相同的数字,不同的字母代表不同的数字,问A 和E 各代表什么数字?E AEDEEEEE×3CB【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空【解析】 由于被乘数的最高位数字与乘数相同,且乘积为EEEEEE ,是重复数字根据重复数字的特点拆分,将其分解质因数后为:=37111337EEEEEE E ⨯⨯⨯⨯⨯,所以3A =或者是7A =①若A =3,因为3×3=9,则E =1,而个位上1×3=3≠1,因此,A≠3。
2012学而思杯数学解析(4年级)

2012年第二届全国学而思综合能力测评 小学四年级(2012年4月7日)一、填空题(每题7分,共分)1.我国著名的数学传播、普及和数学竞赛专家单墫教授在2011年“普林斯顿数学竞赛”集训营中,鼓励北京地区参加数学竞赛的小选手,且学且思,作诗一首:“学不思则罔,思不学则殆. 学而思最好,培优创未来.”已知在“学而思最好,培优创未来”这句话中,不同汉字代表不同数字,那么,“学+而+思+最+好+培+优+创+未+来”的值是__________.2.算式:的计算结果是__________.3.如图所示,三个正六边形的面积均为6平方厘米,那么,阴影部分的面积是__________平方厘米.4.学校数学竞赛出了A ,B ,C 三道题,至少做对一道的有25人,其中做对A 题的有10人,做对B 题的有13人,做对C 题的有15人.如果三道题都做对的只有1人,那么只做对两题的共有__________人.二、填空题(每题9分,共分)5.今天是4月7日,1805年的今天,德国作曲家贝多芬创作的《第三交响曲》在奥地利维也纳剧院首次公演.作为乐圣,贝多芬一生创作了100多部作品,其中“编号交响曲”9首,“钢琴奏鸣曲”的数量比“小提琴奏鸣曲”的三倍多5首,“小提琴奏鸣曲”的数量比“编号交响曲”多1首.那么,他一生共创作“钢琴奏鸣曲”__________首.6.某天,杨老师去便利店买午饭,便利店当天供应3种不同的荤菜和5种不同的素菜,杨老师打算买2种菜搭配吃,但至少有一种荤菜.那么,杨老师的午饭共有__________种不同的搭配方式.7.摩比、大宽、金儿三人的年龄为3个连续的自然数,摩比年龄最大.今年他们三人与博士的年龄之和为100岁.17年后,他们三人的年龄之和恰好等于博士的年龄.那么,今年摩比__________岁.8.定义:A B ☆表示线段AB 的中点,例如,图1中, .在图2中,正方形ABCD 的面积是2012平方厘米.已知:那么,四边形MNPQ 的面积是__________平方厘米.4×7=2834×36+102×984×9=36C=A B M =(A ☆B )☆(D ☆A ); N =(A ☆B )☆(B ☆C ); P =(B ☆C )☆(C ☆D ); Q =(C ☆D )☆(D ☆A)三、填空题(每题10分,共分)9.2012年(闰年)的星期一比星期二多,那么2012年的元旦是星期__________.(星期一到星期日分别用1到7表示)10.下图是北京市地铁线路图(部分),琦琦老师某天要从海淀黄庄坐地铁去蒲黄榆教学点开家长会,琦琦老师在海淀黄庄站上车,到在蒲黄榆站下车,最少需要坐__________站地铁.(不需要考虑换乘次数)11.同学们熟悉的e 度论坛网址是..bbs eduu com ,如果令每个字母代表0到9中的一个数字(相同字母代表相同数字,不同字母代表不同数字),恰好得到的两个三位数和一个四位数之和等于2012,即 ,那么,四位数eduu 的最大值=__________. bbs+eduu+com=201212.44名同学分别带了9元、10元、11元、……、52元钱,每人都把钱全部用完,给自己买笔记本.笔记本只有两种,3元一本和5元一本.那么,他们最少共买__________本3元的笔记本.四、填空题(每题11分,共分)13.一场晚会有3个不同的演唱节目,2个不同的舞蹈节目,1个杂技节目.要求两个舞蹈节目间至少安排一个演唱节目.那么,一共有__________种不同的安排顺序. 14.如图,梯形ABCD 中,上底AB 的长度是10厘米,梯形的高BE 的长度是12厘米,且E 是CD 中点,BF将梯形ABCD 分成面积相等的两部分.那么,BF 的长度是__________厘米.五、填空题(每题12分,共分)15.甲从A 出发,匀速向B 行走;乙、丙从B 出发,匀速向A 行走,三人同时出发.乙的速度是丙的2倍.甲、乙相遇时,丙距B 地30千米;甲、丙相遇时,乙距B 地80千米.那么AB 两地相距__________千米.16.国王有2012名武士,每两名武士要么互相是朋友,要么互相是敌人,要么互相不认识.每人只同朋友讲话.但不巧的是,每名武士的任意两个朋友都互为敌人,他的任意两个敌人都互为朋友.国王为了让这2012名武士都知道他的一项命令,最少要通知__________名武士.4×10=4011×2=2212×2=2434×36+102×982014年第四届全国学而思综合能力测评小学四年级参考答案部分解析1.我国著名的数学传播、普及和数学竞赛专家单墫教授在2011年“普林斯顿数学竞赛”集训营中,鼓励北京地区参加数学竞赛的小选手,且学且思,作诗一首:“学不思则罔,思不学则殆. 学而思最好,培优创未来.”