对数与指数教学案
数学指数函数与对数函数的应用教案

数学指数函数与对数函数的应用教案一、教学目标通过本节课的学习,学生应能够:1. 了解指数函数和对数函数的定义和性质;2. 掌握指数函数和对数函数的运算法则;3. 理解指数函数和对数函数在实际问题中的应用。
二、教学重点1. 指数函数和对数函数的定义和性质;2. 指数函数和对数函数的运算法则;3. 指数函数和对数函数在实际问题中的应用。
三、教学内容及安排1. 指数函数的引入(5分钟)1. 通过例子引入指数函数的概念;2. 引导学生思考指数函数的定义和性质。
2. 指数函数的定义和性质(15分钟)1. 介绍指数函数的定义和符号表示;2. 讲解指数函数的性质,如指数函数的增减性、奇偶性等;3. 给出一些例子,让学生通过观察图像来了解指数函数的特点。
3. 指数函数的运算法则(15分钟)1. 介绍指数函数的乘法法则、幂法则和除法法则;2. 通过例题演示如何运用这些法则进行指数函数的简化和计算。
4. 对数函数的引入(5分钟)1. 通过例子引入对数函数的概念;2. 引导学生思考对数函数的定义和性质。
5. 对数函数的定义和性质(15分钟)1. 介绍对数函数的定义和符号表示;2. 讲解对数函数的性质,如对数函数的增减性、奇偶性等;3. 给出一些例子,让学生通过观察图像来了解对数函数的特点。
6. 对数函数的运算法则(15分钟)1. 介绍对数函数的乘法法则、幂法则和除法法则;2. 通过例题演示如何运用这些法则进行对数函数的简化和计算。
7. 指数函数和对数函数的应用(20分钟)1. 介绍指数函数在复利计算、人口增长等领域的应用;2. 介绍对数函数在测量震级、pH值等领域的应用;3. 给出一些实际问题,让学生通过应用指数函数和对数函数进行求解。
8. 拓展与应用(10分钟)1. 引导学生思考其他领域中指数函数和对数函数的应用;2. 鼓励学生自主学习,拓展相关知识。
四、教学方法1. 示范法:通过举例和演算,引导学生理解和掌握指数函数和对数函数的定义、性质和运算法则。
高中数学对数指数教案

高中数学对数指数教案教学内容:对数与指数教学对象:高中学生教学目标:学生能够:1. 理解对数和指数的基本概念;2. 掌握对数和指数的基本运算规则;3. 能够灵活运用对数和指数进行实际问题的解决。
教学重点:对数和指数的基本概念、运算规则及应用。
教学难点:对数和指数的运用问题解决。
教学准备:1. 课件:对数与指数的基本概念和运算规则的PPT;2. 教材:高中数学教材中有关对数与指数的相关内容;3. 小组练习题和课堂练习题。
教学过程:一、导入新知识:1. 利用对数和指数的实际应用例子,引导学生对对数和指数的概念进行理解和思考。
2. 列出对数和指数的基本定义,并与学生一起讨论其意义。
二、对数与指数的基本概念:1. 讲解对数和指数的基本概念,并与学生一起进行相关例题演练。
2. 给学生分组练习对数和指数的基本概念题目,加深理解和掌握。
三、对数与指数的运算规则:1. 讲解对数和指数的加减乘除运算规则,增加学生的计算技能。
2. 结合实例,让学生进行对数和指数的练习,加深理解和掌握。
四、应用题训练:1. 给学生进行一些对数与指数的应用题练习,让学生灵活运用知识解决实际问题。
2. 引导学生思考如何把对数与指数运用到生活中的实际问题中。
五、课堂总结:1. 总结本节课学习的内容,强调对数与指数的重要性和实际应用价值。
2. 鼓励学生多加练习,加深对数与指数的理解和掌握。
六、作业布置:1. 布置对数与指数的相关作业,巩固本节课所学的内容。
2. 提醒学生复习和准备下节课的内容。
教学反思:本节课主要教授了对数与指数的基本概念、运算规则和应用,通过理论讲解、实例演练、练习题训练等多种教学手段,使学生对对数与指数有了初步的理解和掌握。
值得注意的是,对数与指数的概念较为抽象,需要通过实例引导学生理解和应用,加强练习,巩固知识。
希望学生通过今天的学习,能够对对数与指数有更深入的认识,并能够在实际问题中灵活运用这些知识。
指数函数与对数函数单元教学设计

