EM3-V30原理图4-4

合集下载

传感器原理及工程应用_(第三版)_((郁有文))_(西安电子科技大学出版)_详细答案(1)资料

传感器原理及工程应用_(第三版)_((郁有文))_(西安电子科技大学出版)_详细答案(1)资料

4-12 电涡流传感器常用的测量电路有哪几种?其测量原理如何?各有什么特点?1、用于电涡流传感器的测量电路主要有:调频式、调幅式电路两种。

2、测量原理(1)调频式测量原理传感器线圈接入LC振荡回路,当传感器与被测导体距离x改变时,在涡流影响下,传感器的电感变化,将导致振荡频率的变化,该变化的频率是距离x 的函数,即f=L(x), 该频率可由数字频率计直接测量,或者通过f-V变换,用数字电压表测量对应的电压。

图4-6调频式测量原理图(2)调幅式测量原理由传感器线圈L、电容器C和石英晶体组成的石英晶体振荡电路。

石英晶体振荡器起恒流源的作用,给谐振回路提供一个频率(f0)稳定的激励电流i o。

当金属导体远离或去掉时,LC并联谐振回路谐振频率即为石英振荡频率f o,回路呈现的阻抗最大,谐振回路上的输出电压也最大;当金属导体靠近传感器线圈时,线圈的等效电感L发生变化,导致回路失谐,从而使输出电压降低,L的数值随距离x的变化而变化。

因此,输出电压也随x而变化。

输出电压经放大、检波后,由指示仪表直接显示出x的大小。

图4-7调幅式测量原理图除此之外,交流电桥也是常用的测量电路。

3、特点✧调频式测量电路除结构简单、成本较低外,还具有灵敏度高、线性范围宽等优点。

✧调幅式测量电路线路较复杂,装调较困难,线性范围也不够宽。

4-13 利用电涡流式传感器测板材厚度,已知激励电源频率f =1MHz,被测材料相对磁导率μr=1,电阻率ρ=2.9×10-6ΩCm,被测板材厚度为=(1+0.2)mm。

试求:(1)计算采用高频反射法测量时,涡流透射深度h为多大?(2)能否采用低频透射法测板材厚度?若可以需采取什么措施?画出检测示意图。

【解】1、为了克服带材不够平整或运行过程中上下波动的影响,在带材的上、下两侧对称地设置了两个特性完全相同的涡流传感器S1和S2。

S1和S2与被测带材表面之间的距离分别为x1和x2。

若带材厚度不变,则被测带材上、下表面之间的距离总有x1+x2=常数的关系存在。

MTK手机原理图分析

MTK手机原理图分析

手机原理图分析一、手机基本电路框图:二、基带CPU(MT6226)内部框图:1、组成部分:z DSP:主要完成对语音信号的编解码、信道编码、加密、交织处理等;z ARM7:主要是对外部Memory接口、用户接口(LCD、键盘、触摸等)、语音接口、射频接口、电源管理等的命令控制,使各部分协调工作。

2、基带部分语音编码过程(DSP):GSM标准规定时隙宽为0.577ms,8个时隙为一帧,帧周期为0.577×8=4.615ms。

因此,用示波器观测GSM移动电话机收发信息,会看到周期为4.615ms、宽0.577ms的突发脉冲。

基带部分电路包括信道编/译码、加密/解密、TDMA帧形成/信道分离及基准时钟电路,它还包括话音/译码、码速适配器等电路。

来自送话器的话音信号经过8kHz抽样及A/D转换,变成13bit均匀量化的104kbit/s数据流,再由话音编码器进行RPE-LTP编码。

编码输入为每20ms一段,经话音编码压缩后变为260bit,其中LPC-LTP为72bit,RPE为188bit。

话音编码后的信号速率为13kbit/s。

同时话音编码器还提供话音活性检测(vAD)功能,即当有话音时,其SP信号为1;当无话音传输时,将SP示为0(即SID帧)。

13kbit/s 话音信号进入信道编码器进行编码。

对于话音信号的每20ms 段,信道编码器首先对话音信号中最重要的Ia 类50bit 进行分组编码(CRC 校验),产生3bit 校验位,再与132bit 的Ib 类比特组成185bit ,再加上4个尾比特“0”,组合为189bit ,这189bit 再进入1/2速率卷积码编码器,该编码限制长度为5,最后产生出378bit 。