已知在“学而思最好,培优创未来”这句话中,不同汉字代表不同数字,那么,“学+而+思+最+好+培+优+创+未+来”的值是__________. 【考点】数论 【难度】★ 【答案】45【解析】每个汉字出现一次,也就是说每个数字出现一次,012345678945.2.算式:的计算结果是__________. 【考点】平方差公式 【难度】★★ 【答案】11220 【解析】 方法一:方法二:3.如图所示,三个正六边形的面积均为6平方厘米,那么,阴影部分的面积是__________平方厘米.【考点】图形的分割 【难度】★★ 【答案】121 2 3 4 5 6 7 8 45 11220 12 11 35 18 12 503 9 10 11 12 1314 15 16 71514778943213120403+++++++++= 34×36+102×98=(35-1)×(35+1)+(100+2)×(100-2)=(35-1)+(100-2)=35-1+100-2=(35+100)-(1+2)=1225+10000-5=1122034×36+102×98=34×3×12+102×98=102×12+102×98=102×(12+98)=102×110=11220【解析】如图,一个正六边形可以分成完全相同的六个钝角三角形,每个三角形的面积是1平方厘米,阴影部分可以分成12个小三角形,所以面积为12平方厘米.4.学校数学竞赛出了A ,B ,C 三道题,至少做对一道的有25人,其中做对A 题的有10人,做对B 题的有13人,做对C 题的有15人.如果三道题都做对的只有1人,那么只做对两题的共有__________人. 【考点】容斥 【难度】★★ 【答案】11【解析】总人数=只做对A 的+只做对B 的+只做对C 的-同时做对AB 的-同时做对AC 的-同时做对BC 的+同时做对三题的人数.根据公式可知做对两题的人数为10+13+15-25-1=12(人),其中包括三题全对的人数,只做对两题的人数为12-1=11(人).5.今天是4月7日,1805年的今天,德国作曲家贝多芬创作的《第三交响曲》在奥地利维也纳剧院首次公演.作为乐圣,贝多芬一生创作了100多部作品,其中“编号交响曲”9首,“钢琴奏鸣曲”的数量比“小提琴奏鸣曲”的三倍多5首,“小提琴奏鸣曲”的数量比“编号交响曲”多1首.那么,他一生共创作“钢琴奏鸣曲”__________首. 【考点】经典应用题 【难度】★ 【答案】35【解析】“小提琴奏鸣曲”为(首),那么“钢琴奏鸣曲”有(首).6.某天,杨老师去便利店买午饭,便利店当天供应3种不同的荤菜和5种不同的素菜,杨老师打算买2种菜搭配吃,但至少有一种荤菜.那么,杨老师的午饭共有__________种不同的搭配方式. 【考点】简单的排列组合——搭配 【难度】★★ 【答案】18【解析】只有一种荤菜:C C 3515 两种都是荤菜:(种)(种)一共有:15+3=18(种)7.摩比、大宽、金儿三人的年龄为3个连续的自然数,摩比年龄最大.今年他们三人与博士的年龄之和为100岁.17年后,他们三人的年龄之和恰好等于博士的年龄.那么,今年摩比__________岁. 【考点】年龄问题 【难度】★★ 【答案】12【解析】17年后,四人的年龄和为(岁),那里博士的年龄为(岁),即其余3人年龄和为84岁,因此今年3人年龄和为(岁),摩比年龄为(岁)9+1=1010×3+5=35××===(3×2)÷(2×1)=3100+17×4=168168÷2=8484-17×3=3333÷3+1=128.定义:A B ☆表示线段AB 的中点,例如,图1中, C A B ☆.在图2中,正方形ABCD 的面积是2012平方厘米.已知:那么,四边形MNPQ 的面积是__________平方厘米.【考点】定义新运算 【难度】★★ 【答案】503【解析】根据☆的意义画图如下,正方形ABCD 被分成了16个小正方形,四边形MNPQ 占4个,因此面积为:9.2012年(闰年)的星期一比星期二多,那么2012年的元旦是星期__________.(星期一到星期日分别用1到7表示) 【考点】日期问题 【难度】★★ 【答案】7【解析】由于星期一比星期二多,因此2012年最后一天肯定为星期一,闰年一共366天,366除以7余2,所以2012年第2天和最后1天都是星期一,元旦是星期日(星期7).10.下图是北京市地铁线路图(部分),琦琦老师某天要从海淀黄庄坐地铁去蒲黄榆教学点开家长会,琦琦老师在海淀黄庄站上车,到在蒲黄榆站下车,最少需要坐__________站地铁.(不需要考虑换乘次数)M =(A ☆B )☆(D ☆A ); N =(A ☆B )☆(B ☆C ); P =(B ☆C )☆(C ☆D ); Q =(C ☆D )☆(D ☆A )2012÷16×4=503=【考点】最短路线 【难度】★ 【答案】15【解析】站数最少的路线为海淀黄庄起10号线到知春路(2站),转13号线至西直门(2站),转2号线至崇文门(8站),转5号线至蒲黄榆(3站),一共228315(站).11.同学们熟悉的e 度论坛网址是..bbs eduu com ,如果令每个字母代表0到9中的一个数字(相同字母代表相同数字,不同字母代表不同数字),恰好得到的两个三位数和一个四位数之和等于2012,即2012bbs eduu com ,那么,四位数eduu 的最大值=__________. 