高中数学 第四章 指数函数与对数函数 4.4 对数函数 4.4.1 对数函数的概念精品练习(含解析)

合集下载

【课件】4.4.1、4.4.2 对数函数的概念、图象和性质(课件)(新教材人教版必修第一册)

【课件】4.4.1、4.4.2 对数函数的概念、图象和性质(课件)(新教材人教版必修第一册)

解:(1)对数函数 y=log2x, 因为它的底数 2>1, 所以它在(0,+∞)上是增函数. 又 3.4<8.5,于是 log23.4<log28.5. (2)对数函数 y=log0.3x, 因为它的底数 0<0.3<1, 所以它在(0,+∞)上是减函数. 又 1.8<2.7,于是 log0.31.8>log0.32.7.
1.比较对数值大小的注意点 (1)比较两个同底数的对数大小首先要根据对数的底数来判断对 数函数的单调性,然后比较真数大小,再利用对数函数的单调性判 断两个对数值的大小.
(2)底数中含有参数时,需要对底数进行讨论. (3)对于不同底的对数,可以估算范围,如 log22<log23<log24,即 1<log23<2,从而借助中间值比较大小. 2.求 y=logaf(x)型函数的值域的注意点 (1)先求定义域,进而确定 f(x)的取值范围; (2)利用对数函数 y=logax 的单调性求出 logaf(x)的取值范围.
x∈[1,+∞)时,y∈ 的特点
_[_0_,__+__∞_)__
x∈[1,+∞)时,y∈_(_-__∞_,__0_]_
对称性 函数 y=logax 与 y= x 的图象关于_x_轴__对称
预习验收 衔接课堂
1.下列函数是对数函数的是( D ) A.y=2+log3x B.y=loga(2a)(a>0,且 a≠1) C.y=logax2(a>0,且 a≠1) D.y=ln x
2.函数 y=lgxx-+11的定义域是( C ) A.(-1,+∞) B.[-1,+∞) C.(-1,1)∪(1,+∞) D.[-1,1)∪(1,+∞)
3.已知 f(x)=log3x,则 f 95+f(15)=_3_. 4.若函数 f(x)=loga(2x-3)(a>0,且 a≠1)的图象恒过定点 P,则 P 点的坐标是__(2_,_0_)_.