这378bit 再与话音信号中对无线信道最不敏感的II 类78bit 组成最终的456bit 组。

同样,对于信令信号,由控制器产生并送给信道编码器,首先按FIRE(法尔)码进行分组编码(称为块编码),然后再进入1/2卷积编码,最后形成456bit 组。

三极管知识与应用详解

三极管知识与应用详解

三极管知识与应用详解是帅哥1.三极管的放大作用图1是收信放大管的结构及符号图,栅极用符号g表示,栅极具有控制阳极电流ia的作用。

由于栅极与阴极之间的距离较阳极与阴极间的距离近得多,所以栅极对阴极发射电子的影响也较阳极的影响大得多,即是说栅极控制电子的能力要比阳极大得多,栅压ug有多少量的变化,就能引起阳极电流ia发生较大的变化,这就是三极管具有放大作用的原因。

图1三极管结构及符号2.三极管的静态特性曲线(1)阳极特性曲线,指栅压ug为常数时,阳极是电流ia与阳极电压ua的变化关系曲线,采用图2的线路可测出在极管阳极特性曲线,图3表示6N8P的阳极特性曲线簇。

图2、测量三极管静态特性曲线的电路从阳极特性的曲线簇可以看出:1)它的每条曲线形状和二极管的行性曲线相似,栅压愈负,曲线愈向右移。

这是因为栅压为负进,只有当阳极电压增加到能够抵消在阴极附近产生的排斥电场以后,才会产生阳极电流。

2)特性曲线的大部分是彼此平行的直线,间隔也比较均匀,但在阳极电流较低的部分,曲线显得弯曲。

3)从图中还可以看出,栅压电流可变化4毫安,若栅压保持---8伏不变,要使阳极电流变化4毫安,则阳极电压应变化40伏才行,这说明书栅压对阳极电流的控制作用是阳极电压控制作用的20倍。

(2)阳栅特性曲线,指阳极电压为常数时,阳极电流ia与栅压ug 的变化关系曲线。

仍用图2测量阳栅特性曲线。

只要把阳极电压ua固定在某一数值上,然后一条阳栅特性曲线,在不同的阳极电压下作出很多条曲线就组成特性曲线簇。

图4为6N8P阳栅特性曲线簇。

图4、6N8P阳栅特性曲线图3、6N8P阳极特性曲线从曲线簇可以看出:1)在阳极电压为定值时,随着负栅压的增加,阳极电流减小。

当负栅压增加到某一个数值时,阳极电流减小到零,这时称为阳极电流截止,对应的栅压称为截止栅压。

2)阳极电压越高,特性曲线越往左移,这是因为阳极电压越高,要使阳极电流截止的负栅压也越大。

3)从图中还可看出栅压变化对阳极电流的变化影响很大。

典型微波炉电路的识图方法,一看就懂

典型微波炉电路的识图方法,一看就懂

典型微波炉电路的识图⽅法,⼀看就懂普通微波炉电路图4-19所⽰是⼀种典型的机械控制式微波炉电路。

该电路的核⼼元器件是磁控管MT、⾼压变压器T、定时器、主连锁开关,辅助元器件是转盘电动机、炉灯。

图4-19 机械控制式微波炉电路(图中开关处于关门状态)关闭炉门时,连锁机构随之动作,使连锁监控开关S2断开,主连锁开关S3和副连锁开关S1闭合,此时微波炉处于待机状态。

将定时器置于某⼀时间挡后,定时器开关S5闭合,接通炉灯EL 的供电回路,EL开始发光。

再将功率调节器调为需要的挡位,此时220V市电电压不仅为定时器电动机MD、转盘电动机M、风扇电动机MF供电,使它们开始运转,⽽且加到⾼压变压器T的⼀次绕组,使它的灯丝绕组和⾼压绕组输出交流电压。

其中,灯丝绕组向磁控管的灯丝提供3.3V 左右的⼯作电压,点亮灯丝为阴极加热;⾼压绕组输出的2000V左右的交流电压,通过⾼压电容C和⾼压⼆极管VD组成半波倍压整流电路,产⽣4000V的负压,为磁控管的阴极供电,使阴极发射电⼦,磁控管形成2450MHz 的微波能,经波导管传⼊炉腔,通过炉腔反射,刺激⾷物的⽔分⼦使其以每秒24.5亿次的⾼速振动,互相摩擦,从⽽产⽣⾼热,实现⾷物的烹饪。

