2018丰台区高中数学(文)二模试卷及答案

合集下载

中考二模测试《数学试题》含答案解析

中考二模测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 下列图标,是轴对称图形的是( )A. B.C. D.2. 如图,若A、B分别是实数a、b在数轴上对应的点,则下列式子的值一定是正数的是()A. b+aB. b-aC. a bD. b a3. 关于代数式x+2的结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 9336. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.10. 分解因式2x2y-4xy+2y的结果是_____.11. 已知x1、x2是一元二次方程x2+x-3=0的两个根,则x1+x2-x1x2=______.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.13. 如图,点A在函数y=kx(x>0)的图像上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为______.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.15. 如图,一次函数y=-43x+8的图像与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是______.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.三、解答题(本大题共11小题,共88分.请在答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 19. 小莉妈妈支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)23. 南京、上海相距约300 km,快车与慢车速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她说法正确吗,如正确,请证明;如不正确,请举反例说明.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. 下列图标,是轴对称图形的是( ) A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义逐项进行分析判断即可得.【详解】A 、不是轴对称图形,故不符合题意;B 、不是轴对称图形,故不符合题意;C 、不是轴对称图形,故不符合题意;D 、是轴对称图形,故符合题意,故选D.【点睛】本题考查了轴对称图形,熟知轴对称图形是一定要沿某直线折叠后直线两旁的部分互相重合的图形是解题的关键.2. 如图,若A 、B 分别是实数a 、b 在数轴上对应的点,则下列式子的值一定是正数的是( )A. b +aB. b -aC. a bD. b a【答案】B【解析】 分析:根据数轴上数的大小以及各种计算法则即可得出答案.详解:根据数轴可得:a+b <0;b -a >0;0b a;计算b a 时,如果b 为偶数,则结果为正数,b 为奇数时,结果为负数.故本题选B.点睛:本题主要考查的是数轴以及各种计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.3. 关于代数式x+2结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小【答案】C【解析】【分析】分情况讨论:当x<0时;当x>0时;x取任何值时,就可得出答案.【详解】当x<0时,则x+2比2小,则A不符合题意;当x>0时,则x+2比2大,则B不符合题意;x取任何值时,x+2比x大,则D不符合题意,故选C.【点睛】本题考查了实数大小的比较,正确地分类讨论是解题的关键.4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③【答案】B【解析】分析:根据二次函数的开口方向、对称轴与y轴的交点得出①、根据对称性得出②、根据函数图像得出③.详解:根据图像可得:a<0,b>0,c<0,故正确;∵对称轴大于1.5,∴x=2时的值大于x=1的函数值,故错误;根据图像可得:当x>3时,y的值小于0,故正确;故选B.点睛:本题主要考查的是二次函数的图象与系数之间的关系,属于中等难度的题型.理解函数图像与系数之间的关系是解题的关键.5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 933【答案】A【解析】分析:根据幂的大小进行求值,从而得出答案.详解:根据幂的性质可得:999-93最接近于999,故选A.点睛:本题主要考查的是幂的计算法则,属于中等难度的题型.明白幂的定义是解决这个问题的关键.6. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点【答案】C【解析】【分析】连接OM、ON,NK,根据切线的性质及角平分线的判定定理,可得出答案.【详解】如图,连接OM、ON,NK,∵PM、PN分别是⊙O的切线,∴ON⊥PN,OM⊥PM,MN⊥OP,∠OPN=∠OPM,∴∠1+∠ONK=90°,∠2+∠OKN=90°,∵OM=ON,∴∠OPN=∠OPM,∠ONK=∠OKN,∴∠1=∠2,∴点K是△PMN的角平分线的交点,故选C.【点睛】本题考查了切线长定理、角平分线定义,熟练掌握切线长定理的内容是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.【答案】(1). -13(2). 3【解析】分析:当两数只有符号不同时,则两数互为相反数;当两数的积为1时,则两数互为倒数.根据定义即可得出答案.详解:13的相反数是13-,13的倒数是3.点睛:本题主要考查的是相反数和倒数的定义,属于基础题型.理解定义是解决这个问题的关键.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.【答案】(1). ∠A=∠D (2). ∠B=∠E【解析】分析:相似三角形的对应角相等,对应边成比例.详解:∵△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F,AB AC BC DE DF EF==.点睛:本题主要考查的是相似三角形的性质,属于基础题型.明白相似三角形的性质是解决这个问题的关键.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.【答案】-1【解析】【分析】同类项是指所含的字母相同,且相同字母的指数相同的单项式.根据定义求出m和n的值,从而得出答案.【详解】根据题意可得:m=1,n=3,∴2m-n=2×1-3=-1.故答案是:-1.【点睛】本题主要考查的是同类项的定义,属于基础题型.理解定义是解决这个问题的关键.10. 分解因式2x 2y -4xy +2y 的结果是_____.【答案】2y(x -1)2【解析】分析:首先提取公因式2y ,然后利用完全平方公式得出答案.详解:原式=2y(22x 1x -+)=()22y x 1-.点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有:提取公因式、公式法和十字相乘法等,有公因式我们都需要进行提取公因式.11. 已知x 1、x 2是一元二次方程x 2+x -3=0的两个根,则x 1+x 2-x 1x 2=______.【答案】2【解析】分析:首先根据韦达定理求出两根之和和两根之积,从而得出答案.详解:∵121b x x a +=-=-,123c x x a==-, ∴原式=-1-(-3)=-1+3=2. 点睛:本题主要考查的是一元二次方程的韦达定理,属于基础题型.明白韦达定理的计算公式是解决这个问题的关键.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.【答案】2【解析】分析:根据圆锥的侧面展开图的圆心角的计算公式即可得出答案.详解:∵设圆锥的半径为r ,母线长为4,∴θ360r l =⨯︒,即1803604r ︒=⨯︒,解得:r=2. 点睛:本题主要考查的是圆锥的侧面展开图,属于中等难度题型.明白展开图的圆心角计算公式即可得出答案.13. 如图,点A 在函数y =k x(x >0)的图像上,点B 在x 轴正半轴上,△OAB 是边长为2的等边三角形,则k 的值为______.【答案】3【解析】【分析】首先过点A作AC⊥OB,根据等边三角形的性质得出点A的坐标,从而得出k的值.【详解】分析:解:过点A作AC⊥OB,∵△OAB为正三角形,边长为2,∴OC=1,AC=3,∴k=1×3=3.故答案为:3【点睛】本题主要考查的是待定系数法求反比例函数解析式以及等边三角形的性质,属于基础题型.得出点A的坐标是解题的关键.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.【答案】答案不唯一,如:∠ABC=90°等【解析】分析:首先根据题意得出四边形EHFG为平行四边形,然后根据直角三角形斜中线的性质得出EH=HF,从而得出菱形.详解:∵E、F为AB、CD的中点,∴EG∥HF,EH∥FG,∴四边形EHFG为平行四边形,当∠ABC=90°时,∴BH=EH=HF,∴四边形EHFG为菱形.点睛:本题主要考查的是平行四边形的性质以及菱形的判定定理,属于基础题型.理解菱形的判定定理是解决这个问题的关键.15. 如图,一次函数y =-43x +8图像与x 轴、y 轴分别交于A 、B 两点.P 是x 轴上一个动点,若沿BP 将△OBP 翻折,点O 恰好落在直线AB 上的点C 处,则点P 的坐标是______.【答案】(83,0),(-24,0) 【解析】【分析】根据题意得出OA ,OB 和AB 的长度,然后根据折叠图形的性质分两种情况来进行,即点P 在线段OA 上和点P 在x 轴的负半轴上,然后根据Rt △APC 的勾股定理求出点P 的坐标.【详解】根据题意可得:OA=6,OB=8,则AB=10,①、当点P 在线段OA 上时,设点P 的坐标为(x ,0),则AP=6-x ,BC=OB=8,CP=OP=x ,AC=10-8=2,∴根据勾股定理可得:()22226x x +=-,解得:x=83, ∴点P 的坐标为(83,0);②、当点P 在x 轴的负半轴上时,设OP 的长为x ,则AP=6+x ,BC=8,CP=OP=x ,AC=10+8=18,∴根据勾股定理可得:()222186x x +=+,解得:x=24,∴点P 的坐标为(-24,0);∴综上所述,点P 的坐标为(83,0),(-24,0). 【点睛】本题主要考查的是折叠图形的性质以及直角三角形的勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是根据题意画出图形得出直角三角形.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.【答案】15°、30°、60°、120°、150°、165° 【解析】分析:根据CD ∥AB ,CE ∥AB 和DE ∥AB 三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.详解:①、∵CD ∥AB , ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°, ∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD ∥AB 时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如图1,CE ∥AB ,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE ∥AB 时,∠ECB=∠B=60°.③如图2,DE ∥AB 时,延长CD 交AB 于F , 则∠BFC=∠D=45°,在△BCF 中,∠BCF=180°-∠B-∠BFC ,=180°-60°-45°=75°, ∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 【答案】-3、-2、-1.【解析】【分析】 首先根据解不等式的方法求出不等式的解,从而得出不等式的负整数解.【详解】解: 2x≤6+3(x - 1),2x≤6+3x -3,解得:x≥-3.所以这个不等式的负整数解为-3、-2、-1.【点睛】本题主要考查的是解不等式,属于基础题型.在解不等式的时候,如果两边同时乘以或除以一个负数时,不等符号需要改变.18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 【答案】(1)12x -+;(2)-4. 【解析】分析:(1)、首先将分式进行通分,然后进行减法计算得出答案;(2)、首先进行去分母将其转化为整式方程,从而求出方程的解,最后需要对方程的解进行检验.详解:(1)、解:-= - = = = =- .(2)、去分母可得:8-2(x+2)=(x+2)(x -2), 化简可得:22x 80x +-=,解得:1242x x =-=,,经检验:x=2是方程的增根,x=-4是方程的解.点睛:本题主要考查的是分式的化简以及解分式方程,属于基础题型.解决这个问题的关键就是学会将分式的分子和分母进行因式分解.19. 小莉妈妈的支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?【答案】(1)见解析;(2)848元;(3)不合理,理由见解析.【解析】分析:(1)、这个只要回答的合情合理即可得出答案;(2)、根据平均数的计算法则得出答案;(3)、11月份出现了极端值,会较大的影响平均每月消费水平.详解:解:(1)、答案不唯一,学生说法只要合理均给分.如双11淘宝购物花费较多等.(2)、这4个月小莉妈妈支付宝每月平均消费为:=×(488.40+360.20+1942.60+600.80)= 848(元).(3)、用这个平均数来估计小莉妈妈支付宝平均每月消费水平不合理.因为这个平均数受极端值(11月数据)影响较大,不能代表平均每月消费水平.点睛:本题主要考查的是平均数的计算法则,属于基础题型.明白计算法则是解决这个问题的关键.20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.【答案】(1)P(指针2次都落在黑色区域)=49;(2)事件A为摸得黄球.【解析】分析:(1)、根据题意列出所有可能出现的情况,然后得出概率;(2)、根据概率的计算法则得出所有情况的概率,然后得出答案.详解:解:(1)如图,把黑色扇形等分为黑1、黑2两个扇形,转盘自由转动2次,指针所指区域的结果如下:(白,白),(白,黑1),(白,黑2),(黑1,白),(黑1,黑1),(黑1,黑2),(黑2,白),(黑2,黑1),(黑2,黑2).所有可能的结果共9种,它们是等可能的,其中指针2次都落在黑色区域的结果有4种.所以P(指针2次都落在黑色区域)=.(2)事件A为摸得黄球.点睛:本题主要考查的是概率的计算法则,属于基础题型.理解概率的计算公式是解题的关键.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.【答案】(1)见解析;(2)甲、乙两工程队分别出新改造600米、1200米.【解析】分析:(1)、小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度;(2)、根据题意解方程组,从而得出答案.详解:解:(1)、小莉:小刚:小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度.(2)、解小莉方程组得所以12x=600,8y=1200.答:甲、乙两工程队分别出新改造600米、1200米.点睛:本题主要考查的是二元一次方程组的实际应用问题,属于基础题型.解决应用题的关键在于找出等量关系,列出方程组.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)【答案】气球高度是100tan tan 1.2tan 1.6tantan tanαβαββα-+-m.【解析】分析:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=x m,根据Rt△PEA的三角形函数得出AE的长度,根据Rt△PCF的三角函数得出CF的长度,最后根据BD=AE-CF求出x的值,得出答案.详解:解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F.设PQ=x m,则PE=(x-1.6)m,PF=(x-1.2)m.在△PEA中,∠PEA=90°.则tan∠PAE=.∴ AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴ CF=.∵ AE-CF=BD.∴-=100.解得x=.答:气球的高度是m.点睛:本题主要考查的是解直角三角形的实际应用,属于基础题型.解决这个问题的关键在于构造出直角三角形.23. 南京、上海相距约300 km,快车与慢车的速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.【答案】(1)画图见解析;(2)两车经过镇江的时间间隔为0.8 h或3.6 h;(3)出发2 h或103h或143h后,两车相距100 km.【解析】分析:(1)、根据待定系数法求出函数解析式,然后再图中画出函数图像;(2)、将y=80代入函数解析式,分别求出x的值,从而得出时间差;(3)、根据函数值相差100列出一元一次方程(分三段来进行解答),从而得出答案.详解:解:(1)当0≤x≤3时,y1=100x,当3≤x≤6时,y1=600-100x;当0≤x≤6时,y2=50x.y1、y2与x的函数图像如下:(2)、当y1=80时,100x=80或600-100x=80.解得x=0.8或5.2;当y2=80时,50x=80.解得x=1.6.所以1.6-0.8=0.8,5.2-1.6=3.6.两车经过镇江的时间间隔为0.8 h或3.6 h.(3)、出发2 h或h或h后,两车相距100 km.点睛:本题主要考查的是一次函数的实际应用,属于中等难度的题型.得出函数解析式是解决这个问题的关键.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她的说法正确吗,如正确,请证明;如不正确,请举反例说明.【答案】小莉说法正确,证明见解析.【解析】分析:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF,然后证明△ADE和△ADF 全等,从而得出∠E=∠F,结合∠E=∠EAB=∠F=∠FAC得出∠ABC=∠ACB,从而得出答案.详解:小莉说法正确.证明:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF.则∠E=∠EAB,∠F=∠FAC.∵ AB+BD=AC+CD,∴ DE=DF.∵ AD⊥BC,∴∠ADE=∠ADF=90°.∵ DE=DF,∠ADE=∠ADF=90°,AD=AD,∴△ADE≌△ADF(SAS).∴∠E=∠F.∴∠E=∠EAB=∠F=∠FAC.∴∠ABC=∠ACB.∴ AB=AC.即△ABC是等腰三角形.点睛:本题主要考查的是等腰三角形的判定与三角形全等,属于基础题型.解决这个问题的关键就是作出辅助线得出三角形全等.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.【答案】(1)y= x2-14x+48(0<x<6);(2)1;(3)改造后剩余油菜花地所占面积的最大值为41.25m2.【解析】【分析】(1)、利用三角形的面积计算公式得出y与x的函数关系式;(2)、将y=35代入函数解析式求出x的值;(3)、利用配方法将函数配成顶点式,然后根据函数的增减性得出最值.【详解】解:(1)y=(8-x)(6-x)=x2-14x+48.(2)由题意,得x2-14x+48=6×8-13,解得:x1=1,x2=13(舍去).所以x=1.(3)y=x2-14x+48=(x-7)2-1.因为a=1>0,所以函数图像开口向上,当x<7时,y随x增大而减小.所以当x=0.5时,y最大.最大值为41.25.答:改造后油菜花地所占面积的最大值为41.25 m2.【点睛】本题主要考查的是二次函数的实际应用问题,属于中等难度题型.根据题意列出函数解析式是解决这个问题的关键.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.【答案】(1)45°;(2)证明见解析;(3)5 4【解析】【分析】(1).在BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF 全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,根据相似比求出AE和CO的关系,CF和AO的关系,从而得出答案.【详解】解:(1).如图,在BC上取一点G,使得CG=BE,连接OB、OC、OG.∵点O为正方形ABCD的中心,∴ OB=OC,∠BOC=90°,∠OBE=∠OCG=45°.∴△OBE≌△OCG(SAS).∴∠BOE=∠COG,∠BEO=∠CGO,OE=OG.∴∠EOG=90°,∵△BEF的周长等于BC的长,∴ EF=GF.∴△EOF≌△GOF(SSS).∴∠EOF=∠GOF=45°.(2).连接OA.∵点O为正方形ABCD的中心,∴∠OAE=∠FCO=45°.∵∠BOE=∠COG,∠AEO=∠BOE+∠OBE=∠BOE+45°,∠COF=∠COG+∠GOF=∠COG+45°.∴∠AEO=∠COF,且∠OAE=∠FCO.∴△AOE∽△CFO.(3).∵△AOE∽△CFO,∴AOCF=OEFO=AECO.即AE=OEFO×CO,CF=AO÷OEFO.∵OE OF,∴ OEFO.∴AECO,CF.∴AECF=54.点睛:本题主要考查的是正方形的性质、三角形全等的判定与性质、三角形相似的判定与性质,综合性非常强,难度较大.熟练掌握正方形的性质是解决这个问题的关键.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:。