必修1指数函数与对数函数单元教学设计一、分析教学要素1.数学分析:本章内容是在学完函数概念以及函数基本性质后的情况下,较为系统地研究指数函数、对数函数,它是函数内容学习的继续和深入(第二阶段).基本初等函数(指数函数、对数函数)是高中数学的基础,是刻画现实世界变化规律的重要模型,由于我们生活在充满变化的现实世界中,其中有一类具有重要的运动变化的关系,如GDP的增长问题、人口增长问题、细胞分裂、考古中所用的14C的衰减、药物在人体内残留量的变化等,结合实际问题,可以感受观察、抽象概括并建立数学模型的过程和方法,通过计算工具,感知指数函数、对数函数以及幂函数增长的差异,体会、认识直线上升、指数爆炸、对数增长等不同的函数类型增长的含义.体会函数在数学和其他学科中的重要性,体现数学的应用价值.2.课标分析:《普通高中数学课程标准(2017年版)》本章是在上一章学习函数及其性质的基础上,具体研究指数函数、对数函数、这三个高中阶段重要的函数.这是高中函数学习的第二个阶段,目的是使学生在这一阶段获得较为系统的函数知识,并初步培养函数应用意识,为今后的学习打下坚实的基础,同时使学生对函数的认识由感性上升到理性.可以说这一章起到了承上启下的重要作用,本章所涉及到的一些重要思想方法,对学生掌握基础的数学语言,学好高中数学起着重要的作用.3.学情分析:(1)学生已有的知识分析:学生在以前学习中,已经经历过“数”的扩充过程,由正整数到整数,由整数到有理数,再由有理数到实数,从而形成一个优美的体系,本章继续体现这样扩充的思路,实现指数概念的扩充进而进一步研究幕函数概念,依据两个原则:①数学发展的需要;②基本运算能无限制地进行,把“指数函数、对数函数、幂函数”科学地组织起来,再一次体现充满在整个数学中的组织化、系统化的精神.4.教材分析:第四章的主要内容是指数函数、对数函数这二种函数模型.本章共分五大节,共16课时.第一大节指数与指数函数分2小节共4课时.该节首先引入整数指数幕和分数指数幕的概念.在初中已经学习了数的开平方、开立方以及二次根式的概念的基础上,本节复习了正整数指数幕、零指数、负整数指数幕的概念,并且复习了正整数指数幕的运算法则.有了这些知识,本章将指数幕的概念和运算性质逐步扩充到有理指数幕以及实数指数幕.接着通过两个具体的例子引入了指数函数,并对指数函数的图象和性质进行了研究.第二大节对数与对数函数分2小节,共5课时,该节首先学习对数和对数的运算法则,然后再学习对数函数及其图象和性质,对数函数的图象是在画指数函数图象的对应值表的基础上描绘的,对数函数同指数函数一样,是以对数概念和运算法则作为基础讲授的.接着,通过对指数函数与对数函数的关系的研究给出了反函数的含义,并对这两种函数的增长差异进行了比较.第三大节函数的应用(II)也安排了4个课时,举例说明了指数函数、对数函数在经济学、物理学等领域中的应用.5.重点难点分析:单元教学难点:指数函数和对数函数的性质.单元教学重点:无理指数幕的含义以及指数和对数的关系.6.教学策略分析:为了有效的突破重难点,让学生提出真问题,开展真研究,而不人为地限定解决问题的思路与方法,不压缩学生的思维空间,真正做到以知识为载体,以研究为手段,促进学生核心素养的培育和发展.为了提高学生的研究能力,学生以四人一组开展小组合作探究.二、编制单元教学目标1. 了解指数函数模型的实际背景2.理解有理数指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算性质.3.经历由指数得到对数的过程,理解对数的概念,掌握对数的运算性质.4.经历由正整数指数函数逐步扩充到实数指数函数的过程,由指数函数的概念、图象与性质得到对数函数的概念、图象与性质的过程,并通过具体实例去了解指数函数模型、对数函数模型的实际背景,掌握指数函数和对数函数的概念、图象以及性质.5.收集现实生活中普遍使用的指数函数和对数函数的模型实例,了解它们的广泛应用.6.利用计算工具、比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.7.了解指数y=a x(a〉O,且aMl)与对数函数y=logx(a〉0,且aM1)的图象关系,初步了解指数函数和对a数函数互为反函数的关系.8.引导学生不断地体验函数是描述客观世界变化规律的基本数学模型,体验指数函数、对数函数、幂函数等与现实世界的密切联系及其在刻画现实问题中的作用.9.鼓励学生运用现代信息技术学习、探索和解决问题.例如,利用科学计算器、计算机画出指数函数、对数函数和幂函数的图象,探索、比较它们的变化规律,研究函数的性质.三、设计单元教学过程§4.3.对数及其运算(共2课时)基于以上学习内容分析、学生认知分析和教学目标,按3个课时对本单元教学过程设计如下.1.