【考点】位值原理 【难度】★★★ 【答案】1477【解析】eduu 中1e ,若要eduu 最大,则bbs 和com 尽量小,因此2b ,3c ,0o ,由位值原理得: =100010011100010011eduu e d u d u ,110220bbs b s s ,10010300com c o m m ,再由2012bbs eduu com 可知:1000100112203002012d u s m ,整理得10011492d u s m ,即4d ,1192u s m ,u 最大取8,此时4s m ,s 和m 取值会与之前重复,故7d ,15s m ,6s ,9m 等式成立,1477eduu .12.44名同学分别带了9元、10元、11元、……、52元钱,每人都把钱全部用完,给自己买笔记本.笔记本只有两种,3元一本和5元一本.那么,他们最少共买__________本3元的笔记本. 【考点】余数和周期问题 【难度】★★★ 【答案】89【解析】若要3元一本的尽量少,则5元一本的要尽量多,44名同学的钱数除以5的余数分别为4,0,1,2,3,4,0,1,2……以5为周期,因此只要计算出9元至13元的同学们买了多少3元一本的笔记本即可.他们买的3元笔记本本数依次为3本,0本,2本,4本,1本.44584……,所以至少买的本数为: 3+2+4+18+3+2+4=89()(本).13.一场晚会有3个不同的演唱节目,2个不同的舞蹈节目,1个杂技节目.要求两个舞蹈节目间至少安排一个演唱节目.那么,一共有__________种不同的安排顺序. 【考点】排列组合 【难度】★★★★ 【答案】432【解析】6个节目全排列:66A 654321720(种)两个舞蹈之间为杂技节目:44A 2=43212=48(种),这三个节目看成1个,与其他全排列,两个舞蹈节目可以换位置.两个舞蹈之间没有节目:55A 2=543212=240(种),两个舞蹈节目看成1个,与其他全排列,两个舞蹈节目可以换位置.720-48-240=432(种)14.如图,梯形ABCD 中,上底AB 的长度是10厘米,梯形的高BE 的长度是12厘米,且E 是CD 中点,BF 将梯形ABCD 分成面积相等的两部分.那么,BF 的长度是__________厘米.+++++++++++++++++++++++++++++======================÷××××××××××××××××××=【考点】等量代换思想 勾股定理 【难度】★★★★ 【答案】13【解析】根据BF 将梯形ABCD 分成面积相等的两部分,可知梯形ABFD 的面积是梯形ABCD 的一半, ,整理得,将代入可得:,得,(厘米),在直角三角形BEF 中,5EF ,12BE ,由勾股定理得2222225122514416913BF BE EF ,13BF (厘米).15.甲从A 出发,匀速向B 行走;乙、丙从B 出发,匀速向A 行走,三人同时出发.乙的速度是丙的2倍.甲、乙相遇时,丙距B 地30千米;甲、丙相遇时,乙距B 地80千米.那么AB 两地相距__________千米. 【考点】比例解行程 【难度】★★★★★ 【答案】120【解析】根据题意画图得:由于乙的速度是丙的2倍,当甲与乙在C 点相遇时,丙走到CB 的中点D ,DB=30(千米),CB=60(千米),CD=30(千米)当甲与丙在E 点相遇时,乙走到F 点,FB=80(千米),FC=80-60=20(千米),因此丙走过的路程(千米),甲走过的路程CE=30-10=20(千米),即甲和乙的速度相同.当最初甲和乙相遇时甲也走了60千米,全长(千米).16.国王有2012名武士,每两名武士要么互相是朋友,要么互相是敌人,要么互相不认识.每人只同朋友讲话.但不巧的是,每名武士的任意两个朋友都互为敌人,他的任意两个敌人都互为朋友.国王为了让这2012名武士都知道他的一项命令,最少要通知__________名武士. 【考点】操作问题 【难度】★★★★ 【答案】403【解析】一个人不能同时有超过两个朋友,假设A 有三个朋友B C D ,则B 与C ,C 与D ,D 与B 互为敌人,但由于C 与D 都是B 的敌人,因此他们应该为朋友,矛盾.如果两人为朋友,则在两人之间画一条实线,如果为敌人,则画一条虚线, 设B 的一个朋友是C ,另一个朋友是D ,则C 和D 是敌人; 设C 除B 之外的另一个朋友是F ,则B 和F 是敌人;设F 除C 之外的另一个朋友是E ,则C 和E 是敌人,从而D 和E 是朋友.DE=20÷2=10AB=60×2=120()22()2AB DF BE AB CD BE +×÷×=+×÷()2AB DF AB CD +×=+222AB DF AB DE +=+2()2AB DE DF EF =−=1025EF =÷=DC=DE ========++++也就是说,每五个人组成一个五边形,其中边为朋友关系,对角线为敌人关系.通知1个人就相当于5个2012÷5=402 (2)人知道,,402+1=403(名),所以最少要通知403名武士.。
第八届学而思杯综合素质测评解析与答案

2012
第八届学而思综合素质测评
三年级
数学
第1页
共4页
1 个西瓜的重量等于 24 个柿子的重量。 个柿子的重量
6.