2019新人教A版高中数学 必修第一册课时同步训练 第四章指数函数与对数函数4.4.1对数函数的概念含解析

2019新人教A版高中数学 必修第一册课时同步训练 第四章指数函数与对数函数4.4.1对数函数的概念含解析

对数函数的概念(15分钟30分)1.函数f(x)=(a2+a-5)log a x为对数函数,则f(1)等于( )A.3B.C.1D.0【解析】选D.因为函数f(x)=(a2+a-5)log a x为对数函数,所以解得a=2,所以f(x)=log2x,所以f(1)=log21=0.2.“每天进步一点点”可以用数学来诠释:假如你今天的数学水平是1,以后每天比前一天增加千分之五,则经过y天之后,你的数学水平x与y之间的函数关系式是( )A.y=log1.05xB.y=log1.005xC.y=log0.95xD.y=log0.995x【解析】选B.y天后,x=1.005y,即y=log1.005x.3.函数f(x)=log2(3+2x-x2)的定义域是_______.【解析】因为对数函数定义域是(0,+∞),所以3+2x-x2>0,所以-1<x<3,因此函数的定义域为(-1,3).答案:(-1,3)4.若函数y=log(2a-1)x+(a2-5a+4)是对数函数,则a=_______.【解析】因为函数y=log(2a-1)x+(a2-5a+4)是对数函数,所以解得a=4.答案:45.设函数f(x)=ln(x2+ax+1)的定义域为A.(1)若-1∉A,-3∈A,求实数a的取值范围.(2)若函数y=f(x)的定义域为R,求实数a的取值范围.【解析】(1)由题意,得解得2≤a<,故实数a的取值范围为.(2)由题意,得x2+ax+1>0的解集为R,得Δ=a2-4<0,解得-2<a<2,所以实数a的取值范围是(-2,2).(25分钟50分)一、单选题(每小题5分,共15分)1.(2020·河西高一检测)函数f(x)=ln(2x-4)的定义域是( )A.(0,2)B.(0,2]C.[2,+∞)D.(2,+∞)【解析】选D.要使f(x)有意义,则:2x-4>0,所以x>2.所以f(x)的定义域为(2,+∞).2.设f(x)是对数函数,且f()=-,那么f()= ( )A. B. C.- D.-【解析】选C.设对数函数f(x)=log a x(a>0,a≠1).由条件得log a=-,即log a=-,则a=.因此f(x)=x,所以f()==-.3.(2020·重庆高一检测)函数f(x)=log2(ax2+2x+a)的值域为R,则实数a的取值范围为( )A.[1,+∞)B.(0,1)C.[-1,1]D.[0,1]【解析】选D.令g(x)=ax2+2x+a,因为函数f(x)=log2(ax2+2x+a)的值域为R,所以g(x)的值域包含(0,+∞).①当a=0时,g(x)=2x,值域为R⊇(0,+∞),成立.②当a≠0时,要使g(x)的值域包含(0,+∞),则,解得0<a≤1.综上,a∈[0,1].【误区警示】本题容易忽视a=0的情况.二、多选题(共5分,全部选对得5分,选对但不全的得3分,有选错的得0分)4.下列函数表达式中,是对数函数的有( )A.y=log e xB.y=lo xC.y=log4x2D.y=log2(x+1)【解析】选AB.A中y=log e x是对数函数;B中y=lo x是对数函数;C中y=log4x2不是对数函数;D中y=log2(x+1)不是对数函数.三、填空题(每小题5分,共10分)5.(2020·杭州高一检测)函数f(x)=+lg(3x+1)的定义域是_______.【解析】由,解得:-<x<1.所以函数f(x)=+lg(3x+1)的定义域是答案:6.已知某种药物在血液中以每小时20%的比例衰减,现给某病人静脉注射了该药物1个单位,设经过 y个小时后,药物在病人血液中的量为x个单位.(1)y与x的关系式为_______;(2)当该药物在病人血液中的量保持在个单位以上,才有疗效;而低于个单位,病人就有危险,要使病人没有危险,再次注射该药物的时间不能超过_______小时(精确到0.1).(参考数据:lg 5≈0.699,lg 4≈0.602)【解析】(1)由题意知,该种药物在血液中以每小时20%的比例衰减,给某病人注射了该药物1个单位,经过y个小时后,药物在病人血液中的量为x=(1-20%)y×1=0.8y,即y与x的关系式为 y=log0.8x,0<x≤1.(2)当该药物在病人血液中的量保持在个单位以上,才有疗效;而低于个单位,病人就有危险,令x=,则y=log0.8=≈7.2,所以y≤7.2.所以要使病人没有危险,再次注射该药物的时间不能超过7.2小时.答案:(1)y=log0.8x,0<x≤1 (2)7.2四、解答题(每小题10分,共20分)7.已知f(x)=log a,(a>0,且a≠1).(1)证明f(x)为奇函数.(2)求使f(x)>0成立的x的取值范围.【解析】(1)f(x)=log a(a>0,且a≠1)的定义域为:,解得f(x)=log a(a>0,且a≠1)的定义域为{x|-1<x<1}.因为f(x)=log a,(a>0,且a≠1),所以f(-x)=log a=-log a=-f(x),所以f(x)为奇函数.(2)因为f(x)=log a(a>0,且a≠1),所以由f(x)>0,得log a>log a1,当0<a<1时,有0<<1,解得-1<x<0;当a>1时,有>1,解得0<x<1;所以当a>1时,使f(x)>0成立的x的取值范围是(0,1),当0<a<1时,使f(x)>0成立的x 的取值范围是(-1,0).8.求下列函数的定义域.(1)y=.(2)y=log|x-2|(25-5x).【解析】(1)要使函数有意义,需即即-3<x<-2或x≥2,故所求函数的定义域为(-3,-2)∪[2,+∞). (2)要使函数有意义,需即所以x<2,且x≠1,故所求函数的定义域为(-∞,1)∪(1,2).。