最新-北京市丰台区2018年高三二模(文数) 精品

最新-北京市丰台区2018年高三二模(文数) 精品

北京市丰台区2018年高三二模 2018.5数学(文科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数1i2i-+的虚部是 (A)–1(B) 35-(C) i - (D) 3i 5-2.设a ,b 是向量,命题“若a b =-,则a b =”的否命题是(A)若a b =,则a b =- (B) 若a b =-,则a b ≠ (C)若a b ≠,则a b ≠-(D) 若a b ≠-,则a b ≠3.设等比数列{}n a 的前n 项和为n S ,若22a =,514a =,则4S 的值为 (A)152(B)516(C) 516-(D) 52-4.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P ,Q 分别是AA 1,A 1D 1,CC 1,BC 的中点,给出以下四个结论:①A 1C ⊥MN ;②A 1C ∥平面MNPQ ;③A 1C 与PM 相交;④NC 与PM 异面.其中不.正确的结论是 (A) ① (B) ② (C) ③(D) ④5.函数()sin ()f x x x x =+∈R(A) 是偶函数,且在(,+)-∞∞上是减函数 (B) 是偶函数,且在(,+)-∞∞上是增函数 (C) 是奇函数,且在(,+)-∞∞上是减函数(D) 是奇函数,且在(,+)-∞∞上是增函数6.在△ABC 中,∠BAC =90º,D 是BC 的中点,AB =4,AC =3,则AD BC ⋅=(A) -7(B) 72-(C)72(D) 77.已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b=+的图象可能是P 1A(A)(B)(C)(D)8.已知平面上四个点1(0,0)A ,2A ,34,2)A ,4(4,0)A .设D 是四边形1234A A A A 及其内部的点构成的集合,点0P 是四边形对角线的交点,若集合0{|||||,1,2,3,4}i S P D PP PA i =∈≤=,则集合S 所表示的平面区域的面积为 (A) 16 (B) 8 (C) 4 (D) 2第二部分 (非选择题 共110分) 二、填空题共6小题,每小题5分,共30分. 9.已知集合A ={x |2x -x 2>0},B ={x |x >1},则AB =______.10.某地区恩格尔系数(%)y 与年份x 的统计数据如下表:从散点图可以看出y 与x 线性相关,且可得回归方程为ˆˆ4055.25ybx =+,则ˆb =______,据此模型可预测2018年该地区的恩格尔系数(%)为______.11.已知cos 2sin θθ=,则cos 2θ 的值为______. 12.执行如右图所示的程序框图,则输出的结果是______.13.已知双曲线2222128x y m m-=+上一点M 到两个焦点的距离分别为20和4,则该双曲线的离心率为______.QPBACD14.在平面直角坐标系中,若点A ,B 同时满足:①点A ,B 都在函数()y f x =图象上;②点A ,B 关于原点对称,则称点对(A ,B )是函数()y f x =的一个“姐妹点对”(规定点对(A ,B )与点对(B ,A )是同一个“姐妹点对”).那么函数24,0,()2,0,x x f x x x x -≥⎧=⎨-<⎩ 的“姐妹点对”的个数为_______.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数1()cos (cos )2f x x x x =--. (Ⅰ)求()6f π的值;(Ⅱ)求函数()y f x =在区间[0,]2π上的最小值,并求使()y f x =取得最小值时的x 的值.16.(本小题共13分)某地区农科所为了选择更适应本地区种植的棉花品种,在该地区选择了5块土地,每块土地平均分成面积相等的两部分,分别种植甲、乙两个品种的棉花,收获时测得棉花的亩产量如下图所示:(Ⅰ)请问甲、乙两种棉花哪种亩产量更稳定,并说明理由;(Ⅱ)求从种植甲种棉花的5块土地中任选2块土地,这两块土地的亩产量均超过种植甲种棉花的5块土地的总平均亩产量的概率.17.(本小题共14分)如图所示,四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,Q 是棱PA 上的动点.(Ⅰ)若Q 是P A 的中点,求证:PC //平面BDQ ; (Ⅱ)若PB =PD ,求证:BD ⊥CQ ;(Ⅲ)在(Ⅱ)的条件下,若P A =PC ,PB =3,∠ABC =60º,求四棱锥P -ABCD 的体积.18.(本小题共13分)14387255511109乙甲已知等差数列{a n }的公差0d ≠,该数列的前n 项和为n S ,且满足2352S a a ==. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设11b a =,*12()n an n b b n +-=∈N ,求数列{b n }的通项公式.19.(本小题共14分)在平面直角坐标系xOy 中,椭圆C 的中心在原点,焦点1F ,2F 在x 轴上,焦距为P 是椭圆上一动点,12PF F ∆的面积最大值为2.(Ⅰ)求椭圆的标准方程;(Ⅱ)过点(1,0)M 的直线l 交椭圆C 于,A B 两点,交y 轴于点N ,若1N A A M λ=,2NB BM λ=,求证:12λλ+为定值.20.(本小题共13分)已知函数f (x )=ln x ,()bg x ax x=+,两函数图象的交点在x 轴上,且在该点处切线相同. (Ⅰ)求a ,b 的值;(Ⅱ)求证:当x >1时,f (x )<g (x )成立; (Ⅲ)证明:1111...ln(1)23n n++++>+(*n ∈N ).(考生务必将答案答在答题卡上,在试卷上作答无效)北京市丰台区2018年高三二模数 学(文科)参考答案二、填空题:本大题共6小题,每小题5分,共30分.9.{}12x x << 10. -2,31.25 11.3512. 63 13.5414.1 注:第10题第一个空答对得3分,第二个空填对得2分.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.解:因为1()cos (cos )2f x x x x =--=21cos cos 2x x x -=1cos 23222x x +-=1cos 222x x =cos(2)3x π+. (Ⅰ)()6f π=cos(2)63ππ⨯+=12-. ……………………7分(Ⅱ)因为 [0,]2x π∈,所以 42333x πππ≤+≤.当 23x π+=π,即3x π=时,函数()y f x =有最小值是1-.当 3x π=时,函数()y f x =有最小值是1-. ……………………13分16.解:(Ⅰ)由茎叶图可知甲种棉花的平均亩产量为:95+102+105+107+111=1045, 方差为2222221=[(95104)+(102104)+(105104)+(107104)+(111104)]=28.85S -----甲.乙种棉花的平均亩产量为:98+103+104+105+110=1045, 方差为2222221=[(98104)+(103104)+(104104)+(105104)+(110104)]=14.85S -----乙.因为 22>S S 乙甲,O Q P BAC D所以乙种棉花的平均亩产量更稳定. ……………………8分(Ⅱ)从种植甲种棉花的5块土地中任选2块土地的所有选法有(95,102),(95,105),(95,107),(95,111),(102,105),(102,107),(102,111),(105,107),(105,111),(107,111) 共10种, 设“亩产量均超过种植甲种棉花的5块土地的总平均亩产量”为事件A , 包括的基本事件为(105,107),(105,111),(107,111)共3种.所以3()=10P A . ……………………13分 答:两块土地的亩产量均超过种植甲种棉花的5块土地的总平均亩产量的概率为310.17.证明:(Ⅰ)连结AC ,交BD 于O .因为 底面ABCD 为菱形,所以 O 为AC 中点.因为 Q 是P A 的中点, 所以 OQ // PC , 因为OQ ⊂平面BDQ ,PC ⊄平面BDQ ,所以PC //平面BDQ . ……………………5分 (Ⅱ)因为 底面ABCD 为菱形, 所以 AC ⊥BD ,O 为BD 中点.因为 PB =PD ,所以 PO ⊥BD .因为 PO ∩BD =O ,所以 BD ⊥平面P AC .因为 CQ ⊂平面P AC ,所以 BD ⊥CQ . ……………………10分 (Ⅲ)因为 P A =PC ,所以 △P AC 为等腰三角形 . 因为 O 为AC 中点, 所以 PO ⊥AC .由(Ⅱ)知 PO ⊥BD ,且AC ∩BD =O ,所以 PO ⊥平面ABCD ,即PO 为四棱锥P -ABCD 的高. 因为四边形是边长为2的菱形,且∠ABC =60º,所以所以所以13P ABCD V -=⨯=P ABCD V -= ……………………14分 18.解:(Ⅰ)因为35232S a S a =⎧⎨=⎩ 所以112123()43()a d a d a d a +=+⎧⎨+=⎩,即122223a da a =⎧⎨=⎩.因为252a a =,0d ≠, 所以20a ≠.所以112a d =⎧⎨=⎩.所以21n a n =-. ……………………6分 (Ⅱ)因为*12()n an n b b n N +-=∈,所以1212ab b -=,2322a b b -=,……112n a n n b b ---=.相加得 1121222n a a an b b --=+++=1323222n -+++=12(41)3n -- ……………………13分即21213n n b -+=.19.解:(Ⅰ)设椭圆的标准方程为22221x y a b+=.因为焦距为c当点P 在短轴的顶点时,P 到F 1F 2的距离最大,所以此时△PF 1F 2的面积最大,所以121222PF F Sc b =⋅⋅=, 所以b = 因为2224a b c =+=, 所以24a =,椭圆方程为22142x y +=. ……………………5分 (Ⅱ)依题意,直线l 的斜率存在,可设为k ,则直线l :(1)y k x =-.设11(,)A x y ,22(,)B x y ,联立22240(1)x y y k x ⎧+-=⎨=-⎩ 消y 得 2222(21)4240k x k x k +-+-=.显然0∆>,且 2122421k x x k +=+,21222421k x x k -=+.因为直线l 交y 轴于点N ,所以(0,)N k -.所以 11(1,)AM x y =--,11(,)NA x k y =+,且1NA AM λ= 所以 1111x x λ=-,同理2221x x λ=-. 所以12121212121212()28111()3x x x x x x x x x x x x λλ+-+=+==----++. 即12λλ+为定值是83-. ……………………14分 20.解:(Ⅰ)因为()f x 与()g x 的图象在x 轴上有公共点(1,0),所以(1)0g =,即0a b +=. 又因为1()f x x '=,2()bg x a x'=-, 由题意(1)(1)1f g ''==,所以12a =,12b =-. ……………………4分 (Ⅱ)设11()()()ln ()22F x f x g x x x x=-=--, 则2211111()(1)0222F x x x x'=--=--<.所以()F x 在1x >时单调递减.由(1)0F = 可得当1x >时,()0F x <即()()f x g x <. ……………………9分 (Ⅲ)由(Ⅱ)得,11()ln 2x x x-> (1)x >. 令1k x k +=,则111111111ln ()(1)(1)()212121k k k k k k k k k k ++⎡⎤<-=+--=+⎢⎥+++⎣⎦, 所以111ln(1)ln ()21k k k k +-<++,1,2,3...,k n =. 将上述n 个不等式依次相加得 11111ln(1)(...)2232(1)n n n +<++++++, 所以1111...ln(1)ln(1)232(1)nn n n n ++++>++>++. ……………………13分 (若用其他方法解题,请酌情给分)。

北京市丰台区2018年高三二模数学(文科)试卷及答案

北京市丰台区2018年高三二模数学(文科)试卷及答案

北京市丰台区2018年高三二模数学(文科)试卷及答案丰台区2018年高三年级第二学期综合练习(二) 2018.5高三数学(文科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知U =R ,2{|230}A x xx =--<,则UA =(A) {|1x x ≤-或3}x ≥ (B) {|3x x ≤-或1}x ≥ (C) {|1x x <-或3}x > (D) {|3x x <-或1}x >(2)设a ,b 为非零向量,则“∥a b ”是“a 与b 方向相同”的(A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件(3)设双曲线2221(0)x y a a-=>的一条渐近线的倾斜角为π6,则a = (A) 33 (B) 33 (C)3(D)23(4)某四棱锥的三视图如图所示,则该四棱锥的1俯视图侧视图正视图112(A) 只与m 的奇偶性有关 (B) 只与n 的奇偶性有关 (C) 与m ,n 的奇偶性都有关 (D) 与m ,n 的奇偶性都无关第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(9)复数4i 12i+的虚部为 .(10)已知实数x ,y 满足不等式组0,2,20,x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩则4x y+的最大值是____. (11)已知圆C :22(1)4x y -+=,则过点3)P 且与圆C相切的直线方程为____.(12)已知函数sin()y x ωϕ=+(ω>,π2ϕ<)的部分图象如图所示,则=ω____;ϕ=____.(13)设函数122,0,()log ,0.x x f x x x --≤⎧⎪=⎨>⎪⎩① (2)f =____;② 若(1)1f x +>,则x 的取值范围是____. (14)如图,在矩形ABCD 中,4AB =,2AD =,E 为AB的中点.将△ADE 沿DE 翻折,得到四棱锥1A DEBC-.设1A C 的中点为M ,在翻折过程中,xyO 1π65π12有下列三个命题: ① 总有BM ∥平面1A DE ;② 线段BM 的长为定值; ③ 存在某个位置,使DE 与1A C所成的角为90 .其中正确的命题是 .(写出所有..正确命题的序号)A 1MEDCBA三、解答题共6小题,共80分。

【高三数学试题精选】2018年高三数学二模文科试卷(丰台区有答案)

【高三数学试题精选】2018年高三数学二模文科试卷(丰台区有答案)

2018年高三数学二模文科试卷(丰台区有答案)
5 c 北京市丰台区2
(A)(B)(c)(D)
5 下列四个函数中,最小正周期为,且图象关于直线对称的是
(A)(B)
(c)(D)
6.某几何体的三视图如图所示,则该几何体的表面积为
(A)24 (B) 2)(a-x)()
关于偶函数f(x)的图象G和直线 =()的3个命题如下
①当a=2,=0时,直线与图象G恰有3个共点;
②当a=3,= 时,直线与图象G恰有6个共点;
③ ,使得直线与图象G交于4个点,且相邻点之间的距离相等
其中正确命题的序号是
(A) ①② (B) ①③ (c) ②③ (D) ①②③
第二部分(非选择题共110分)
二、填空题共6小题,每小题5分,共30分
9 过点且与直线平行的直线方程为
10已知变量具有线性相关关系,测得的一组数据如下,其回归方程为,则的值等于
11等差数列{an}中,a3=5,a5=3,则该数列的前10项和S10的值是_______
12若,则的值是
13若函数在[-2,1]上的最大值为4,最小值为,则的值是____
14 已知直线x=2,x=4与函数的图象交于A,B两点,与函数的图象交于c,D两点,则直线AB,cD的交点坐标是_________。

高三数学-2018丰台区二模文 精品

高三数学-2018丰台区二模文 精品

丰台区2018年高三练习(二)数学试卷(文科)第I卷(选择题共40分)一. 选择题:本大题共8个小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知是纯虚数,则z等于()A. B. C. D.2. 设a>0且,实数x、y满足,则y关于x的函数大致图象可能是()A. (3)(4)B. (1)(3)C. (2)(4)D. (1)(2)3. 对于函数有下列命题:()(1)函数的最小正周期是;(2)函数是偶函数;(3)函数的图象关于直线对称;(4)函数在上为减函数;其中正确命题的序号是()A. (2)(3)B. (2)(4)C. (1)(3)D. (1)(2)(3)4. 如图,正方形ABCD,PB=BC,平面ABCD,则PC与BD所成的角是()A. 30°B. 45°C. 60°D. 90°5. 函数的图象如图所示,为奇函数,其定义域为,则不等式的解集是()A. B.C. D.6. 分别在椭圆与抛物线上的两动点M、N间的距离的最小值是5,则m的值是()A. B. C. D.7. 设球的体积为,球的内接等边圆柱(轴截面是正方形的圆柱)的体积为,则等于()A. B. 4:3 C. D.8. 等差数列中,,且,为数列的前n项和,则使的n的最小值为()A. B. 20 C. 10 D. 11第II卷(非选择题共110分)二. 填空题:本大题共6小题,每小题5分,共30分。