电脑控制型微波炉电路下⾯以安宝路傻⽠智慧型微波炉的电路为例,介绍电脑控制型微波炉电路的识图⽅法。

该机的电⽓系统构成如图4-20所⽰,电路原理图如图4-21所⽰。

图4-20 安宝路傻⽠智慧型微波炉电⽓构成⽰意图1.电源电路参见图4-21,将该机的电源插头插⼊市电插座后,市电电压通过电源变压器降压后,输出5V和12V两种交流电压,其中,5V交流电压经D5~D8构成的桥式整流堆整流,C3、C4滤波产⽣8V 左右的直流电压,再通过L7905稳压输出5V直流电压,利⽤C2、C5滤波后为CPU、显⽰电路等供电;12V交流电压通过D1~D4桥式整流,再经C1、C2滤波产⽣12V左右的直流电压,为继电器等电路供电。

EM3 V2.2开发板原理图(修正版)

EM3 V2.2开发板原理图(修正版)

J12 8 7 6 5 4 3 2 1 JR1 JR2 JR3 JR4 JR5 JR6 JR7 JR8 GND LE 2 3 4 5 6 7 8 9 1 11
P10
LED1 b c dp f e
LED2 b c dp GND 1 2 3 4
CX8
VCC
J1602
COM a GND JR8 JR7 JR6 JR5 5 6 7 8 RP22 103 4 3 2 1 GND Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 19 18 17 16 15 14 13 12 20 10 4 3 2 1 4 3 2 1 VCC GND RP20 101 5 6 7 8 5 6 7 8 f e g b f c dp e
DS1302
32.768 A1 VCC U0 1 VCC2 VCC1 2 X1 SCLK 3 X2 I/O 4 GND CE DS1302
GND 74HC595 U5 OE RCLK SRCLR SRCLK SER
P36 VCC QA QB QC QD QE QF QG QH QH' 16 15 1 2 3 4 5 6 7 9 P16 VCC P595_B 1 2 3 4 5 6 7 8
c e
NTC1 AD1 502 1 2 AIN1 R68 103 R69 104
GR1 1 2 AIN2 1 DI 2 T-CS 3 CLK 4
VCC R1 4.7K
U3 ET2046 12 11 10 9 AIN3 AIN2 GND
GND
C
VCC X+ Y+ X-
R2 16K R0 GND 330R +5V RQ0 B
9
VCC a f e g d b c dp

MOS管及简单CMOS逻辑门电路原理图

MOS管及简单CMOS逻辑门电路原理图

MOS管及简单CMOS逻辑门电路原理图现代单片机主要是采用CMOS工艺制成的。

1、MOS管 MOS管又分为两种类型:N型和P型。

如下图所示:以N型管为例,2端为控制端,称为“栅极”;3端通常接地,称为“源极”;源极电压记作Vss,1端接正电压,称为“漏极”,漏极电压记作VDD。

要使1端与3端导通,栅极2上要加高电平。

对P型管,栅极、源极、漏极分别为5端、4端、6端。

要使4端与6端导通,栅极5要加低电平。

在CMOS工艺制成的逻辑器件或单片机中,N型管与P型管往往是成对出现的。

同时出现的这两个CMOS管,任何时候,只要一只导通,另一只则不导通(即“截止”或“关断”),所以称为“互补型CMOS管”。

2、CMOS逻辑电平高速CMOS电路的电源电压VDD通常为+5V;Vss接地,是0V。

高电平视为逻辑“1”,电平值的范围为:VDD的65%~VDD(或者VDD-1.5V~VDD)低电平视作逻辑“0”,要求不超过VDD的35%或0~1.5V。

+1.5V~+3.5V应看作不确定电平。

在硬件设计中要避免出现不确定电平。

近年来,随着亚微米技术的发展,单片机的电源呈下降趋势。

低电源电压有助于降低功耗。

VDD为3.3V的CMOS器件已大量使用。

在便携式应用中,VDD为2.7V,甚至1.8V的单片机也已经出现。

将来电源电压还会继续下降,降到0.9V,但低于VDD的35%的电平视为逻辑“0”,高于VDD的65%的电平视为逻辑“1”的规律仍然是适用的。

3、非门非门(反向器)是最简单的门电路,由一对CMOS管组成。

其工作原理如下:A端为高电平时,P型管截止,N型管导通,输出端C的电平与Vss保持一致,输出低电平;A端为低电平时,P型管导通,N型管截止,输出端C的电平与V DD一致,输出高电平。