50 个男生沿着 300 米的跑道站成一圈 ,并且相邻两人之间的距离都相等 。现在 现在,每相邻两个男生之间 又加入了两个女生 ,相邻两人之间的距离还是相等 相邻两人之间的距离还是相等。请问 :相邻两人之间的距离又是 相邻两人之间的距离又是 _______ 米? 距离变为: 300 150 2 (米) 。
F _ E _ D _
【分析】 上面第一层以 AB 为宽的有 10 个长方形,下面第二层以 BE 为宽的也就有 10 个长方形.另外把第 一层和第二层合在一起以 和第二层合在一起以 AE 为宽的长方形还有 10 个, 一层有 10 个, 共 3 层, 这样一共就有 30 (个)长方形. 10. 由数字 0 , 1 , 2 , 3 可以组成 _______ 没有重复数字的四位偶数?
21 111111 7 3 111111 333333
2. 定义新运算为 a△b=(a+1)÷ ÷b,求的值。6△(3△4)= _______ 【分析】所求算式是两重运算,先计算括号 先计算括号,所得结果再计算。由 a△b=(a+1) )÷b 得,3△4=(3+1) ÷4=4÷4=1;6△(3△4)= )= 6△1=(6+1)÷1=7 3. 悟空在花果山,猪八戒在高老庄 猪八戒在高老庄,花果山和高老庄中间有条流沙河 ,一天,他们约好在流沙河见面 他们约好在流沙河见面, 孙悟空的速度是 200 千米/小时 小时. 猪八戒的速度是 150 千米/小时,他们同时出发 他们同时出发 2 小时后还相距 500 千米,则花果山和高老庄之间的距离是 则花果山和高老庄之间的距离是 _______ 千米? 【分析】注意: “还相距”与 “相距”的区别. 的区别 建议教师画线段图. 可以先求出 2 小时孙悟空和猪八戒走的路程 : ( 200 150 ) 2 700 (千米), 又因为还差 500 米, 所以花果山和高老庄之间的距离 : 700 500 1200 (千米). 4. 在一次运动会开幕式上 ,有一大一小 有一大一小 2 个方阵合并变换成一个 15 行 15 列的方阵,求原来这大方阵有 列的方阵 _______ 人? 原来的小方阵和大方阵每行或每列人数都不会超过 15 人。 运用枚举法。 大方阵人数应该在 113~225 之间,可取 121 或 144 或 169 或 196 , 对应的小方阵的人数为 104 或 81 或 56 或 29 。 大方阵有 144 个,小方阵有 81 人。 5.
2012 四年级学而思杯数学试题 答案

2.【答案】11220 【解析】观察发现 102 是 34 的 3 倍,所
34 36 102 98 102 12 102 98 102 (12 98) 102 110 11220
3.【答案】12 【解析】如图,一个正六边形可以分成面积相等的六个三角形,所以 每个三角形面积为 6 6 1 平方厘米,而阴影部分应该包括 4 3 12 个这样的三角形,所以面积为 12 平方厘米 4.【答案】11 【解析】一共做对的题目数是 10 13 15 38 道,所以只做对两题的人有 1 0 1 3 1 5 2 25 人 11 5. 【答案】35 【解析】 “编号交响曲”9 首, “小提琴奏鸣曲”为 9 1 10 首,所以“钢琴奏 鸣曲”为 3 10 5 35 首 6.【答案】18 【解析】一共八种菜,2 种菜随意搭配有 C82 8 7 2 28 种,一种荤菜都没 有的搭配有 C52 5 4 2 10 种,所以至少一种荤菜的搭配有 2 8 1 0 1 8 种 7.【答案】12 【解析】 17 年后, 四个人的年龄之和为 100 17 4 168 岁, 所以 17 年后摩比、 大宽、金儿年龄之和为 168 2 84 岁,因为摩比的年龄最大,所以 17 年后的年龄应为 84 3 1 29 岁,今年为 29 17 12 岁 8. 【答案】503 【解析】如图,化成格点后,MNPQ 占四个方格,ABCD 占十六个,ABCD 面积是 MNPQ 面积的 4 倍,所以 MNPQ 面积为 2012 4 503 平 方厘米 9. 【答案】7 【解析】因为星期一比星期二多,所以 2012 年最后一天一定是星期一,闰年 一共 366 天,366 被 7 除余 2,所以 2012 年第二天与最后一天均为 星期一,所以元旦为星期日 10.【答案】15 【解析】战术最少的路线为海淀黄庄起 10 号线到知春路,转 13 号线至西直 门,转 2 号线至崇文门,转 2 号线至蒲黄榆(路线不唯一) ,共计 15 站。
小学数学竞赛:定义新运算.教师版解题技巧 培优 易错 难

【考点】定义新运算之直接运算【难度】3星【题型】计算
【解析】原式
【答案】
【巩固】 表示
【考点】定义新运算之直接运算【难度】2星【题型】计算
【关键词】走美杯,3年级,初赛
【解析】原式
【答案】
【巩固】规定运算“☆”为:若a>b,则a☆b=a+b;若a=b,则a☆b=a-b+1;若a<b,则a☆b=a×b。那么,(2☆3)+(4☆4)+(7☆5)=。
【考点】定义新运算之直接运算【难度】2星【题型】计算
【关键词】希望杯,四年级,二试
【解析】19
【答案】
【例 2】“△”是一种新运算,规定:a△b=a×c+b×d(其中c,d为常数),如5△7=5×c+7×d。如果1△2=5,2△3=8,那么6△1OOO的计算结果是________。
【考点】定义新运算之直接运算【难度】2星【题型】计算
【答案】
【巩固】设 △ ,那么,5△ ______,(5△2)△ _____.