把答案填在题中横线上。

9. 直线与的夹角为,则等于________________,过点(0,1)且与垂直的直线方程是_____________________。

10. 等比数列中,,则=_________,表示数列_________________。

11. 从5位同学中选2位同学分别担任班长和学习委员,有_______________种不同的选法;如果甲同学不适合做学习委员,有_______________种不同的选法(用数字作答)。

中考二模检测《数学试卷》含答案解析

中考二模检测《数学试卷》含答案解析

一、选择题(每小题3分,共计36分) 1.下列计算正确的是( ) A .(﹣a +b )(﹣a ﹣b )=b 2﹣a 2 B .x +2y =3xyC =0D .(﹣a 3)2=﹣a 52.在中考复习中,老师出了一道题”化简23224x xx x +-++-“.下列是甲、乙、丙三位同学的做法,下列判断正确的是( )甲:原式2222232232284444x x x x x x x x x x x +--+----=-==----()()()(); 乙:原式=(x +3)(x ﹣2)+(2﹣x )=x 2+x ﹣6+2﹣x =x 2﹣4 丙:原式323131222222x x x x x x x x x x +-++-=-=-==++-+++()() 1 A .甲正确 B .乙正确 C .丙正确D .三人均不正确3.如图,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD 边上,请问它们第2015次相遇在( )边上.A .ADB .DC C .BCD .AB4..方程70050020x x =-的解为( ) A .x =0B .x =20C .x =70D .x =505.下列结论正确的是( ) A .如果a >b ,c >d ,那么a ﹣c >b ﹣dB .如果a >b ,那么1a b>C .如果a >b ,那么11a b<D .如果22a b c c<,那么a <b 6.在一次函数y =kx +2中,若y 随x 的增大而增大,则它的图象不经过第( )象限. A .一B .二C .三D .四7.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,则∠BCF 度数为( )A .15°B .18°C .25°D .30°8.如图,▱ABCD 的对角线AC 与BD 相交于点O ,过点O 作OE ⊥AD 于点E ,若AB =4,∠ABC =60°,则OE 的长是( )A B .C .2 D .589.如图,线段BC 的两端点的坐标分别为B (3,8),C (6,3),以点A (1,0)为位似中心,将线段BC 缩小为原来的12后得到线段DE ,则端点D 的坐标为( )A.(1,4) B.(2,4) C.(32,4) D.(2,2)10.知正六边形的边心距是,则正六边形的边长是A.B.C.D.11.如图,将△ABC沿BC边上的高线AD平移到△A′B′C′的位置,已知△ABC的面积为18,阴影部分三角形的面积为2,若AA′=4,则AD的长度为A.2 B.6C.4 D.812.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有( )A .①③④B .②④⑤C .①②⑤D .②③⑤二、填空题(每小题3分,共计12分)13.25的平方根是__________,16的算术平方根是__________,﹣8的立方根是__________. 14.设α、β是方程x 2﹣x ﹣2018=0的两根,则α3+2019β﹣2018的值为__________.15.在平面直角坐标系xOy 中,点A (4,3)为⊙O 上一点,B 为⊙O 内一点,请写出一个符合条件要求的点B 的坐标__________.16.如图,在△A 1B 1C 1中,已知A 1B 1=8,B 1C 1=6,A 1C 1=7,依次连接△A 1B 1C 1的三边中点,得到△A 2B 2C 2,再依次连接△A 2B 2C 2的三边中点,得到△A 3B 3C 3,…,按这样的规律下去,△A 2019B 2019C 2019的周长为__________.三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简再求值:24)44222(22--÷+----+x x x x x x x x ,其中x=4tan45°+2cos30°.18.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC△△ECB;(2)求证:OB=OC.19.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)”数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢”A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园”金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.20.如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角45°,再由D 走到E 处测量,DE ∥AC,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).21.如图,一次函数与反比例函数的图象交于点A (﹣4,﹣2)和B (a ,4),直线AB 交y 轴于点C ,连接QA 、O B . (1)求反比例函数的解析式和点B 的坐标:(2)根据图象回答,当x 的取值在什么范围内时,一次函数的值大于反比例函数的值; (3)求△AOB 的面积.22.”莓好河南,幸福家园”,2019年河南省草莓旅游文化节期间,甲、乙两家草莓采摘园草莓品质相同,销售价格也相同,且推出了如下的优惠方案:甲园游客进园需购买20元/人的门票,采摘的草莓六折优惠乙园游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠活动期间,小雪与爸爸妈妈决定选一个周末一同去采摘草莓,若设他们的草莓采摘量为x(千克)(出园时欲将自己采摘的草莓全部购买),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)求y1、y2与x之间的函数关系式;(2)请在图中画出y1与x之间大致的函数图象;(3)若小雪和爸爸妈妈当天所采摘的草莓不少于10千克,则选择哪个草莓园更划算?请说明理由.23.四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结A C.B D.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.24.如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A.B两点,过A.B两点分别作x轴的垂线,垂足分别为点D.点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A.E.F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.答案与解析一、选择题(每小题3分,共计36分) 1.下列计算正确的是( ) A .(﹣a +b )(﹣a ﹣b )=b 2﹣a 2 B .x +2y =3xyC =0D .(﹣a 3)2=﹣a 5【答案】C【解析】A .原式=a 2﹣b 2,故A 错误;B .x 与2y 不是同类项,不能合并,原式=x +2y ,故B 错误;C .原式=0,故C 正确;D .原式=a 6,故D 错误.2.在中考复习中,老师出了一道题”化简23224x xx x +-++-“.下列是甲、乙、丙三位同学的做法,下列判断正确的是( )甲:原式2222232232284444x x x x x x x x x x x +--+----=-==----()()()(); 乙:原式=(x +3)(x ﹣2)+(2﹣x )=x 2+x ﹣6+2﹣x =x 2﹣4 丙:原式323131222222x x x x x x x x x x +-++-=-=-==++-+++()() 1 A .甲正确 B .乙正确 C .丙正确 D .三人均不正确【答案】C【解析】原式2222223226244444x x x x x x x x x x x +--+-+--=+===----()()1,则丙正确.3.如图,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD边上,请问它们第2015次相遇在( )边上.A.AD B.DC C.BC D.AB【答案】C【解析】设正方形的边长为a,因为甲的速度是乙的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,乙行的路程为2a33a132⨯=+,甲行的路程为2a11132⨯=+a,在AD边的中点相遇;②第二次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在CD边的中点相遇;③第三次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在BC边的中点相遇;④第四次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在AB边的中点相遇;⑤第五次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在AD边的中点相遇;…四次一个循环,因为2015=503×4+3,所以它们第2015次相遇在边BC上.故选C .4..方程70050020x x =-的解为( ) A .x =0 B .x =20C .x =70D .x =50【答案】C【解析】去分母得:700x ﹣14000=500x , 移项合并得:200x =14000, 解得:x =70,经检验x =70是分式方程的解. 5.下列结论正确的是( ) A .如果a >b ,c >d ,那么a ﹣c >b ﹣dB .如果a >b ,那么1ab>C .如果a >b ,那么11a b<D .如果22a b c c<,那么a <b 【答案】D【解析】∵c >d ,∴﹣c <﹣d ,∴如果a >b ,c >d ,那么a ﹣c >b ﹣d 不一定成立,∴选项A 不符合题意;∵b =0时,ab 无意义, ∴选项B 不符合题意;∵a >0>b 时,11ab>,∴选项C 不符合题意;∵如果22a b c c<,那么a <b ,∴选项D 符合题意.6.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第( )象限.A.一B.二C.三D.四【答案】D【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.7.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠BCF度数为( )A.15°B.18°C.25°D.30°【答案】D【解析】由题意可得:∠ABC=30°,∵AB∥CF,∴∠BCF=∠ABC=30°.8.如图,▱ABCD的对角线AC与BD相交于点O,过点O作OE⊥AD于点E,若AB=4,∠ABC=60°,则OE的长是( )A B.C.2 D.5 8【答案】A【解析】作CF⊥AD于F,如图所示:∵四边形ABCD是平行四边形, ∴∠ADC=∠ABC=60°,CD=AB=4,OA=OC,∴∠DCF=30°,∴DF 12=CD =2,∴CF =∵CF ⊥AD ,OE ⊥AD ,CF ∥OE ,∵OA =OC ,∴OE 是△ACF 的中位线,∴OE 12=CF =9.如图,线段BC 的两端点的坐标分别为B (3,8),C (6,3),以点A (1,0)为位似中心,将线段BC 缩小为原来的12后得到线段DE ,则端点D 的坐标为( )A .(1,4)B .(2,4)C .(32,4) D .(2,2)【答案】B【解析】∵将线段BC 缩小为原来的12后得到线段DE , ∴△ADE ∽△ABC ,∴12AD DE AB BC ==, ∴点D 是线段AB 的中点,∵A (1,0),B (3,8), ∴点D 的坐标为(2,4),10.知正六边形的边心距是,则正六边形的边长是A .B .C .D .【答案】A【解析】∵正六边形的边心距为,∴OB ,∠OAB =60°,∴ABtan60OB ===︒,∴AC =2AB11.如图,将△ABC 沿BC 边上的高线AD 平移到△A ′B ′C ′的位置,已知△ABC 的面积为18,阴影部分三角形的面积为2,若AA ′=4,则AD 的长度为A .2B .6C .4D .8【答案】B【解析】设AD =x ,则A ′D =x ﹣4,根据平移性质可知△ABC 与阴影部分三角形相似,则222418x x-=(),解得x =6. 12.在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,现给出下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b +c <0;④b ﹣4a =0;⑤ax 2+bx =0的两个根为x 1=0,x 2=﹣4,其中正确的结论有( )A .