4、与非门与非门工作原理:①、A、B输入均为低电平时,1、2管导通,3、4管截止,C端电压与V DD 一致,输出高电平。

②、A输入高电平,B输入低电平时,1、3管导通,2、4管截止,C端电位与1管的漏极保持一致,输出高电平。

传感器4-3


由安置在框架上的扁平圆形线圈构成。此线圈可粘贴于
框架上,或在框架上开一槽,将导线绕在槽内。下图为
CZF1型涡流传感器的结构原理,它是将导线绕在聚四
氟乙烯框架窄槽内。
1
234
6
5
1 线圈 2 框架 3 衬套 4 支架 5 电缆 6 插头
传感器原理与应用——第四章

M
Φi
Φe
d
ie
电涡流传感器原理图
传感器原理与应用——第四章
jM
R1 jL1
R
jL
U1
2 M 2 R1 jL1 R12 L1 2
.
U1
R
2M 2
R12 L1 2
R1
j L
2M 2
R12 L1 2
L1
传感器原理与应用——第四章
传感器线圈的等效阻抗为:
.
Z
U1
.
I
R
2M2
R12 L1 2
R1
j L
2M2
R12 L1 2
传感器原理与应用——第四章
变气隙式差动压力传感器
P
传感器原理与应用——第四章
电感式油压传感器 —— 液压传动的各种机械装置
f 20kHz T 30C
传感器原理与应用——第四章
电感式接近传感器
传感器原理与应用——第四章
电感式接近传感器应用举例 1、生产中测量产品的长度
每个脉冲对应的长度: L0 D / N
电感测微仪
探头
测量 电桥
交流 放大
相敏 指示器 检波
振荡器
传感器原理与应用——第四章
变气隙式电感测微仪
传感器原理与应用——第四章

默纳克3000图纸讲解

默纳克3000电气原理图这次找的图纸是一份黙纳克3000的电气图,因为现在新时达和黙纳克的系统比较常用,所以这份图纸可能更有代表性一些吧,不过这个图纸我也是第二次看到,我本人擅长的不是黙纳克的系统,所以也算是和大家一起慢慢的琢磨着看,也就是说对于这份图纸来说我也是一个新人,所以难免有讲错的地方,还请大家多指正,让我一起跟着进步。

之所以不讲我擅长的图纸是因为那种品牌更多的人不熟悉,系统又不像莫纳克新时达这样直观,对于广大新手来说更难理解。

言归正传,拿到一份图纸,先翻看第一页,看右下角,右下角这个小表格里面一般注明这个图纸有多少页,是什么品牌,这一张是画的什么。

这样我们对这一本图纸有个大概的了解。

然后看正文,左边的文字是莫纳克3000的技术标准,画图的原则,右边是一个目录,那一页画的什么,方便我们去找。

如果是第一次接触一个电梯的图纸,肯定是很多原件看不懂的,不知道是干什么的,我们应该首先看元件代码表,我们看目录,第二页是电气代号说明,也就是元件代码表。

现在先翻到第二页这一页密密麻麻,都是符号,我们从上往下看,第一行,最左边1BFS 他的含义是缓冲器开关1,也就是说只要再图纸上看到BFS就是缓冲器开关,他的位置在哪呢?HTW ,这是什么意思?看右下角,HTW是井道,也就是说缓冲器开关是在井道里,在这里说一下,这个图纸等于是把底坑也划到井道里了,因为在右下角我们只能看到四个位置说明,轿厢,控制柜,主机,井道。

然后再看第三行,AB,就是警铃,在轿厢安装。

看图就是这样看,对着元件代码,能找到所有的东西第三张就是正经的图纸了,先看右下角,380电源供电回路,这就说明这一页画的是电源回路,看最后边,标的有ABNDEF,最上面标的12345678,这就是图纸的坐标,在整页图纸上找一个东西,只要把坐标横纵坐标对起来就知道在那一块了,比如说2B,写的QF1(10A)对照第二页的代码表,我们知道这是一个380的空开,最大的允许电流是10A,也就是说这个空开上电流如果超过10A空开就会动作,切断电路。