【考点】定义新运算之直接运算【难度】2星【题型】计算
【解析】
,
【答案】
【巩固】 、 表示数, 表示 ,求3 (6 8)
【考点】定义新运算之直接运算【难度】2星【题型】计算
【解析】
【答案】
【巩固】已知a,b是任意自然数,我们规定:a⊕b=a+b-1, ,那么
可知:5*7=(5+3×7)×(5+7)=(5+21)×12=26×12=312
【答案】
【巩固】定义新运算为a△b=(a+1)÷b,求的值。6△(3△4)
【考点】定义新运算之直接运算【难度】2星【题型】计算
【解析】所求算式是两重运算,先计算括号,所得结果再计算。由a△b=(a+1)÷b得,3△4=(3+1)÷4=4÷4=1;6△(3△4)=6△1=(6+1)÷1=7
小学奥数 鸡兔同笼问题(二) 精选练习例题 含答案解析(附知识点拨及考点)

1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.一、鸡兔同笼 这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法两个量的“鸡兔同笼”问题——变例【例 1】 某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对了多少道题?例题精讲 知识精讲教学目标6-1-9.鸡兔同笼问题(二)【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】做错(52079 ) (52)3-=(道).⨯-÷+=(道),因此,做对的20317【答案】17道【巩固】数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】假设他将所有题全部做对了,则可得100分,实际上只得了60分,比假设少了40分,做错一题要少得8分,少得的40分中,有多少个8分,就是他做错的题的数量,则知他做对了15道.【答案】15道【巩固】东湖路小学三年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣2分.刘钢得了86分,问他做对了几道题?【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】这道题也类似于“鸡兔同笼”问题.假设刘钢20道题全对,可得分520100⨯=(分),但他实际上只得86分,少了1008614-=(分),因此他没做或做错了一些题.由于做对一道题得5分,没做或做错一道题倒扣2分,所以没做或做错一道题比做对一道题要少527+=(分).14分中含有多少个7,就是刘钢没做或做错多少道题.所以,刘钢没做或做错题为1472-=÷=(道),做对题为20218(道).【答案】18道【巩固】某次数学竞赛,试题共有10道,每做对一题得6分,每做错一题倒扣2分。
小学思维数学讲义:巧求周长-带详解

巧求周长知识点拨一、基本概念①周长:封闭图形一周的长度就是这个图形的周长.②面积:物体的表面或封闭图形的大小,叫做它们的面积.二、基本公式:=⨯(长+宽),面积=长⨯宽.①长方形的周长2=⨯边长,正方形的面积=边长⨯边长.②正方形的周长4三、常用方法:(1)对于基本的长方形和正方形图形,可以直接用公式求出它们的周长和面积,对于一些不规则的比较复杂的几何图形,我们可以采用转化的数学思想方法割补成基本图形,利用长方形、正方形周长及面积计算的公式求解.(2)转化是一种重要的数学思想方法,在转化过程中要抓住“变”与“不变”两个部分.转化后的图形虽然形状变了,但其周长和面积不应该改变,所以在求解过程中不能遗漏掉某些线段的长度或某部分图形的面积.转化的目标是将复杂的图形转化为周长或面积可求的图形.(3)寻求正确有效的解题思路,意味着寻找一条摆脱困境、绕过障碍的途径.因此,我们在解决数学问题时,思考的着重点就是要把所需解决的问题转化为已经能够解决的问题.也就是说,在直接求解不容易或很难找到解题途径的问题时,我们往往转化问题的形式,从侧面或反面寻找突破口,知道最终把它转化成一个或若干个能解决的问题.这种解决问题的思想在数学中叫“化归”,它是数学思维中重要的思想和方法.Array(4)在几何中,有许多图形是由一些基本图形组合、拼凑而成的.