高中数学 第四章 指数函数与对数函数 4.4.1 对数函数课件 a高一第一册数学课件

高中数学 第四章 指数函数与对数函数 4.4.1 对数函数课件 a高一第一册数学课件

2021/12/8
第六页,共三十四页。
[教材解难]
1.教材 P130 思考
根据指数与对数的关系,由
y=12
x 5730
(x≥0)得到 x=log 1 y(0<y≤1).如图,过 y 5730 2
轴正半轴上任意一点(0,y0)(0<y0≤1)作
x
轴的平行线,与
y=12
x 5730
(x≥0)的图象有且只有一个交点(x0,y0).这就说明,对于任意一个
2021/12/8
第二十一页,共三十四页。
跟踪训练 2 求下列函数的定义域: (1)y=lg(x+1)+ 31x-2 x;
(2)y=log(x-2)(5-x).
2021/12/8
第二十二页,共三十四页。
解析:(1)要使函数有意义,
需x1+-1x> >00, , 即xx> <1-. 1, ∴-1<x<1,∴函数的定义域为(-1,1).
D.43, 3,110,35
2021/12/8
第二十九页,共三十四页。
解析:(1)方法一 作直线 y=1 与四条曲线交于四点,由 y= logax=1,得 x=a(即交点的横坐标等于底数),所以横坐标小的底 数小,所以 C1,C2,C3,C4 对应的 a 值分别为 3,43,35,110,故 选 A.
种对称性,就可以利用 y=log2x 的图象画出 y=log 1 x 的图象. 2
2021/12/8
第八页,共三十四页。
3.教材 P138 思考 一般地,虽然对数函数 y=logax(a>1)与一次函数 y=kx(k>0) 在区间(0,+∞)上都单调递增,但它们的增长速度不同.随着 x 的
增大,一次函数 y=kx(k>0)保持固定的增长速度,而对数函数 y=

4.4.1对数函数的概念(教学课件)-高中数学人教A版(2019)必修第一册

4.4.1对数函数的概念(教学课件)-高中数学人教A版(2019)必修第一册
内容索引
x
【解析】
根据指数与对数的关系,由
y

1 2
5730
(x≥0)
得到
x=
(0<y≤1).如图, 过 y 轴正半轴上任意一点(0,y0) (0<y0≤1)作
x
x 轴的平行线,与 y=125730 (x≥0) 的图象有且只有一个交点(x0,y0).这
就说明,对于任意一个 y∈(0,1],通过对应关系 x=
() A. f(x)=2x,g(x)=log2x
B. f(x)=|x|,g(x)= x2
C. f(x)=2lgx,g(x)=lgx2
D. f(x)=x,g(x)=3 x3
12345
内容索引
【解析】 对于 A,f(x)=2x,g(x)=log2x 分别为指数运算与对数运算, 不为相同函数,故 A 错误;对于 B,因为 g(x)= x2=|x|=f(x),所以 f(x) =|x|与 g(x)= x2是同一函数,故 B 正确;对于 C,f(x)=2lgx 的定义域为 (0,+∞),g(x)=lgx2 的定义域为{x|x≠0},不为相同函数,故 C 错误;
内容索引
活动三 对数函数的定义域
例 2 求下列函数的定义域: (1) y=log3x2;
【解析】 因为x2>0,即x≠0, 所以函数 y=log3x2的定义域是{x|x≠0}. (2) y=loga(4-x) (a>0,且a≠1).
【解析】 因为4-x>0,即x<4,
所以函数 y=loga(4-x)的定义域是{x|x<4}.
内容索引
一般地,函数y=logax(a>0,且a≠1)叫作对数函数,其中x是自变 量,定义域是(0,+∞).
内容索引