呈现背景,提出问题为了适应航海事业的发展,需要确定航程和船舶的位置,为了适应天文事业的发展,需要处理观测行星运动的数据,就是为了解决很多位数的数字繁杂的计算而产生了对数.恩格斯曾把对数的发明与解析几何学的产生、微积分学的创始并称为17世纪数学的三大成就,给予很高的评价.本单元对数的定义和运算性质的目的主要是为了学习对数函数.对数概念与指数概念有关,是在指数概念的基础上定义的,在一般对数定义“吐人(a>0,aM1)a二10时,称为常用对数,简记作lg N二b;另一个是底数a=e 之后,给出两个特殊的对数:一个是当底数(一个无理数)时,称为自然对数,简记作ln N=b.这样既为学生以后学习或读有关的科技书给出了初步知识,也使教材大大简化,只保留到学习对数函数知识够用即可.2. 分析联想,寻求方法对数作为一种运算,由ab=N(a>0,a丰1)引出,在这个式子中,已知一个数a和它的指数,求幕的运算就是指数运算;而已知一个数a和它的幕,求指数的运算就是对数运算(而已知指数和幕求这个数的运算就是开方运算);所以从方程角度来看待的话,这个式子有三个量,知二求一.恰好可以构成以上三种运算,所以引入对数运算是很自然的,也是很重要的,也就完成了对a b =N 的全面认识对于对数概念的学习,一定要紧紧抓住与指数之间的关系,首先从指数式中理解底数a 和真数N 的要求;其次对于对数的性质log1=0,log a =1(a >0,a 1)及零和负数没有对数的理解,也可以通过aa指数式来证明、验证;在理解对数概念后能完成指数式和对数式的互化。
初中指数对数教案

初中指数对数教案教学目标:1. 理解指数和对数的概念及它们之间的关系。
2. 掌握指数和对数的运算规则。
3. 能够应用指数和对数解决实际问题。
教学重点:1. 指数和对数的定义及运算规则。
2. 指数和对数在实际问题中的应用。
教学难点:1. 指数和对数的运算规则的理解和应用。
2. 解决实际问题时指数和对数的运用。
教学准备:1. 教学PPT或者黑板。
2. 教学素材和练习题。
教学过程:一、导入(5分钟)1. 引入指数和对数的概念,让学生回顾已学的有理数和分数的知识。
2. 提问学生:有理数和分数之间有什么关系?它们如何相互转化?二、新课讲解(20分钟)1. 讲解指数的概念和运算规则。
2. 讲解对数的概念和运算规则。
3. 通过示例和练习题,让学生理解和掌握指数和对数的运算规则。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学的指数和对数的运算规则。
2. 教师巡回指导,解答学生的疑问。
四、应用拓展(10分钟)1. 讲解指数和对数在实际问题中的应用。
2. 提供一些实际问题,让学生应用指数和对数进行解决。
五、总结(5分钟)1. 对本节课的内容进行总结,强调指数和对数的运算规则及其在实际问题中的应用。
2. 提醒学生要注意指数和对数在实际问题中的运用,培养学生的数学思维能力。
教学反思:本节课通过讲解指数和对数的定义及运算规则,让学生理解和掌握指数和对数的运算方法。
在课堂练习环节,通过练习题让学生巩固所学的知识,同时教师巡回指导,解答学生的疑问。
在应用拓展环节,讲解指数和对数在实际问题中的应用,提供一些实际问题让学生进行解决,培养学生的数学思维能力。
通过本节课的教学,学生应该能够掌握指数和对数的基本概念和运算规则,并能够应用到实际问题中。
高中数学指数对数教案

高中数学指数对数教案一、教学目标:1. 了解指数和对数的定义和性质;2. 掌握指数和对数的运算方法;3. 能够应用指数和对数解决实际问题。
二、教学内容:1. 指数的概念与性质;2. 对数的概念与性质;3. 指数和对数的运算;4. 指数与对数的实际应用。
三、教学过程:1. 指数的概念与性质指数的定义:如果a是一个非零的实数,n是一个正整数,则a的n次方,记作a^n,表示n个a的乘积。
其中,a称为底数,n称为指数。
指数的性质:- a^m * a^n = a^(m+n)- a^m / a^n = a^(m-n)- (a^m)^n = a^(m*n)2. 对数的概念与性质对数的定义:如果a是一个大于0且不等于1的实数,b是一个正实数,则log_a(b) = c 表示a的c次方等于b。
其中,a称为底数,b称为真数,c称为对数。