EL34胆机原理、制作及调试

对于晶体管整流、电子管功放电路混用来说,本机的高、低压电源开关是分别设置的。开机时,先开低压灯丝电源开关,对电子管灯丝先预热3~5分钟后.再开启高压电源开关。关机时.则先关高压开关,待音乐听不到才关低压开关.这有助于电解电容放电、延时电子管的使用寿命。有人认为高、低压采用一个开关,同时开、关机.本人不敢苟同。电源供给电路如图1所示。
(1)将本级的屏极与阴极,栅极与阴极回路的所有接地元件可能就近焊接在一个接地点上。
(2)按信号传输方向,把输入级,倒相推动级、末级功放的接地点,串联接地,这三级的信号地都与底盘相绝缘。
(3)“一点接地”设置在末级功放接地点上,它包括信号地、屏蔽地、电源整流、滤波地、底盘地四种地,汇接到“一点接地”上灯丝地需经试验设置在前置级接地点上。
改变超线性接法位置,可以获取不同的帘栅负反馈量的大小。通过试听,确定出超线性最佳抽头SG1、SG2位置。本机EL34屏流调到33mA,其屏压均为240V,输出变压器初级SG1、SG2抽头在6-7端子上,试听起来胆昧很好。
(四)大环路负反馈的调整
第一级SRPP电路的阴极分压电阻与末级输出变压器的输出一端之间,增加R17=5.1K 0.25W,则是大环负反馈电阻。因为电子管放大电路反馈的是电压,负反馈量不宜过大,一般为6dB左右,本机负反馈量调到4.7dB。整机有了大环负反馈后,会减少谐波失真,使频响展宽,听感较好。调整方法,主要是改变负反馈电阻R17阻值大小。反馈量的大小,根据放音效果如音场、定位、人声的甜美、音乐感来确定,以耳听满意为准。
(三)末级超线性推挽电路的调试
推挽放大电路调整目的,是使EL34两只推挽功放管要平衡,两只功放管的栅偏压和屏流要相等。
如果两管栅偏压不相等,可以调整栅极电阻R12、R13的大小;如果屏流不一样,可以调整两管阴极电阻R14、R15阻值的大小。屏流的大小要适当.屏流小对电子管的寿命有利。

电气工程及其自动化专业毕业论文完整版-单相交直交逆变电源设计

说明:1.本报告必须由承担毕业设计(论文)课题任务的学生在接到“毕业设计(论文)任务书”、正式开始做毕业设计(论文)的第2周或第3周末之前独立撰写完成,并交指导教师审阅。

2.每个毕业设计(论文)课题撰写本报告一份,作为指导教师、教研室主任审查学生能否承担该毕业设计(论文)课题任务的依据,并接受学校的抽查。

中文摘要电源是各种电子设备的核心,它有如人体的心脏,是所有电类设备的动力。

20世纪90年代以来,随着电力电子技术飞速地发展,不断涌现出新型电力电子器件,高智商化IC和新电路拓扑,创造出十年前意想不到的许多新型稳压电源。

现代高频开关稳压电源作为电源的一个分支,由于它具有功率小,效率高,体积小,重量轻,稳压范围宽,可靠安全等一系列特点,现在正越来越受到青睐和推崇。

现代高频开关稳压电源技术涉及的内容是极其广泛和复杂的,它横跨了三个学科:一是微电子精细加工的智能化专用集成电路控制芯片系统;二是正在快速更新的高性能功率半导体MOSFET和IGBT等电力电子器件;三是要合理利用,绕制各种电感器件和变压器所用的磁性材料等几大类。

现代开关稳压电源已广泛用于基础直流电源,交流电源,各种工业电源,计算机电源,UPS不间断电源,医疗和照明电源,雷达高压电源,音响和视频电源等。

本文设计的单相脉宽调制逆变电源属于交流电源(AC-DC-AC逆变),采用电压反馈控制,通过中断功率通量和调节占空比的方法来改变驱动电压脉冲宽度来调整和稳定输出电压。