人教版高中数学必修1--第四章指数函数、对数函数有关的复合函数问题 4

人教版高中数学必修1--第四章指数函数、对数函数有关的复合函数问题 4

高中数学 必修 第一册
返回导航
第四章 指数函数与对数函数
知识点三 对数函数在实际问题中的应用 某公司制订了一个激励销售人员的奖励方案:当销售利润不 超过 10 万元时,按销售利润的 15%进行奖励;当销售利润超过 10 万 元时,若超出 A 万元,则超出部分按 2log5(A+1)进行奖励.记奖金为 y(单位:万元),销售利润为 x(单元:万元). (1)写出奖金 y 关于销售利润 x 的解析式; (2)如果业务员老江获得 5.5 万元的奖金,那么他的销售利润是多 少万元?
强弱等级 L/dB
10
m
பைடு நூலகம்
求 a 和 m 的值.
很嘈杂 的马路 1×10-3
90
高中数学 必修 第一册
返回导航
第四章 指数函数与对数函数
解:将 I0=1×10-12 W/m2,I=1×10-11 W/m2 代入 L=a lg
I I0

得 10=alg
1×10-11 1×10-12
=a lg 10=a,即 a=10,m=10lg
解:由题意知(x-3)(x+3)>0, 解得 x<-3 或 x>3, ∴函数 y=loga(x-3)(x+3)的定义域为(-∞,-3)∪(3,+∞).
高中数学 必修 第一册
返回导航
第四章 指数函数与对数函数
求含对数式的函数定义域的关键是真数大于 0,底数大于 0 且不 为 1.如需对函数式变形,须注意真数底数的取值范围是否改变.
高中数学 必修 第一册
返回导航
第四章 指数函数与对数函数
角度 2
求对数函数的解析式
3
已知函数
f(x)是对数函数,且
f

高中数学新教材必修一第四章《指数函数与对数函数》全套课件

高中数学新教材必修一第四章《指数函数与对数函数》全套课件
4. (a b)2 a b(a b).
学习新知 探究:
分数指数幂
10
5 a10 5 (a2 )5 a2 a 5 (a 0),
12
4 a12 4 (a3 )4 a3 a 4 (a 0).
0的正分数指数 幂等于0,0 的负 分数指数幂没有 意义.
2
33 aa22 a 3 (a 0),
1
)3
=36+9-7-5=33
巩固练习 3.化简或求值:
1
1
1
1
(3)求值: (1 2 16 )(1 2 8 )(1 2 4 )(1 2 2 )
1
1
1
1
解: (1 2 16 )(1 2 8 )(1 2 4 )(1 2 2 )
1
1
1
1
1
(1 2 16 )(1 2 16 )(1 2 8 )(1 2 4 )(1 2 2 )
巩固练习
1. 已知 9a2-6a+1=3a-1, 求 a 取值范围.
a1 3
巩固练习
2.设 10m=2, 10n=3,求 10-2m-10-n的值
1 12
巩固练习 3.化简或求值:
1
(1)0.00814
3
(4 4
)2
(2
4
2) 3
160.75
解:
1
0.00814
3
(4 4
)2
(2
4
2) 3
160.75
当 n 为奇数时
2n (a b)n n (a b)n 2(a b) (a b) 3a b
巩固练习
4
1
练习5 : 化简
a 3 8a 3b
2
2

4.4.1对数函数的概念课件(人教版)

4.4.1对数函数的概念课件(人教版)


1-x>0, x<1,
∴-1<x<1.∴该函数的定义域为(-1,1).
5-x>0, (2)要使函数式有意义,需 x-2>0,
x-2≠1,
x<5, ∴ x>2,
x≠3,
∴2<x<5,且 x≠3.
∴该函数的定义域为(2,3)∪(3,5).
20
4.4.1 对数函数的概念 课堂小结
1. 对数函数概念 2. 对数函数的特征
4.4.1 对数函数的概念 变式训练
2、点A(8,-3)和B(n,2)在同一个对数函数图象上,则
—14
n=______.
解:设对数函数为f(x)=logax(a>0,且a≠1).
则由题意可得f(8)=-3,即loga8=-3,所以a-3=8,
则a=
8-
1 3
1 2
17
4.4.1 对数函数的概念 典型例题——对数函数型的定义域
10
4.4.1 对数函数的概念 情景导入 阅读课本130-131页,思考并完成以下问题 1. 对数函数的概念是什么? 2. 对数函数解析式的特征?
11
4.4.1 对数函数的概念 研探新知 知识点一 对数函数的概念 函数y=logax(a>0,且a≠1)叫做对数函数, 其中x是自变量,函数的定义域是(0,+∞).
2
①求f(x)的解析式;
②解方程f(x)=2.
解:
①由题意设f(x)=logax(a>0,且a≠1),由函数图象过点( 可得f(4)= 1
4,1 ) 2
即loga4=
1 2
2
1
,所以4=a2 ,解得a=16,故f(x)=log16x.
②方程f(x)=2,即log16x=2
所以x=162=256.