对数的性质:- log_a(b * c) = log_a(b) + log_a(c)- log_a(b / c) = log_a(b) - log_a(c)- log_a(b^c) = c * log_a(b)3. 指数和对数的运算指数和对数的互为逆运算:- a^log_a(b) = b- log_a(a^b) = b指数和对数的换底公式:- log_a(b) = log_c(b) / log_c(a)4. 指数与对数的实际应用通过实例分析指数和对数在实际问题中的应用,如利用指数和对数解决成本、增长、衰减等问题。
四、教学反馈:设置一些练习题,让学生进行练习并及时纠正错误。
可以在课堂上进行讨论和解答疑问,帮助学生确保掌握了知识。
五、作业布置:布置一些练习题,让学生巩固所学知识。
还可以布置一些应用题,让学生锻炼解决实际问题的能力。
六、教学总结:对本节课的重点内容进行总结,强调学生应该掌握的知识点。
鼓励学生勤加练习,加深理解,提高技能。
指数与对数的计算教案

指数与对数的计算教案一、教学目标1. 理解指数的概念,能够计算指数运算;2. 理解对数的概念,能够计算对数运算;3. 能够应用指数和对数的计算方法解决实际问题。
二、教学内容1. 指数的定义和性质;2. 指数计算的基本规则;3. 对数的定义和性质;4. 对数计算的基本规则;5. 应用题训练。
三、教学过程第一节指数的定义和性质指数是数学中常用的一种运算符号,表示一个数自乘若干次。
例如,2³表示2自乘3次,即2×2×2=8。
1. 引入指数的概念指数运算可以用来表示重复乘法的简化形式,如何理解指数运算对求解问题的帮助?2. 指数的定义与性质指数的定义:aⁿ=a×a×a× ... ×a(n个a相乘)指数的性质:幂的乘法、幂的除法、幂的幂第二节指数计算的基本规则1. 同底数幂相乘和幂相除的规则2. 指数为零和指数为一的特殊情况第三节对数的定义和性质对数是指数运算的逆运算,它可以简化指数运算的计算过程。
1. 引入对数的概念对数运算可以帮助我们解决指数运算中的问题,如何理解对数运算对求解问题的帮助?2. 对数的定义与性质定义:例如,log₃9=2,表示3的几次方等于9。
性质:对数运算的乘法、对数运算的除法第四节对数计算的基本规则1. 换底公式2. 对数的乘法和除法规则第五节应用题训练将指数和对数的计算方法应用到实际问题中,例如:1. 求解指数方程2. 计算复利问题3. 解决科学计数法问题四、教学评价1. 在教学过程中,要通过合作学习的形式,让学生互相讨论解题思路,提高学生的合作与交流能力;2. 在教学结束前,可以布置一些练习题,检验学生对指数和对数计算的掌握程度;3. 在课后,搜集一些实际应用问题,让学生自主解决,培养学生应用数学知识解决实际问题的能力。
五、教学反思本教案通过引入指数和对数的概念,系统地介绍了其定义、性质和计算规则,并结合应用题进行训练。
数学指数函数与对数函数教案

数学指数函数与对数函数教案教案内容:一、教学目标通过本节课的学习,学生应能够:1. 理解指数函数与对数函数的基本概念;2. 掌握指数函数与对数函数的图像性质;3. 熟练运用指数函数与对数函数的性质解决实际问题。
二、教学重点1. 指数函数与对数函数的定义与性质;2. 指数函数与对数函数的图像;3. 指数函数与对数函数在实际问题中的应用。
三、教学内容1. 指数函数的定义与性质指数函数是指具有形如y=a^x的函数,其中a>0且a≠1。
在教学中,我们着重讲解指数函数的定义与性质,包括:1.1 指数函数的定义:y=a^x;1.2 指数函数的图像特点:与a、x的取值相关;1.3 指数函数的性质:a)同底数幂相乘,底数不变,指数相加;b)同底数幂相除,底数不变,指数相减;c)指数为0的幂等于1;d)若指数为正,函数单调递增;若指数为负,函数单调递减。
2. 对数函数的定义与性质对数函数是指具有形如y=loga(x)的函数,其中a>0且a≠1。
在教学中,我们重点介绍对数函数的定义与性质,包括:2.1 对数函数的定义:y=loga(x);2.2 对数函数的图像特点:与a、x的取值相关;2.3 对数函数的性质:a)对数的底数不为0、不为1;b)对数与指数是互反运算;c)对数函数的增长特点:当x增大时,对数值增大;当x减小时,对数值减小;d)对数函数在坐标系中的对称性。
3. 指数函数与对数函数的图像通过绘制指数函数和对数函数的图像,让学生对其形态和性质进行直观感受。
3.1 指数函数的图像特点:a)当0<a<1时,函数图像经过点(0, 1)且单调递减;b)当a>1时,函数图像经过点(0, 1)且单调递增。