其主电路构成采用的是Boost电路和全桥电路的组合。

控制电路采用了2片集成脉宽调制电路芯片,一片用来产生PWM波,另一片与正弦函数发生芯片做适当的连接来产生SPWM波,集成芯片比分立元器件控制电路具有更简单,更可靠的特点和易于调试的优点。

本文详细的分析了该逆变电源的工作过程,并推导了重要公式。

最后对该逆变电源进行了计算机仿真和样机实验,验证了其可行性和有效性。

关键词:逆变器;正弦脉宽调制;场效应管AbstractPower supply is core and drive of electric equipments. With the flying development of power electronics technology, It has come forth continually that is IC of high intelligence, new type electronic device and topology since 1990's. As aresult, A lot of new type steady-voltage power supply has been created that is indescribable ten years ago. High-frequency switching power supply is a branch of power supply. It possesses many advantages such as low-power, high-frequency, small- volume, light-weight, wide-range of steady voltage, credibility and security. It has been received and upheld by the people. It involves a great deal content that is extensive and intricate. It bestrides subject of three aspects. The first is IC control chip system of micro-electronics; The second is electronic devices of high-performance power semiconductor such as MOSFET and IGBT. The third is various devices of inductance and magnetic materials of transformer how to be utilized and rolled rationally.Steady voltage power supply of modern switching has been applied in the following aspects widely. They are DC power supply, AC power supply, industry power supply, computer power supply, UPS power supply, power supply of medical treatment and lighting, high voltage power supply of radar, power supply of sound and video frequency and so on. Single-phase Sinusoidal Pulse Width Modulation Inverter Power Supply in this paper belongs to AC power supply (AC-DC-AC convert). Control mode adopts feedback of voltage control. The methods of intermitting power flux and changing duty-cycle can change pulse width of drive voltage that adjust and rectify output voltage ultimately. The main circuit is made up of compounding of Boost and the full-bridge circuit. The control circuit adopts two chips of integrated pulse width modulation. One produces PWM waveform. The other connects chip of producing sinusoidal signal properly, which brings SPWM waveform. Integrated chip is more simple, reliable and laboratorial than discrete component.The operation of inverter power supply is thoroughly analyzed and some important formulas are deduced. Finally, the principle of operation are illustrated and verified on emulation and experimental results.Key words: inverter; Sinusoidal Pulse Width Modulation,MOSFET目录第1章概述 (1)1.1现代电源发展概况 (1)1.1.1 交流稳压电源 (1)1.1.2 UPS及交流净化电源 (2)1.1.3 工业电源的发展 (2)1.1.4 直流开关电源 (2)1.1.5 软开关——PWM功率变换器 (3)1.1.6 分布电源技术的发展 (4)1.1.7 功率因数校正技术 (4)第2章 PWM的工作原理 (5)2.1 PWM的基本原理 (5)2.2 PWM型逆变电路的控制方式 (8)2.2.1 异步调制 (8)2.2.2 同步调制 (9)2.3 SPWM波形的生成方法 (9)第3章逆变电源组成及主电路的设计 (10)3.1 系统组成 (10)3.2 主电路组成及工作原理 (11)3.3 主电路设计 (11)3.3.1 共模抑制环节 (11)3.3.2 工频变压器设计 (13)3.3.3 限流电路设计 (14)3.3.4 Boost变换器设计 (15)3.3.5 桥式逆变器基本原理 (20)3.4 主电路图 (21)第4章逆变电路的控制电路设计 (22)4.1 辅助电源设计 (22)4.2 控制电路框图 (23)4.3 SG3524和ICL8038芯片介绍 (24)4.3.1 SG3524芯片 (24)4.3.2 ICL8038芯片 (25)4.4 控制电路设计 (27)4.4.1 利用SG3524生成SPWM波形 (27)4.4.2 驱动电路设计 (28)4.4.2.1 驱动电路工作原理 (28)4.4.2.2 驱动电路参数原理图 (29)4.4.3 过流保护电路 (30)4.4.4 反馈调压电路 (30)4.4.4.1 反馈调压电路工作原理 (30)4.4.4.2 反馈调压电路主电路图 (31)4.5 控制电路图 (32)第5章结论与展望 (33)致谢 (34)参考文献 (36)第1章概述1.1 现代电源发展概况现代电源技术是综合应用了电力电子、电子与电磁技术、自动控制及微处理器技术的一种多学科技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档