4.4-对数函数课件-2025届高三数学一轮复习

4.4-对数函数课件-2025届高三数学一轮复习

2个单位长度,便得到所求函数的图象,如图4.4-4
(4).
图4.4-4
log 2 x + 1 + 2 x ≥ 0 ,
方法2y =∣ log 2 x + 1 ∣ +2 =
−log 2 x + 1 + 2 −1 < x < 0 ,
分别作出函数在 −1,0 和[0, +∞)上的两段图象即得y = |log 2 (x + 1)| + 2的图象
x
2
+ 1 的定义域为(
1
2
B.[1, +∞)
C.(− , 0]
C)
D.[0, +∞)
【解析】要使函数f x 有意义,则log 0.5 4x − 3 ≥ 0,得0 < 4x − 3 ≤ 1,得
3
4
3
4
3
x
4
2
1
的定义域为(− , 0].
2
1
4
x
2
< x ≤ 1,即函数f x 的定义域为( , 1],由 < + 1 ≤ 1,得− < ≤ 0,得


2.函数y=ax(a>1),y=logax(a>1)或y=xn(n>0)增长速度的对比
(1)对于指数函数y=ax(a>1)和幂函数y=xn(n>0),在区间(0,+∞)上,
ax的增长
无论n比a大多少,尽管在x的一定范围内,ax会小于xn,但由于________快于
xn的增长
ax>xn
________,因此总存在一个
【解析】当0 < x < x1 时,g x > f x ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.4.1 对数函数的概念必备知识基础练知识点一 对数函数的概念1.下列函数表达式中,是对数函数的有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log 12(-x )(x <0);⑥y=2log 4(x -1)(x >1).A .1个B .2个C .3个D .4个2.已知f (x )为对数函数,f ⎝ ⎛⎭⎪⎫12=-2,则f (34)=________.知识点二对数型函数的定义域3.函数f (x )=log 2(x 2+3x -4)的定义域是( ) A .[-4,1] B .(-4,1)C .(-∞,-4]∪[1,+∞)D .(-∞,-4)∪(1,+∞) 4.函数f (x )=1log 122x +1的定义域为________.知识点三对数函数模型的实际应用5.某种动物的数量y (单位:只)与时间x (单位:年)的函数关系式为y =a log 2(x +1),若这种动物第1年有100只,则第7年它们的数量为( )A .300只B .400只C .500只D .600只6.某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额为x 万元时,奖励y 万元.若公司拟定的奖励方案为y =2log 4x -2,某业务员要得到5万元奖励,则他的销售额应为________万元.关键能力综合练 一、选择题 1.给出下列函数:①y =log 23x 2;②y =log 3(x -1);③y =log (x +1)x ;④y =log πx .其中是对数函数的有( ) A .1个 B .2个 C .3个 D .4个 2.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅3.已知函数f (x )=log a (x +1),若f (1)=1,则a =( ) A .0 B .1 C .2 D .3 4.函数y =1log 2x -2的定义域为( ) A .(-∞,2) B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)5.函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B.[0,+∞) C .(1,+∞) D.[1,+∞)6.(探究题)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))的值为( )A .lg 101B .1C .2D .0 二、填空题7.若f (x )=log a x +a 2-4a -5是对数函数,则a =________.8.