①③④B .②④⑤C .①②⑤D .②③⑤【答案】B【解析】∵抛物线开口向下,∴a <0, ∵2ba-=-2,∴b =4a ,ab >0,∴b ﹣4a =0,∴①错误,④正确, ∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4, ∴②⑤正确,∵当x =﹣3时y >0,即9a ﹣3b +c >0,∴③错误, 故正确的有②④⑤.故选B . 二、填空题(每小题3分,共计12分)13.25的平方根是__________,16的算术平方根是__________,﹣8的立方根是__________. 【答案】±5,4,﹣2. 【解析】25的平方根是±5,16的算术平方根是4,﹣8的立方根是﹣2.14.设α、β是方程x 2﹣x ﹣2018=0的两根,则α3+2019β﹣2018的值为__________. 【答案】2019【解析】由根与系数关系α+β=1, α3+2019β﹣2018=α3﹣2019α+(2019α+2019β)﹣2018=α3﹣2019α+2019(α+β)﹣2018=α3﹣2019α+2019﹣2018=α3﹣2019α+1=α(α2﹣2019)+1=α(α+2018﹣2019)+1=α(α﹣1)+1=α2﹣α+1=2018+1=2019.15.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标__________.【答案】故答案为:(2,2).【解析】如图,连结OA,OA=5,∵B为⊙O内一点,∴符合要求的点B的坐标(2,2)答案不唯一.16.如图,在△A1B1C1中,已知A1B1=8,B1C1=6,A1C1=7,依次连接△A1B1C1的三边中点,得到△A2B2C2,再依次连接△A2B2C2的三边中点,得到△A3B3C3,…,按这样的规律下去,△A2019B2019C2019的周长为__________.【答案】2018212【解析】∵A 1B 1=8,B 1C 1=6,A 1C 1=7,∴△A 1B 1C 1的周长是8+6+7=21,依次连接△A 1B 1C 1的三边中点,得到△A 2B 2C 2, ∴A 2B 212=A 1B 1=4,B 2C 212=B 1C 1=3,A 2C 212=A 1C 1=3.5, ∴△A 2B 2C 2的周长为4+3+3.5=10.512=⨯21, 同理△A 3B 3C 3的周长1122=⨯⨯21214=,… 所以,△A 2019B 2019C 2019的周长为(12)2018×212018212=.三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简再求值:24)44222(22--÷+----+x x x x x x x x ,其中x=4tan45°+2cos30°. 【答案】见解析.【解析】先根据分式的混合运算顺序和运算法则化简原式,再据特殊锐角三角函数值求得x 的值,代入计算可得.原式=[22x x +-﹣2(2)(2)x x x --]÷42x x -- =(22x x +-﹣2x x -)•24x x --=2x x -•24x x -- =4x x -当x =4tan45°+2cos30°=4×1+2=时,18.如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O . (1)求证:△DBC △△ECB ; (2)求证:OB =OC .【答案】见解析.【解析】(1)根据等腰三角形的性质得到△ECB =△DBC 根据全等三角形的判定定理即可得到结论; 证明:△AB =AC , △△ECB =△DBC ,在△DBC 与△ECB 中,△△DBC △△ECB (SAS );(2)根据全等三角形的性质得到△DCB =△EBC 根据等腰三角形的判定定理即可得到OB =OC证明:由(1)知△DBC△△ECB,△△DCB=△EBC,△OB=OC.19.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)”数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢”A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园”金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.【答案】见解析.【解析】(1)此次调查的总人数为40÷20%=200(人),故答案为:200;(2)D类型人数为200×25%=50(人),B类型人数为200﹣(40+30+50+20)=60(人),补全图形如下:(3)”数学兴趣与培优”所在扇形的圆心角的度数为360°×=108°,故答案为:108°;(4)估计该校喜欢A、B、C三类活动的学生共有2000×=1300(人);(5)画树状图如下:,由树状图知,共有12种等可能结果,其中一男一女的有8种结果,∴刚好一男一女参加决赛的概率=.20.如图所示,某施工队要测量隧道长度BC,AD=600米,AD ⊥BC,施工队站在点D 处看向B,测得仰角45°,再由D 走到E 处测量,DE ∥AC,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).【答案】隧道BC 的长度为700米.【解析】作EM ⊥AC 于点M,构建直角三角形,解直角三角形解决问题. 如图,△ABD 是等腰直角三角形,AB=AD=600. 作EM ⊥AC 于点M,则AM=DE=500,∴BM=100.在Rt △CEM 中,tan53°=CM EM ,即600CM =43, ∴CM=800,∴BC=CM -BM=800-100=700(米), ∴隧道BC 的长度为700米. 答:隧道BC 的长度为700米.21.如图,一次函数与反比例函数的图象交于点A (﹣4,﹣2)和B (a ,4),直线AB 交y 轴于点C ,连接QA 、O B . (1)求反比例函数的解析式和点B 的坐标:(2)根据图象回答,当x 的取值在什么范围内时,一次函数的值大于反比例函数的值; (3)求△AOB 的面积.【解析】(1)设反比例函数的解析式为y kx =(k ≠0), ∵反比例函数图象经过点A (﹣4,﹣2),∴﹣24k =-, ∴k =8,∴反比例函数的解析式为y 8x=, ∵B (a ,4)在y 8x =的图象上,∴48a=, ∴a =2,∴点B 的坐标为B (2,4);(2)根据图象得,当x >2或﹣4<x <0时,一次函数的值大于反比例函数的值; (3)设直线AB 的解析式为y =ax +b ,∵A (﹣4,﹣2),B (2,4),∴24a b ⎨+=⎩,解得2b ⎨=⎩,∴直线AB 的解析式为y =x +2,∴C (0,2),∴S △AOB =S △AOC +S △BOC 12=⨯2×41222+⨯⨯=6. 22.”莓好河南,幸福家园”,2019年河南省草莓旅游文化节期间,甲、乙两家草莓采摘园草莓品质相同,销售价格也相同,且推出了如下的优惠方案: 甲园 游客进园需购买20元/人的门票,采摘的草莓六折优惠乙园游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠活动期间,小雪与爸爸妈妈决定选一个周末一同去采摘草莓,若设他们的草莓采摘量为x (千克)(出园时欲将自己采摘的草莓全部购买),在甲采摘园所需总费用为y 1(元),在乙采摘园所需总费用为y 2(元),图中折线OAB 表示y 2与x 之间的函数关系.(1)求y 1、y 2与x 之间的函数关系式;(2)请在图中画出y 1与x 之间大致的函数图象;(3)若小雪和爸爸妈妈当天所采摘的草莓不少于10千克,则选择哪个草莓园更划算?请说明理由. 【解析】(1)根据题意,结合图象可知:甲乙两园的草莓单价为:300÷10=30(元/千克), y 1=30×0.6x +20×3=18x +60; 由图可得,当0≤x ≤10时,y 2=30x ,当x >10时,设y 2=kx +b ,将(10,300)和(20,450)代入y 2=kx +b ,20450k b ⎨+=⎩,解得150b ⎨=⎩, ∴当x >10时,y 2=15x +150,∴2300101515010x x y x x ≤≤⎧=⎨+>⎩()();(2)y 2与x 之间大致的函数图象如图所示:(3)y 1<y 2(x ≥10),即18x +60<15x +150,解得x <30; y 1=y 2,即18x +60=15x +150,解得x =30; y 1>y 2,即18x +60>5x +150,解得x >30,答:当草莓采摘量x 的范围为:10≤x <30时,甲采摘园更划算; 当草莓采摘量x =30时,两家采摘园所需费用相同; 当草莓采摘量x 的范围为x >30时,乙采摘园更划算.23.四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结A C.B D .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交与点P .(1)求证:四边形ADCH 是平行四边形; (2)若AC =BC ,PB =PD ,AB +CD =2(+1)①求证:△DHC 为等腰直角三角形; ②求CH 的长度.【答案】见解析.【解析】本题是圆的综合题,考查了圆的有关知识,平行四边形的判定和性质,相似三角形的判定和性质等知识,求CD的长度是本题的关键.(1)由圆周角的定理可得∠DBC=∠DAC=∠ACH,可证AD∥CH,由一组对边平行且相等的是四边形是平行四边形可证四边形ADCH是平行四边形;(2)①由平行线的性质可证∠ADH=∠CHD=90°,由∠CDB=∠CAB=45°,可证△DH为等腰直角三角形;②通过证明△ADP∽△CBP,可得,可得,通过证明△CHD∽△ACB,可得,可得AB=CD,可求CD=2,由等腰直角三角形的性质可求CH的长度.证明:(1)∵∠DBC=∠DAC,∠ACH=∠CBD∴∠DAC=∠ACH,∴AD∥CH,且AD=CH∴四边形ADCH是平行四边形(2)①∵AB是直径∴∠ACB=90°=∠ADB,且AC=BC∴∠CAB=∠ABC=45°,∴∠CDB=∠CAB=45°∵AD∥CH∴∠ADH=∠CHD=90°,且∠CDB=45°∴∠CDB=∠DCH=45°,∴CH=DH,且∠CHD=90°∴△DHC为等腰直角三角形;②∵四边形ABCD是⊙O的圆内接四边形,∴∠ADP=∠PBC,且∠P=∠P,∴△ADP∽△CBP∴,且PB=PD,∴,AD=CH,∴∵∠CDB=∠CAB=45°,∠CHD=∠ACB=90°∴△CHD∽△ACB∴AB=CD∴,∵AB+CD=2(+1),∴CD+CD=2(+1)∴CD=2,且△DHC为等腰直角三角形,∴CH=24.如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A.B两点,过A.B两点分别作x轴的垂线,垂足分别为点D.点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A.E.F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.【答案】见解析.【解析】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、正方形的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于m的方程;(3)分0<t≤4,4<t≤7,7<t≤8三种情况,利用平行四边形的性质找出关于t的一元二次方程.(1)将(0,0),(8,0)代入y=﹣x2+bx+c,得:,解得:,∴该二次函数的解析式为y=﹣x2+x.(2)当y=m时,﹣x2+x=m,解得:x1=4﹣,x2=4+,∴点A的坐标为(4﹣,m),点B的坐标为(4+,m),∴点D的坐标为(4﹣,0),点C的坐标为(4+,0).∵矩形ABCD为正方形,∴4+﹣(4﹣)=m,解得:m1=﹣16(舍去),m2=4.∴当矩形ABCD为正方形时,m的值为4.(3)以A.E.F、Q四点为顶点构成的四边形能为平行四边形.由(2)可知:点A的坐标为(2,4),点B的坐标为(6,4),点C的坐标为(6,0),点D的坐标为(2,0).设直线AC的解析式为y=kx+a(k≠0),将A(2,4),C(6,0)代入y=kx+a,得:,解得:,∴直线AC的解析式为y=﹣x+6.当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,∴点E的坐标为(2+t,﹣t2+t+4),点F的坐标为(2+t,﹣t+4).∵以A.E.F、Q四点为顶点构成的四边形为平行四边形,且AQ∥EF,∴AQ=EF,分三种情况考虑:①当0<t≤4时,如图1所示,AQ=t,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t=﹣t2+t,解得:t1=0(舍去),t2=4;②当4<t≤7时,如图2所示,AQ=t﹣4,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t﹣4=﹣t2+t,解得:t3=﹣2(舍去),t4=6;③当7<t≤8时,AQ=t﹣4,EF=﹣t+4﹣(﹣t2+t+4)=t2﹣t,∴t﹣4=t2﹣t,解得:t5=5﹣(舍去),t6=5+(舍去).综上所述:当以A.E.F、Q四点为顶点构成的四边形为平行四边形时,t的值为4或6.。