这样的图形我们称为不规则图形.不规则图形的面积往往无法直接应用公式计算.那么,不规则图形的面积怎样去计算呢?对称、旋转、平移这几种几何变换就是解决这类面积问题的手段.四、几个重要的解题思想(1)平移在平面图形的计算中,常常要将一个平面图形移动到平面上的另一个位置进行计算.其中,将图形沿一个固定方向的移动叫做平移,一个图形经过平行移动不改变其形状与大小,所以图形面积是保持不变的.利用图形的平移,可以使面积计算问题的解法简捷明快,颇有新意.(2)割补割补法在我国古代叫“出入相补原理”,我国古代魏晋时期著名的数学家刘徽在《九章算术注》中就明确地提出“出入相补,各从其类”的出入相补原理.这个原理的内容是几何图形经过分、合、移、补所拼凑成的新图形,它的面积不变.(3)旋转在平面图形的割补中,有时要将一个图形绕定点旋转到一个新的位置,产生一种新的图形结构,图形在转动过程中形状大小不发生改变.利用这种新的图形结构可以帮我们解决面积的计算问题.(4)对称平面图形中有许多简单漂亮的图形都是轴对称图形.轴对称图形沿对称轴折叠,轴两侧可以完全重合.也就是说,如果一个图形是轴对称图形,那么对称轴平分这个图形的面积.熟悉轴对称图形这个性质,对面积计算会有很大帮助.(5)代换在几何计算中,对有关数量进行适当的等量代换也是解决问题的已知技巧.小结:本讲主要通过求一些不规则图形的周长,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求周长的技巧,提高学生的观察能力、动手操作能力、综合运用能力.模块一、图形的周长和面积——割补法【例 1】 求图中所有线段的总长(单位:厘米)D【考点】巧求周长 【难度】2星 【题型】填空 【解析】 要注意到,题目所求的是图中所有线段的总长,而图中的线段,并不仅仅是AB 、BC 、CD 、DE 四段,还包括AC 、BE 等等,因此不能简单地将图中标示的线段长度进行求和.同时应该注意到,43=+=+AC AB BC ;3126=++=++=BE BC CD DE ,等等.因此,为了计算图中所有线段的总长,需要先计算AB 、BC 、CD 、DE 这四条线段分别被累加了几次.这里,可以按照每条线段分别是由几部分组成的加以讨论:由1段组成的线段共有4条,即AB 、BC 、CD 、DE ,而求和过程中AB 、BC 、CD 、DE 这四条线段各被累加了1次.类似地考虑到,由2段组成的线段共有3条,求和过程中AB 、DE 各被累加了1次, BC 、CD 各被累加了2次.由3段组成的线段共有2条,求和过程中AB 、DE 各被累加了1次,BC 、CD 各被累加了2次.由4段组成的线段只有AE ,其中AB 、BC 、CD 、DE 各被计算了1次.综上所述,AB 、DE 各被计算了4次,BC 、CD 各被计算了6次.因而图中所有线段的总长度为:()()442631=48⨯++⨯+(厘米) 【答案】48【例 2】 如图所示,点B 是线段AD 的中点,由A 、B 、C 、D 四个点所构成的所有线段的长度均为整数,若这些线段的长度之积为10500,则线段AB 的长度是 。
2015年学而思杯综合能力测评【四年级】数学答案详解

第一行 1 2 3 4
5
6
第二行 1 2 4 7 11 16 第三行 1 2 4 8 15 26 第四行 1 2 4 8 16 31 第五行 1 2 4 8 16 32
绝密※启用前 2015 年学而思综合能力测评(深圳) 四年级 数学
座位号____________________
【解析】对折一次: 2 2 1 3 段,对折二次: 4 2 3 5 段,对折三次: 8 2 7 9 段. 【答案】9 段. 二、 填空题Ⅱ(每题 6 分,共 30 分,将答案填在下面的空格处) 7. 右图中,相邻两个格点的距离为 1,那么图中这只羊的面积是_________.
第4页 共6页
【解析】连结大正方形的对角线,那么图中浅色的阴影部分可以转换为深色的阴影部分,深色部分的三角形底为中 等正方形与小正方形的边长之和,高为小正方形的边长. 3 3 2 9 ; 9 3 2 13.5 .因此阴影部分的 面积为 13.5 . 【答案】 13.5 .