若f (x )是对数函数且f (9)=2,当x ∈[1,3]时,f (x )的值域是________.9.(易错题)函数f (x )=lg ⎝⎛⎭⎪⎫2kx 2-kx +38的定义域为R ,则实数k 的取值X 围是________.三、解答题10.求下列函数的定义域:(1)y=1log2x+1-3;(2)y=log(2x-1)(3x-2);(3)已知函数y=f[lg(x+1)]的定义域为(0,99],求函数y=f[log2(x+2)]的定义域.学科素养升级练1.(多选题)已知函数f(x)=log a(x+1),g(x)=log a(1-x)(a>0,a≠1),则( ) A.函数f(x)+g(x)的定义域为(-1,1)B.函数f(x)+g(x)的图象关于y轴对称C.函数f(x)+g(x)在定义域上有最小值0D.函数f(x)-g(x)在区间(0,1)上是减函数2.设函数f(x)=log a x(a>0且a≠1),若f(x1x2…x2 017)=8,则f(x21)+f(x22)+…+f(x22 017)=________.3.(情境命题—生活情境)国际视力表值(又叫小数视力值,用V表示,X围是[0.1,1.5])和我国现行视力表值(又叫对数视力值,由缪天容创立,用L表示,X围是[4.0,5.2])的换算关系式为L=5.0+lg V.(1)请根据此关系式将下面视力对照表补充完整;V 1.5②0.4④L ① 5.0③ 4.0(2)甲、乙两位同学检查视力,其中甲的对数视力值为 4.5,乙的小数视力值是甲的2倍,求乙的对数视力值.(所求值均精确到小数点后面一位数,参考数据:lg 2≈0.301 0,lg 3≈0.477 1)4.4 对数函数4.4.1 对数函数的概念必备知识基础练1.解析:符合对数函数的定义的只有③④. 答案:B2.解析:设f (x )=log a x (a >0,且a ≠1),则log a 12=-2,∴1a 2=12,即a =2,∴f (x )=,∴f (34)=34=log 2(34)2=log 2243=43.答案:433.解析:一是利用函数y =x 2+3x -4的图象观察得到,要求图象正确、严谨;二是利用符号法则,即x 2+3x -4>0可因式分解为(x +4)(x -1)>0,则⎩⎪⎨⎪⎧x +4>0,x -1>0或⎩⎪⎨⎪⎧x +4<0,x -1<0,解得x >1或x <-4,所以函数f (x )的定义域为(-∞,-4)∪(1,+∞).答案:D4.解析:由题意有⎩⎪⎨⎪⎧2x +1>0,2x +1≠1,解得x >-12且x ≠0,则f (x )的定义域为⎝ ⎛⎭⎪⎫-12,0∪(0,+∞).答案:⎝ ⎛⎭⎪⎫-12,0∪(0,+∞)5.解析:由题意,知100=a log 2(1+1),得a =100,则当x =7时,y =100log 2(7+1)=100×3=300.答案:A6.解析:由题意得5=2log 4x -2,即7=log 2x ,得x =128. 答案:128关键能力综合练1.解析:①②不是对数函数,因为对数的真数不是仅有自变量x ;③不是对数函数,因为对数的底数不是常数;④是对数函数.答案:A2.解析:∵M ={x |1-x >0}={x |x <1},N ={x |1+x >0}={x |x >-1},∴M ∩N ={x |-1<x <1}.答案:C3.解析:∵f (1)=log a (1+1)=1,∴a 1=2,则a =2,故选C. 答案:C4.解析:要使原函数有意义,则⎩⎪⎨⎪⎧x -2>0,log 2x -2≠0,解得2<x <3或x >3,所以原函数的定义域为(2,3)∪(3,+∞),故选C.答案:C5.解析:∵3x >0,∴3x +1>1.∴log 2(3x+1)>0.∴函数f (x )的值域为(0,+∞). 答案:A6.解析:由题 f (f (10))=f (lg 10)=f (1)=12+1=2.故选C. 答案:C7.解析:由对数函数的定义可知,⎩⎪⎨⎪⎧a 2-4a -5=0,a >0,a ≠1,解得a =5.答案:58.解析:设f (x )=log a x ,∵f (9)=2,∴log a 9=2,∴a =3,∴f (x )=log 3x 在[1,3]递增,∴y ∈[0,1].