2018北京西城区高三数学(文)(二模)


( A)充分而不必要条件
(B)必要而不充分条件
( C)充分必要条件
(D)既不充分也不必要条件
7.设不等式组
x ≥ 1, x y ≥ 3, 表示的平面区域为 D .若直线 ax y 0 上存在区域 D 上的点, 2x y ≤ 5
则实数 a 的取值范围是
( A) [ 1 ,2] 2
(B) [ 1 ,3] 2
2018 北京西城区高三数
学(文)(二模)
第Ⅰ卷 (选择题 共 40 分)
2018.5
一、 选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题列出的 四个选项中,选
出符合题目要求的一项.
1.若集合 A { x | 0 x 1} , B { x | x 2 2x 0} ,则下列结论中正确的是
中点. CD DA AF FE 2 , AB 4 . (Ⅰ)求证: DF // 平面 BCE ;
(Ⅱ)求证:平面 BCF 平面 GCE ; (Ⅲ)求多面体 AFEBCD 的体积.
19.(本小题满分 13 分)
3/9
已知函数 f ( x) ln x ax ,曲线 y f ( x) 在 x 1 处的切线经过点 (2, 1) . x
2/9
已知函数 f ( x)
cos2 x .
sin x cos x
(Ⅰ)求 f (x) 的定义域;
(Ⅱ)求 f (x) 的取值范围.
17.(本小题满分 13 分)
在某地区,某项职业的从业者共约 8.5 万人,其中约 3.4 万人患有某种职业病.为了解这种职业病与某项身体
指标(检测值为不超过 6 的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了
1/9
( C) [1,2]