15. 艾迪参加期末考试,考试分五科,语文、数学、英语、自然、历史.所有科目的平均分是 95 ,语文和数学的
考 生 须 知
1.本试卷共 4 页,20 题 2.本试卷满分 150 分,考试时间 90 分钟 3.在试卷密封线内填写姓名、年级、学校、座位号
一、 填空题Ⅰ(每题 5 分,共 30 分,将答案填在下面的空格处) 1. 计算 1 2 3 4 99= ________. 【解析】等差数列求和. 【答案】4950. 十个连续的自然数,其中质数至多有________个. 【解析】2、3、5、7、11. 【答案】5 个.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
119 118 1 2 11 190 ;下证无论如何分割,A 值为 190 不变: 方法一:找规律:2 尺的木头 A 1 不变,3 尺的木头 A 3 不变,4 尺的木头 A 6 不变,5
2013 年第三届全国学而思综合能力测评(学而思杯)
数学试卷(四年级)详解
一. 填空题(每题 5 分,共 20 分) 1. 请计算:3、5、7、9、11、13 这 6 个数的平均数是__________. 【考点】计算,平均数 【难度】☆ 【答案】8 【分析】公式法: (3 5 7 9 11 13) 6 8 ;或移多补少找到平均值 8.
故丙追上乙时,丙跑了 16 圈,乙跑了 15 圈,甲跑了 18 圈 5400 米.
5
16. A、B、C、D 四个队进行循环赛,即每两个队都比赛一场,每场比赛中,胜队得 3 分,负队得 0 分,平局则各得 1 分,每个队只知道自己 3 场比赛的情况. 裁判说:你们的得分互不相同; A 说:虽然我不知道你们的得分,但我肯定是第一; B 说:那我一定是第二,而且我知道 A 得了多少分; C 说:A 说话之前我就知道我是第三. 根据以上信息,这四个队的得分从高到低组成的四位数是__________.
【考点】行程问题,相遇问题 【难度】☆☆ 【答案】220 【分析】第二次走路,两人相遇在中点,说明两人速度相同,为 20 4 24 米每分;故在第一次走路
时,甲速为 24 米每分,乙速为 20 米每分,两人 5 分钟后相遇,故全长为 (20 24) 5 220 米.
3
12. 有形状、长短都完全一样的红筷子、黑筷子、白筷子各 25 根.在黑暗中,至少应摸出__________ 根筷子,才能保证摸出的筷子至少有 8 双(每两根同色的筷子视为 1 双).
要得到 7 分或 9 分才可断定自己是第一; 再考虑 B:若 B 为 6 分(2 胜 1 负),则 B 一定输给 A,但无法断定 ABCD 是 9630 还是 7631
(即 B 不能知道 A 的分数),故 B 不是 6 分,B 是 5 分或 4 分;下证 B 不可能是 4 分: 若 B 得 4 分(1 胜 1 平 1 负),其中若 B 与 A 平,则 B 可由 A 的话推知 A 胜了 C、D,此时
4
方法三:数形结合:如下图,分割木头方法对应分割图形面积的方法,乘积对应矩形面积, 可见无论如何分割,结果都是1 2 3 19 190 .
15. 甲、乙、丙 3 人在周长是 300 米的环形跑道上同时同地同向出发.甲第一次追上乙时,甲、乙恰 好都回到出发点,此时丙距离出发点 100 米;过了一会,甲第一次追上丙时,乙跑了 7 圈多一些.那 么,丙第一次追上乙时,甲总共跑了__________米.
【考点】行程问题,环形跑道问题 【难度】☆☆☆☆☆ 【答案】5400 【分析】“丙距离出发点 100 米”和“乙跑了 7 圈多一点”是本题的关键突破口;
甲要追丙 1 圈 300 米,才能第一次追上丙,“丙距离出发点 100 米”说明甲追了丙 100 米或 200 米(分别对应丙在出发点之后 100 米和丙在出发点之前 100 米),但若只追了 100 米,则甲还 要跑目前圈数的 2 倍才能追上丙,同时乙也将跑 2 倍圈数,即乙将跑整数圈,就不会出现“乙跑 了 7 圈多一点”了;这说明甲乙碰面时,甲已经领先丙 200 米;
尺的木头 A 10 不变,……,20 尺的木头 A 190 不变(可用第二数学归纳法严谨证明通项公式 为 n(n 1) 2 ,但小学阶段只要找到规律即可);
方法二:转化问题:20 个人每轮分两组握手,每一轮握手之后,组内再分成两组,互相握手, 直至每组最后一轮握手时组内都只有 1 个人,求总握手次数;组与组之间的握手次数正是两组人 数相乘,故这个问题的结果与题目的结果相同,但这个握手问题其实就是每两人都握了一次手, 故结果是 C220 190 ,故 A 190 ;
这说明乙又跑了(甲乙碰面时)已跑的圈数的一半后,出现“乙跑了 7 圈多一点”,故“7 圈 多一点”为 7.5 圈;
故甲追上乙时,乙跑了 5 圈 1500 米,甲跑了 6 圈 1800 米,丙跑了1800 200 1600 米,故 甲、乙、丙的速度比为1800 :1500 :1600 18 :15 :16 ;
14. 阿凡提在地主家做长工.地主家有一根长为 20 尺的木头,阿凡提每次将木头锯成长度是整数尺的 两段,并计算这两段长度的乘积.最后,阿凡提将木头锯成 20 段长度是 1 尺的小段,并得到了 19 个乘积,他将这些乘积相加得到 1 个数 A,地主会给他 A 个金币做为工资.那么,A 等于 __________.