答案:[0,1]9.解析:依题意,2kx 2-kx +38>0的解集为R ,即不等式2kx 2-kx +38>0恒成立,当k =0时,38>0恒成立,∴k =0满足条件.当k ≠0时,则⎩⎪⎨⎪⎧k >0,Δ=k 2-4×2k ×38<0,解得0<k <3.综上,k 的取值X 围是[0,3). 答案:[0,3)10.解析:(1)要使函数有意义,则有⎩⎪⎨⎪⎧x +1>0,log 2x +1-3≠0,即x >-1且x ≠7,故该函数的定义域为(-1,7)∪(7,+∞). (2)要使函数有意义,则有⎩⎪⎨⎪⎧3x -2>0,2x -1>0,2x -1≠1,解得x >23且x ≠1,故该函数的定义域为⎝ ⎛⎭⎪⎫23,1∪(1,+∞). (3)∵0<x ≤99,∴1<x +1≤100. ∴0<lg(x +1)≤2, ∴0<log 2(x +2)≤2, 即1<x +2≤4,即-1<x ≤2. 故该函数的定义域为(-1,2].学科素养升级练1.解析:f (x )+g (x )=log a (x +1)+log a (1-x )所以⎩⎪⎨⎪⎧x +1>01-x >0,解得-1<x <1,函数f (x )+g (x )的定义域为(-1,1),故A 正确;f (-x )+g (-x )=log a (-x +1)+log a (1+x ),所以f (x )+g (x )=f (-x )+g (-x ),所以函数f (x )+g (x )是偶函数,图象关于y 轴对称,故B 正确;f (x )+g (x )=log a (x +1)+log a (1-x )=log a (x +1)(1-x )=log a (-x 2+1),令t =-x 2+1,则y =log a t ,在x ∈(-1,0)上,t =-x 2+1单调递增,在x ∈(0,1)上,t =-x 2+1单调递减,当a >1时,y =log a t 单调递增,所以在x ∈(-1,0)上,f (x )+g (x )单调递增,在x ∈(0,1)上,f (x )+g (x )单调递减,所以函数f (x )+g (x )没有最小值,当0<a <1时,y =log a t 单调递减,所以在x ∈(-1,0)上,f (x )+g (x )单调递减,在x ∈(0,1)上,f (x )+g (x )单调递增,所以函数f (x )+g (x )有最小值为f (0)+g (0)=0,故C 错;f (x )-g (x )=log a (x +1)-log a (1-x )=log ax +11-x=log a ⎝⎛⎭⎪⎫-1+21-x ,令t =-1+21-x ,y =log a t .在x ∈(-1,1)上,t =-1+21-x 单调递增,当a >1时,f (x )+g (x )在(-1,1)单调递增,当0<a <1时,f (x )+g (x )在(-1,1)单调递减,故D错.故选AB.答案:AB2.解析:∵f (x 21)+f (x 22)+f (x 23)+…+f (x 22 017) =log a x 21+log a x 22+log a x 23+…+log a x 22 017 =log a (x 1x 2x 3…x 2 017)2=2log a (x 1x 2x 3…x 2 017) =2f (x 1x 2x 3…x 2 017), ∴原式=2×8=16. 答案:163.解析:(1)因为5.0+lg 1.5=5.0+lg 1510=5.0+lg 32=5.0+lg 3-lg 2≈5.0+0.477 1-0.301 0≈5.2, 所以①应填5.2; 因为5.0=5.0+lg V , 所以V =1,②处应填1.0;因为5.0+lg 0.4=5.0+lg 410=5.0+lg 4-1=5.0+2lg 2-1≈5.0+2×0.301 0-1≈4.6, 所以③处应填4.6;因为4.0=5.0+lg V ,所以lg V =-1.所以V=0.1.所以④处应填0.1.对照表补充完整如下:(2)则有4.5=5.0+lg V甲,所以V甲=10-0.5,则V乙=2×10-0.5.所以乙的对数视力值L乙=5.0+lg(2×10-0.5) =5.0+lg 2-0.5≈5.0+0.301 0-0.5≈4.8.。

相关文档
最新文档