中考数学二模试卷含答案

中考数学二模试卷一.选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,将符合题目要求的选项填入答题卡)1.2020﹣1的相反数是()A.﹣2020B.﹣C .D.20202.23000000用科学记数法表示应为()A.2.3×103B.23×106C.2.3×107D.23×1023.下列所给图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .4.如图,含45°角的三角板的直角顶点A在直线a上,顶点C在直线b上.若a∥b,∠1=58°,则∠2的度数为()A.85°B.110°C.103°D.118°5.下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1C.(3m2)3=9m6D.2a3•a4=2a76.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形7.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同.设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168x2(1﹣x2)=1088.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式﹣2m2+2m+2020的值为()A.2018B.2019C.2020D.20219.对于一组数据:x1,x2,x3,…x10,若去掉一个最大值和一个最小值,则下列统计量一定不会发生变化的是()A.中位数B.平均数C.众数D.方差10.如图,反比例函数y1=经过矩形ABCD的顶点D,反比例函数y2=经过矩形ABCD 的顶点C.矩形ABCD的顶点A在x轴的负半轴上运动,矩形ABCD的顶点B在x轴的正半轴运动上,如果矩形ABCD的面积为定值,下列哪个值不变()A.a+b B.a﹣b C .D.ab二、填空题(每小题4分,共28分,将正确答案填入答题卡相应的位置)11.分解因式:9m2﹣n2=.12.不等式组:的解集为.13.如图,在△ABC中,∠C=90°,AC=6,若cos A =,则BC的长为.14.如图,在矩形ABCD中,E是边CD的延长线上一点,连接BE交边AD于点F,若AB =40,BC=60,DE=20,则AF的长为.15.如图,A,B,C,D是圆O上的四个点,点B是弧ABC的中点,如果∠ABC=72°,那么∠ADB=.16.如图,在扇形OAB中,∠AOB=90°,半径OA=2.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为.17.在Rt△AOB中,∠AOB=90°,OA=3,sin B =.动点M从点B出发,沿BO以1单位/秒的速度向点O运动;动点P从点B出发,沿BA以1单位/秒的速度向点A运动;P、M两点同时出发,任意一点先到达终点时,两点停止运动.设运动的时间为t.△PMO的面积为S,则s的最大值是.三、解答题(一)(3小题,每小题6分,共18分).18.(6分)计算:|1﹣|+(2020+π)0﹣2sin60°+2﹣2.19.(6分)先化简,再求值:,其中x =﹣3.20.(6分)如图,点A是∠MON边OM上一点,AE∥ON.(1)尺规作图:作∠MON的角平分线OB,交AE于点B(保留作图痕迹,不写作法);(2)若∠MAE=48°,直接写出∠OBE的大小.四、解答题(二)(8小题,每小题8分,共24分)21.(8分)某校九年级举行了“中国梦”演讲比赛活动,学校团委根据学生的成绩划分为A,B,C,D四个等级,并绘制了如下两个不完整的两种统计图.根据图中提供的信息,回答下列问题(1)参加演讲比赛的学生共有人,并把条形图补充完整;(2)扇形统计图中,m=;C等级对应的扇形的圆心角为度.(3)学校准备从获得A等级的学生中随机选取2人,参加全市举办的演讲比赛,请利用列表法或树状图法,求获得A等级的小明参加市比赛的概率.22.(8分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?23.(8分)如图所示,在四边形ABCD中,AC与BD交于O,AB=AD,CB=CD.BE⊥CD 于E,BE与AC交于F.CF=2BO.(1)求证:△BEC是等腰直角三角形;(2)求tan∠ACD的值.五、解答题(三)(2小题,每小题10分,共20分)24.(10分)如图,AB为⊙O的直径,点D为⊙O上任意一点,点C为劣弧BD的中点,连BD,BC并延长BC至P使得∠BDP=2∠CDP;(1)求证:DP为⊙O的切线;(2)若BC=DP时,求证:∠ABD =∠ABC;(3)在(2)的条件下,求DC:BD值.25.(10分)把一块含有30°的三角板△ABC,∠C=90°,∠B=30°,绕C点顺时针旋转,若A点落在AB边上时,得到△ODC,如图①所示,E为OD的中点,连CE.(1)求证:四边形ACEO是菱形;(2)如图②,以O为原点,AB所在直线为x轴,建立直角坐标系,若A(2,0),求经过点D、O、A三点的抛物线的关系式,并求出其的顶点坐标;(3)在(2)的条件下,如图③P(m,0)是x的正半轴上一点,过点P作y轴的平行线l,与直线DC交于点M,与抛物线交于点N,连接OM,ON.在图③中探究:是否存在点P,使△OMN是直角三角形;若存在,请直接写出P的坐标;若不存在,请说明理由.参考答案一.选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,将符合题目要求的选项填入答题卡)1.B.2.C.3.D.4.C.5.D.6.C.7.B.8.A.9.A.10.B.二、填空题(每小题4分,共28分,将正确答案填入答题卡相应的位置)11.(3m+n)(3m﹣n).12.1<x<3.13.8.14.40.15.54°.16.π﹣.17..三、解答题(一)(3小题,每小题6分,共18分). 18.解:原式=﹣1+1﹣2×+=﹣1+1﹣+=.19.解:当x =﹣3时,原式=÷[﹣]=÷=•==20.解:(1)如图,OB为所作;(2)∵AE∥ON,∴∠MON=∠MAE=48°,∵OB平分∠MON,∴∠NOB =∠MON=24°,∵AB∥ON,∴∠OBA=∠NOB=24°,∴∠OBE=180°﹣∠OBA=180°﹣24°=156°.四、解答题(二)(8小题,每小题8分,共24分)21.解:(1)参加演讲比赛的学生共有:8÷25%=32(人),B等级的人数为:32﹣4﹣12﹣8=8,补全的条形统计图如右图所示;(2)m%=×100%=37.5%,即m=37.5,C等级对应的扇形的圆心角为:360°×=135°,故答案为:37.5,135;(3)设小明用a表示,另外三名学生用b、c、d表示,树状图如下图所示,则获得A 等级的小明参加市比赛的概率是,即获得A等级的小明参加市比赛的概率是.22.解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得,解得.答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)①根据题意得,y=100x+150(100﹣x),即y=﹣50x+15000;②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,此时最大利润是y=﹣50×34+15000=13300.即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是13300元.23.证明:(1)∵AB=AD,CB=CD,∴AC垂直平分BD,∴BD=2BO,∵CF=2BO,∴CF=BD,∵∠DBE+∠BDE=90°,∠BDE+∠DCO=90°,∴∠DBE=∠FCE,又∵∠BED=∠CEF,∴△BDE≌△CFE(AAS),∴BE=CE,又∵BE⊥CD,∴△BEC是等腰直角三角形;(2)如图,连接DF,∵△BDE≌△CFE,∴DE=EF,∴DF=EF,∵AC垂直平分BD,∴BF=DF=EF,∴BE=BF+EF =(+1)EF,∴CE =(+1)EF,∴tan∠ACD==﹣1.五、解答题(三)(2小题,每小题10分,共20分)24.(1)证明:连接OD .∵点C为劣弧BD的中点,∴BC=CD,∴∠DBC=∠CDB,∵∠BDP=2∠CDP,∴∠BDC=∠CDP=∠DBC,∵∠OBD=∠ODB,∠BAC=∠CDB,∴∠ODB+∠CDB+∠CDP=∠OBD+∠BAC+∠DBC,∵AB为⊙O的直径,∴∠OBD+∠BAC+∠DBC=90°,∴∠ODB+∠CDB+∠CDP=90°,∴OD⊥DP,∴DP为⊙O的切线;(2)证明:∵BC=DP,BC=DC,∴CD=DP.设∠BDC=x,则∠DBC=∠PDC=x,∴∠P=∠DCP=2x=∠BDP,∵∠P+∠DBC+∠BDP=180°,∴5x=180°,解得x=36°,∴∠BDP=72°,∴∠ABD=∠ODB=90°﹣∠BDP=18°,∴∠ABC=∠ABD+∠DBP=18°+36°=54°,∴∠ABD =∠ABC;(3)解:过点作CH⊥BD于H,∵BC=CD,∴DH =BD,在DB上截取DM=DC,作∠DCM的平分线CN交DB于N,设DM=DC=a,DN=x,∴∠DCM=∠DMC=72°,∠MCN=∠DCN=36°,∴∠MNC=72°,∠CDN=∠DCN=36°,∴MC=NC=DN=x,MN=a﹣x,∵∠MCN=∠CDN=36°,∠DMC=∠CMN,∴△MCN∽△MDC,∴,即,解得x =,∵MC=NC,CH⊥BD,∴NH=,在直角三角形DCH中,DH=DN+NH=x +=,∴cos36°==,∴BD =,∴DC:BD=1:=.25.(1)证明:∵∠C=90°,∠B=30°,∴∠A=60°,∵OC=AC,∴△OCA为等边三角形,∵点E为OD的中点,∴CE=EO =OD =AB=OA=AC,∴四边形ACEO是菱形.(2)解:过点D作DM⊥x轴于点M,∵OD=AB=2OA=4,∠DOB=60°,∴OM=OB=2,DM=2,∴点M与点B重合,∴点D的坐标为(﹣2,2),设过点D、O、A三点的抛物线的关系式为y=ax(x﹣2),把点D的坐标代入解析式得﹣2a×(﹣4)=2,解得a =,∴抛物线解析式为y ==,∴抛物线的顶点坐标为(1,).(3)由点C(1,),D(﹣2,2)得直线CD的解析式为y =,∵MN⊥OA,∴∠NOP=∠NMO,∴△MOP∽△ONP,则OP:NP=MP:OP,∴OP2=MP•NP,则,解得,此时,,当∠OMN=90°时,如图2,M,P两点重合时,此时P3的坐标为(4,0)当∠ONM=90°,如图3,N,P,A三点重合时,此时点P4(2,0),综上所述,当△OMN为直角三角形时点P的坐标为(5+或(5﹣,0)或(4,0)或(2,0).。