7. 如果 3m 31 33 35 37 39 ,那么 m =__________.
【考点】计算,乘方运算 【难度】☆☆ 【答案】25 【分析】同底数幂相乘,底数不变,指数相加; 31 33 35 37 39 313579 325 ,故 m 25 .
2. 在一个神奇的地方,有一排奇怪的雕塑,这些雕塑都是由巧克力构成的,第一个雕塑由 3 块巧克 力组成,第二个雕塑由 6 块巧克力组成,第三个雕塑由 9 块巧克力组成,以此类推,每个雕塑都 比前一个多 3 块巧克力.那么,第__________个雕塑恰好由 2013 个巧克力组成.
【考点】计算,数列 【难度】☆ 【答案】671 【分析】第 n 个雕塑由 3n 块巧克力构成,故由 2013 块巧克力构成的是第 2013 3 671 个雕塑.
4. 右图中,共有__________个三角形. 【考点】组合,几何计数 【难度】☆☆ 【答案】8 【分析】单个三角形有 4 个,由 2 个三角形组成的三角形有 3 个,由 4 个三角形组成的三角形有 1 个.
1
二. 填空题(每题 6 分,共 24 分) 5. 如右图,算式中不同的汉字代表不同的数字,已知:“级=5”,那么
180 2 90 ;下面构造一种看书方法,来证明 90 可以达到:把故事编为 1~100 号,甲读 1~70 号,乙读 71~90 号以及 1~40 号,丙读 41~90 号;这样 1~90 号故事都是恰被两人读过;
综上,答案为 90.
2
三. 填空题(每题 7 分,共 28 分)
AE
D
9. 如右图,正方形 ABCD 的边长为 12 厘米,正方形 DEFG 的边长为 8 厘米,
日历表上用“
”圈出 5 个数,并计算出它们的和,和最大是
__________.
【考点】计算,数表,日历问题
【难度】☆☆
【答案】115
【分析】十字形越靠下,圈住的数之和越大;由已知条件易得这个月的 30 日是周一,故当十字圈住
30、24、23、22、16 日时,可得到最大和,为 30 24 23 22 16 23 5 115 .
B 会考虑 ABCD 有可能是 7460 或 7406,故 B 无法断定自己是第二;若 B 输给 A,则 B 会考虑 ABCD 有可能是 7450 或 7405,故 B 无法断定自己是第二;综上,若 B 是 4 分,则无法断定自己 是第二;
故 B 得 5 分(1 胜 2 平),听到 A 的话后能断定自己第二; 再重新考虑 A:A 已经不可能是全胜战绩了,故 A 得 7 分(2 胜 Байду номын сангаас 平); 综上,答案为 7531.
【考点】组合,抽屉原理和最不利原则 【难度】☆☆☆ 【答案】18 【分析】摸出 7 双筷子之后,又把三种颜色的筷子各摸出 1 根,此时已摸出 2 7 3 17 根筷子,但没
有摸出 8 双,这是最不利情况;之后无论摸出哪根筷子,都将摸出 8 双筷子,故答案为17 1 18 .
四. 填空题(每题 8 分,共 32 分) 13. 将 1 至 5 分别填入图中的圆圈内,使得两条线段上 3 个数的和相等.那
3. 右图中,相邻两个格点的距离为 1,那么阴影部分的面积是__________. 【考点】几何,格点与割补 【难度】☆☆ 【答案】12 【分析】可使用毕克公式直接求出: 9 8 2 1 12 ;或使用分割的方法,
阴影部分面积为: (2 2 2) 4 2 2 12 .
【分析】由平方差公式: a b a ba b b2 a2 b2 b2 a2 ,
故原式 102102 102102 102 100 10 1000 .
10个102
11. 甲、乙两人分别从 A、B 两地同时出发,相向而行.如果乙每分钟行 20 米,甲、乙两人 5 分钟后 相遇;如果乙每分钟比原来快 4 米,甲、乙两人在 A、B 两地中点相遇.那么,A、B 两地相距 __________米.
8. 甲、乙、丙三人读同一本故事书,这本故事书里一共有 100 个故事,甲已经读了 70 个故事,乙已 经读了 60 个故事,丙已经读了 50 个故事,则恰好被甲乙丙 3 人中两人读过的故事最多有 __________个.
【考点】组合,构造与论证 【难度】☆☆☆ 【答案】90 【分析】三人共读了 50 60 70 180 个故事(有重复);故被读了 2 遍的故事理论上的最大值为
“学而思”代表的三位数是__________. 【考点】数字谜 【难度】☆☆ 【答案】892 【分析】“更”= 1,故“进”= 0;十位必然向百位进位了,故“学”= 8,进而“而”= 9;此时可知
个位没有向十位进位,“思 5 步 ”只能为“ 2 5 7 ”;综上,答案为 892.
6. 4 月有 30 天.某年 4 月有 5 个星期一,5 个星期日,如图,在该月
H 是正方形 DEFG 的中心(对角线的交点),那么,阴影部分的面积是