北京市丰台区2018年高三二模数学(文科)试卷及答案

北京市丰台区2018年高三二模数学(文科)试卷及答案丰台区2018年高三年级第二学期综合练习(二) 2018.5高三数学(文科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知U =R ,2{|230}A x xx =--<,则UA =ð(A) {|1x x ≤-或3}x ≥ (B) {|3x x ≤-或1}x ≥ (C) {|1x x <-或3}x > (D) {|3x x <-或1}x >(2)设a ,b 为非零向量,则“∥a b ”是“a 与b 方向相同”的(A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件(3)设双曲线2221(0)x y a a-=>的一条渐近线的倾斜角为π6,则a = (A) 3(B) 23(C)(D)(4)某四棱锥的三视图如图所示,则该四棱锥的俯视图侧视图正视图体积为 (A) 1 (B) 2 (C) 3(D) 6(5)下列函数中,既是偶函数,又在区间)0,(-∞上为减函数的是 (A)2log ()y x =-(B) xx y -=1(C)21y x =-+ (D) ||e x y =(6)执行如图所示的程序框图,则输出的S 值为 (A) 25 (B)20(C) 13(D) 6(7)在△ABC 中,D 为AB 中点,E 为CD 中点,设AB =a ,AC =b,若AE λμ=+a b ,则λμ的值是(A) 14(B) 12(C) 2(D) 4(8)某游戏开始时,有红色精灵m 个,蓝色精灵n个.游戏规则是:任意点击两个精灵,若两精灵同色,则合并成一个红色精灵,若两精灵异色,则合并成一个蓝色精灵,当只剩一个精灵时,游戏结束.那么游戏结束时,剩下的精灵的颜色(A) 只与m 的奇偶性有关 (B) 只与n 的奇偶性有关 (C) 与m ,n 的奇偶性都有关 (D) 与m ,n 的奇偶性都无关第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2018丰台高三数学二模考试答案解析理科

丰台2018高三二模数 学(理科)参考答案二、填空题:本大题共6小题,每小题5分,共30分。

(9)1i - (10)121(11)1± (12)18000018y v v =+(0120)v <≤;100 (13)4;π3- (14)①②注:第12,13题第一个空填对得3分,第二个空填对得2分;第14题只写对一个得2分,有一个错误不得分.三、解答题: (15)(本小题共13分)解:(Ⅰ)在△ACD 中,因为 π()DAC ADC C ∠=-∠+∠,π3ADC ∠=, 所以 πsin sin()3DAC C ∠=+∠1sin 2C C =∠+∠. …………………2分因为 cos C ∠=, 0πC <∠<,所以 sin 7C ∠==. …………………4分所以 1sin =272714DAC ∠=⨯⨯. …………………5分(Ⅱ)在△ABD 中,由余弦定理可得2222cos AB BD AD BD AD ADB =+-⋅⋅∠, (7)分所以 222214626cos3AD AD π=+-⨯⨯⨯, 所以 261600AD AD +-=, 即 (16)(10)0AD AD +-=. 所以 10AD =或16AD =-(舍).所以 10AD =. (8)分在△ACD 中,由正弦定理得sin sin CD ADDAC C=∠∠, 即=.....................10分 所以 15CD =. (11)分所以11sin sin 22ABC S AD BD ADB AD DC ADC ∆=⨯⨯⨯∠+⨯⨯⨯∠=即ABC S ∆=…………………13分(16)(本小题共13分) 解:(Ⅰ)m n <. …………………3分 (Ⅰ)设“从抽取的20位客户中任意抽取2位,至少有一位是A 组的客户”为事件M ,则11210101022029()38C C C P M C +==. …………………6分 所以从抽取的20位客户中任意抽取2位至少有一位是A 组的客户的概率是2938. (III )依题意ξ的可能取值为0,1,2.则119811101018(0)25C C P C C ξ===; 1111189211101013(1)50C C C C P C C ξ+===; 11121110101(2)50C C P C C ξ===. …………………10分 所以随机变量ξ的分布列为:所以随机变量ξ的数学期望01225505010E ξ=⨯+⨯+⨯=. …………………12分即103=ξE . …………………13分(17)(本小题共14分)(Ⅰ)证明:在三棱柱 111ABC A B C -中,侧面 11A ABB 为平行四边形, 所以 11B B A A ∥.又因为 1B B ⊄平面11A ACC ,1A A ⊂平面11A ACC,所以 1B B ∥平面11A ACC . …………………2分 因为 1B B ⊂平面1BB D ,且平面1BB D平面11A ACC DE =,所以 1B B DE ∥. …………………4分(Ⅱ)证明:在△ABC 中,因为 =AB BC ,D 是AC 的中点,所以BD AC ⊥.因为1A D ⊥平面ABC ,如图建立空间直角坐标系D xyz -. (5)分设=BD a ,=AD b ,在△1AA D 中 1=2AA AD ,190A DA ∠=︒,所以 1AD ,所以 (0,0,0)D ,(0,,0)A b -1)A ,(,0,0)B a .所以 1(0,)AA b =,(,0,0)DB a =. …………………7分所以 10000AA DB a b ⋅=⨯+⨯⨯=,所以 1AA BD ⊥. …………………9分EDA 1C 1B 1CABA1(Ⅲ)解:因为(0,)E b , 所以1(,)DB DE DB a b =+=,即1(,)B a b .因为 (0,,0)C b ,所以1()CB a =. (10)分设平面11ABB A 的法向量为 =(,,)n x y z ,因为 100n AA n AB ⎧⋅=⎪⎨⋅=⎪⎩,即00by ax by ⎧+=⎪⎨+=⎪⎩,令 =z a,则y =,x =,所以(3,,)n b a =. (12)分因为 111|||cos ,|||||3n CB nCB n CB b ⋅<>==所以7,即 422441390a a b b -+=, 所以 =a b 或23a b =,即=2AC BD 或4=3AC BD . …………………14分(18)(本小题共13分)(Ⅰ)解:依题意 ()cos sin f x x x x a '=--. …………………2分令 ()cos sin g x x x x a =--,π[0,]2x ∈, 则 ()2sin cos 0g x x x x '=--≤.所以()g x 在区间π[0,]2上单调递减.因为 (0)10g a =-≤,所以 ()0g x ≤,即 ()0f x '≤, (4)分所以()f x 的单调递减区间是π[0,]2,没有单调递增区间. …………………5分 (Ⅱ)证明:由(Ⅰ)知,()g x 在区间π[0,]2上单调递减,且(0)1g a =-,ππ()22g a =--. 当 1a ≥时,()f x 在π[0,]2上单调递减.因为 (0)0f a =>,ππ()(1)022f a =-<, 所以()f x 有且仅有一个零点. (7)分当 π02a --≥,即π2a ≤-时,()0g x ≥,即 ()0f x '≥,()f x 在π[0,]2上单调递增.因为 (0)0f a =<,ππ()(1)022f a =->,所以()f x 有且仅有一个零点. (9)分当 π12a -<<时,(0)10g a =->,ππ()022g a =--<, 所以存在0π(0,)2x ∈,使得0()0g x =. …………………10分x ,()f x ',()f x 的变化情况如下表:所以 ()f x 在0(0,)x 上单调递增,在0(,)2x 上单调递减. …………………11分 因为 (0)f a =,ππ()(1)22f a =-,且0a ≠,所以 2ππ(0)()(1)022f f a =-<,所以()f x 有且仅有一个零点......................12分 综上所述,()f x 有且仅有一个零点. (13)分(19)(本小题共14分) 解:(Ⅰ)依题意得 24a =,所以 2a =. …………………1分因为 12c e a ==,所以 1c =. (2)分所以 23b =. …………………3分所以椭圆C 的方程为 22143x y +=. (4)分(Ⅱ)椭圆的右焦点 (1,0)F . …………………5分设直线 l :(1)(0)y k x k =-≠,设 11(,)M x y ,22(,)N x y . (6)分联立方程组 ⎪⎩⎪⎨⎧-==+)1(13422x k y y x , 消y 得 2222(34)84(3)0k x k x k +-+-=,0∆>成立. …………………8分所以 2122834k x x k +=+,21224(3)34k x x k -=+. …………………9分因为 1212120y y k k m x m x --+=+=--, …………………10分所以122112()()0()()y m x y m x m x m x ----=--,即 1221()()0y m x y m x -+-=,…………11分所以 2112()(1)()(1)0k m x x k m x x --+--=恒成立. …………………12分 因为 0k ≠,所以 1212(1)()220m x x x x m ++--=,即 222284(3)(1)2203434k k m m k k -+⋅-⋅-=++, …………………13分化简为 2228(1)8(3)2(34)0k m k m k +---+=,所以 4m =.…………………14分(20)(本小题共13分) 解:(Ⅰ)因为1=0a ,2=5a , 所以 12a a <,所以 3214a a =-=. …………………1分因为 23a a >,所以 1234341a a a a ++==-. (2)分因为 34a a >,所以 54+14a a ==. (4)分所以 34a =,43a =,54a =.(Ⅱ)当 0m =时,30a =,40a =, …………………5分当 0m >时,因为 12a a <,所以 32211a a m a =-=-<,所以 12342133a a a m a ++-==. 因为 34a a =,所以 2113m m --=,所以 2m =. …………………7分当 0m <时,因为 12a a >,所以 32211a a m a =+=+>,所以 12342133a a a m a +++==. 因为 34a a =,所以 2113m m ++=,所以 2m =-. …………………9分所以 3n ≥时,1n n a a +=为常数的必要条件是 {2,0,2}m ∈-. 当2m =时,341a a ==,因为当 3(3)n k k ≤≤>时,1n a =,都有 102111n n S a n n+++++===,所以当 2m =符合题意,同理 2m =-和0m =也都符合题意. (10)分所以m 的取值范围是 {2,0,2}-.(Ⅲ){|2m m ≤-或02}m ≤≤. …………………13分(若用其他方法解题,请酌情给分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丰台区2018年高三年级第二学期综合练习(二) 2018.5高三数学(文科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知U =R ,2{|230}A x x x =--<,则U A =ð(A) {|1x x ≤-或3}x ≥ (B) {|3x x ≤-或1}x ≥ (C) {|1x x <-或3}x >(D) {|3x x <-或1}x >(2)设a ,b 为非零向量,则“∥a b ”是“a 与b 方向相同”的(A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件 (D) 既不充分也不必要条件(3)设双曲线2221(0)x y a a -=>的一条渐近线的倾斜角为π6,则a =(A)3(B)3(C)(D) (4)某四棱锥的三视图如图所示,则该四棱锥的体积为(A) 1 (B) 2 (C) 3(D) 6(5)下列函数中,既是偶函数,又在区间)0,(-∞上为减函数的是(A) 2log ()y x =- (B) xx y -=1 (C) 21y x =-+(D) ||e x y =(6)执行如图所示的程序框图,则输出的S 值为(A) 25 (B) 20 (C) 13 (D) 6(7)在△ABC 中,D 为AB 中点,E 为CD 中点,设AB =a ,AC =b ,若AE λμ=+a b ,则λμ的值是俯视图侧视图正视图(A)14 (B)12 (C) 2(D) 4(8)某游戏开始时,有红色精灵m 个,蓝色精灵n 个.游戏规则是:任意点击两个精灵,若两精灵同色,则合并成一个红色精灵,若两精灵异色,则合并成一个蓝色精灵,当只剩一个精灵时,游戏结束.那么游戏结束时,剩下的精灵的颜色 (A) 只与m 的奇偶性有关 (B) 只与n 的奇偶性有关 (C) 与m ,n 的奇偶性都有关 (D) 与m ,n 的奇偶性都无关第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(9)复数4i 12i+的虚部为 .(10)已知实数x ,y 满足不等式组0,2,20,x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩则4x y +的最大值是____.(11)已知圆C :22(1)4x y -+=,则过点P 且与圆C 相切的直线方程为____.(12)已知函数sin()y x ωϕ=+(0ω>,π2ϕ<)的部分图象如 图所示,则=ω____;ϕ=____.(13)设函数122,0,()log ,0.x x f x x x --≤⎧⎪=⎨>⎪⎩① (2)f =____;② 若(1)1f x +>,则x 的取值范围是____.(14)如图,在矩形ABCD 中,4AB =,2AD =,E 为AB 的中点.将△ADE 沿DE 翻折,得到四棱锥1A DEBC -.设1A C 的中点为M ,在翻折过程中,有下列三个命题: ① 总有BM ∥平面1A DE ; ② 线段BM 的长为定值;③ 存在某个位置,使DE 与1A C 所成的角为90︒.其中正确的命题是 .(写出所有..正确命题的序号)A 1MEDCBA三、解答题共6小题,共80分。

解答应写出文字说明,演算步骤或证明过程。

(15)(本小题共13分)如图所示,在△ABC 中,D 是BC 边上一点,14AB =,6BD =,10AD =,cos DAC ∠=. (Ⅰ)求ADB ∠; (Ⅱ)求AC 的长.(16)(本小题共13分)已知数列{}n a 的前n 项和2=3n S n ,等比数列{}n b 满足11=3a b ,242b b a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列21{}n b -的前n 项和n T .(17)(本小题共14分)如图,在三棱柱111ABC A B C -中,D 是AC 的中点, 1A D ⊥平面ABC ,=AB BC ,平面1BB D 与棱11AC 交于点E .(Ⅰ)求证:1AC A B ⊥;(Ⅱ)求证:平面1BB D ⊥平面11AAC C ;EB 1C 1A 1DCD AB(Ⅲ)求证:1B B DE ∥.(18)(本小题共13分)某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程数”,收集了使用该型号电动汽车1年以上的部分客户的数据,得到他们的电动汽车的“实际平均续航里程数”.从年龄在40岁以下的客户中抽取8位归为A 组,从年龄在40岁(含40岁)以上的客户中抽取8位归为B 组,将他们的电动汽车的“实际平均续航里程数”整理成如下茎叶图:注:“实际平均续航里程数”是指电动汽车的行驶总里程与充电次数的比值. (Ⅰ)分别求出A 组客户与B 组客户“实际平均续航里程数”的平均值;(Ⅱ)在A ,B 两组客户中,从“实际平均续航里程数”大于335的客户中各随机抽取1位客户,求A 组客户的“实际平均续航里程数”不小于B 组客户的“实际平均续航里程数”的概率; (Ⅲ)试比较A ,B 两组客户数据方差的大小.(结论不要求证明)(19)(本小题共13分)已知函数()()cos sin f x x a x x =--,(0,π)x ∈,()a ∈R . (Ⅰ)求()f x 的单调区间;(Ⅱ)若对于任意1(0,π)x ∈,存在2(0,π)x ∈,都有2122()21f x x x >--,求a 的取值范围.(20)(本小题共14分)已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,离心率为12,过右焦点的直线l 与椭圆相交于M ,N 两点,点P 的坐标为(4,3),记直线PM ,PN 的斜率分别为1k ,2k .(Ⅰ)求椭圆C 的方程; (Ⅱ)当247MN =时,求直线l 的斜率; (Ⅲ)求证:21k k +为定值.(考生务必将答案答在答题卡上,在试卷上作答无效)丰台区2018年高三年级第二学期综合练习(二)数 学(文科)参考答案二、填空题:本大题共6小题,每小题5分,共30分。

(9)25-(10) 5 (11)50x +-=(12)2;π6(13)1-;1,4,2-∞-U ()(-1-) (14)①② 注:第12,13题第一个空填对得3分,第二个空填对得2分. 第14题只写对一个得2分,有一个错误不得分.三、解答题:本大题共6小题,共80分。

解答应写出文字说明,演算步骤或证明过程。

(15)(本小题共13分) 解:(Ⅰ)在△ADB 中,由余弦定理得222cos 2ADBD AB ADB AD BD +-∠=⋅100361962106+-=⨯⨯12=-. …………………2分 因为 (0,π)ADB ∠∈, …………………3分 所以2π3ADB ∠=. …………………5分 (Ⅱ)由 cos DAC ∠=,可知sin DAC ∠=, …………………6分 所以 2πsin sin()3C DAC ∠=-∠ …………………8分 12142147=⨯+⨯=. …………………10分 在△ADC 中,由正弦定理得sin sin AC ADADC C=∠∠, …………………12分 所以=,所以 AC = …………………13分(16)(本小题共13分)解:(Ⅰ)因为 23n S n =,所以 113a S ==. …………………1分 当2n ≥时,1n n n a S S -=-2233(1)n n =--63n =-. …………………3分因为当 1n =时,16133a ⨯-==, …………………4分 所以数列{}n a 的通项公式是 63n a n =-. …………………5分 (Ⅱ)设数列{}n b 的公比为q .因为 113a b =,所以 11b =. …………………6分 因为 242b b a ⋅=, 所以 239b =. …………………8分因为 2310b b q =>,所以 33b =,且23q =. …………………10分因为{}n b 是等比数列,所以21{}n b -是首项为11b =,公比为23q =的等比数列. …………………11分所以 212(1())131(31)1132n n nn b q T q --===---. 即 1(31)2nn T =-. …………………13分(17)(本小题共14分)证明:(Ⅰ)因为 1A D ⊥平面ABC ,所以 1A D ⊥AC . …………………1分 因为△ABC 中,=AB BC ,D 是AC 的中点,所以 BD AC ⊥. …………………2分 因为 1A DBD D =, …………………3分所以 AC ⊥平面1A BD . …………………4分 所以 1AC A B ⊥. …………………5分(Ⅱ) 因为 1A D ⊥平面ABC ,因为 BD ⊂平面ABC ,所以 1A D BD ⊥. …………………6分 由(Ⅰ)知 BD AC ⊥. 因为 1ACA D D =, …………………7分所以 BD ⊥平面11A ACC . …………………8分 因为 BD ⊂平面1BB D ,所以 平面1BB D ⊥平面11AAC C . …………………9分 (Ⅲ)因为在三棱柱111ABC A B C -中,侧面11A ABB 为平行四边形,所以 11B B A A ∥. …………………10分 因为 1B B ⊄平面11A ACC ,1A A ⊂平面11A ACC , …………………11分 所以 1B B ∥平面11A ACC . …………………12分 因为 1B B ⊂平面1BB D ,且平面1BB D平面11A ACC DE =,…………………13分所以 1B B DE ∥. …………………14分(18)(本小题共13分) 解:(Ⅰ)A 组平均值为:2808340338332330230225225220=+++++++;……………1分B 组平均值为:2002202303323383403603803008+++++++=.……………2分(Ⅱ)将A 组客户中实际平均续航里程数为338, 340的客户分别记为1a ,2a ;将B 组客户中实际平均续航里程数为338, 340, 360, 380的客户分别记为1b ,2b ,3b ,4b . 从A ,B 两组实际平均续航里程数大于335km 的客户中各随机抽取1位客户的事件包括:11b a ,21b a ,31b a ,41b a ,12b a ,22b a ,32b a ,42b a ,共8种, …………………5分其中A 组客户的实际平均续航里程数不小于B 组客户的实际平均续航里程数的事件包括:11b a ,12b a ,22b a ,共3种. …………………7分设“A 组客户的实际平均续航里程数不小于B 组客户的实际平均续航里程数”为事件M , …………………8分则3()8P M =. …………………10分 所以A 组客户的实际平均续航里程数不小于B 组客户的实际平均续航里程数的概率为38.(III )A 组数据的方差小于B 组数据的方差. …………………13分(19)(本小题共13分)解:(Ⅰ)()()sin f x x a x '=--. …………………2分因为 (0,π)x ∈,所以 sin 0x >. …………………3分 由 ()0f x '=得 x a =. …………………4分 当0a ≤时,()0f x '<,()f x 在(0,π)上单调递减; …………………5分 当πa ≥时,()0f x '>,()f x 在(0,π)上单调递增; …………………6分 当0πa <<时,x ,()f x ',()f x 的变化情况如下表:所以()f x 的单调递增区间是(0,)a ,单调递减区间是(,π)a . 综上所述,当0a ≤时,()f x 在(0,π)上单调递减; 当πa ≥时,()f x 在(0,π)上单调递增;当0πa <<时,以()f x 的单调递增区间是(0,)a ,单调递减区间是(,π)a .………9分 (Ⅱ)设 2()21g x x x =--.因为 2()(1)2g x x =--,当1x =时,()g x 有最小值为2-. …………………10分 因为对于任意1(0,π)x ∈,存在2(0,π)x ∈,都有 2122()21f x x x >--,所以 (0)2(π)2f f ≥-⎧⎨≥-⎩, 即2(π)2a a -≥-⎧⎨--≥-⎩. 所以π22a -≤≤,即a 的取值范围是[π2,2]-. …………………13分(20)(本小题共14分)(Ⅰ)解:依题意 24a =,所以 2a =. …………………1分因为 12c e a ==,所以 1c =. …………………2分所以 23b =, …………………3分所以椭圆C 的方程为 22143x y +=. …………………4分(Ⅱ)解:椭圆得右焦点(1,0)F .当直线l 的斜率不存在时,不妨取3(1,)2M ,3(1,)2N -,3MN =,不合题意. …………………5分当直线l 的斜率存在时,设直线l :(1)y k x =-,11(,)M x y ,22(,)N x y . …………………6分联立方程组 ⎪⎩⎪⎨⎧-==+)1(13422x k y y x , 消y 得 2222(34)84(3)0k x k x k +-+-=,0∆>成立. …………………7分所以 2122834k x x k +=+,21224(3)34k x x k -=+. …………………8分因为247MN ==, …………………9分247=,所以2212347k k +=+,所以1k =±. …………………10分 (Ⅲ)证明:当直线l 的斜率不存在时,不妨取3(1,)2M ,3(1,)2N -,此时123922233k k +=+=. …………………11分当直线l 的斜率存在时,设直线l :(1)y k x =-,11(,)M x y ,22(,)N x y . 此时21211221221121)(416)4)(3()4)(3(4343x x x x x y x y x y x y k k ++---+--=--+--=+.丰台区高三数学第二学期统一练习(二)(文科)第 11 页 共 11 页 分子化为21122121)(4)(324y x y x y y x x +++-+-248))(53(22121++++-=k x x k x kx . 所以222222222143)3(4438416248438)53(43)3(42k k k k k k k k k k k k k +-++⨯-+++⨯+-+-⨯=+ )3(8)43(4)43)(3(2)53(2)3(2222222-+-+++++--⨯=k k k k k k k k k 299181822=++=k k . 综上所述,12k k +为定值2. …………………14分(若用其他方法解题,请酌情给分)。

相关文档
最新文档