3.2 对数函数的图像特点:a)对数函数的图像都经过点(1, 0);b)当0<a<1时,函数图像在y轴的正半轴上递减;c)当a>1时,函数图像在y轴的正半轴上递增。
4. 指数函数与对数函数的应用通过实际问题的讲解,让学生认识指数函数和对数函数在各个领域的应用。
指数和对数运算学案教案.doc

指数(一)一、预习提纲1.整数指数幂的概念 *)(N n a a a a a an n ∈⋅⋅=43421Λ个 )0(10≠=a a ,0(1N n a a a nn∈≠=- 2.运算性质: )()(),()(),(Z n b a ab Z n m aa Z n m a a a n n n mnnm n m n m ∈⋅=∈=∈=⋅+3.根式的运算性质:当n 为任意正整数时,(n a )n =a.当n 为奇数时,n n a =a ;当n 为偶数时,n n a =|a|=⎩⎨⎧<-≥)0()0(a a a a .2.根式的基本性质:n m npmp a a =,(a ≥0). (1)nmnmnm aaa11==- (a >0,m ,n ∈N *,且n >1)(2)0的正分数指数幂等于0. (3)0的负分数指数幂无意义.3.分数指数幂的运算性质: )()(),()(),(Q n b a ab Q n m aa Q n m a a a n n n mnnm n m n m ∈⋅=∈=∈=⋅+二、讲解新课:1.根式:一般地,若*),1(N n n a x n∈>= 则x 叫做a 的n 叫做根式,n 叫做根指数,a 叫做被开方数 例1求值① 33)8(-= ; ②2)10(-=; ②44)3(π-= ; ④)()(2b a b a >-=.例2求值:63125.132)2(;246347625)1(⨯⨯---++解:例3:求值:4332132)8116(,)41(,100,8---.例4:用分数指数幂的形式表示下列各式:a a a a a a ,,3232⋅⋅ (式中a >0)例5:计算:()[]91385256323075.0--+⎪⎭⎫ ⎝⎛-+---三、课练试题: 1. 求下列各式的值(1)44100; (2)55)5.0(-; (3)2)4(-π; (4)).()(66y x y x >-2.比较63123,11,5的大小.3.用根式的形式表示下列各式.(1)51a ; (2)43a ; (3)53-a; (4)32-a.四、课后作业:1.用分数指数幂表示下列各式(其中各式字母均为正数)⑴43a a ⋅; ⑵a a a ; ⑶32)(b a -; ⑷322b a ab +.2.化简:()=⎥⎦⎤⎢⎣⎡--2123( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数与指数教学案
一、教学目标
1. 理解对数与指数的基本概念与运算规则。
2. 掌握对数与指数之间的互逆关系。
3. 能够解决涉及对数与指数的实际问题。
二、教学准备
1. 教材:教科书、习题集等。
2. 教具:黑板、白板、彩色粉笔、计算器等。
3. 辅助资料:教学PPT、教学视频等。
三、教学步骤
Step 1 引入教学
引导学生回顾之前学过的指数知识,例如指数的定义、指数运算规则等,并提出对数的概念。
Step 2 对数的介绍与性质
1. 通过教学PPT演示,引入对数的定义和性质:对数是指数的互逆运算,对数具有换底公式等特点。
2. 讲解对数的基本运算规则,包括对数与指数的互逆关系、对数的乘法法则、对数的除法法则等。
通过例题演示运算过程,帮助学生掌握运算技巧。
Step 3 指数的介绍与性质
1. 通过教学PPT演示,引入指数的概念和性质:指数表示幂数的次数,指数运算具有乘法法则、幂运算法则等特点。
2. 讲解指数的基本运算规则,包括指数的乘法法则、指数的除法法则、指数的幂运算法则等。
通过例题演示运算过程,帮助学生巩固运算方法。
Step 4 应用实例解析
1. 指导学生通过对数与指数的知识,解决实际问题。
例如利用对数运算解决指数函数的增长问题、利用指数运算求解复利问题等。
2. 鼓励学生在解决问题的过程中思考并灵活运用对数与指数的运算规则,提高问题解决能力。
Step 5 深化与拓展
1. 引导学生思考对数与指数在其他学科领域的应用,如生物学、化学、物理等。
2. 鼓励学生阅读相关科普文章或观看相关视频,进一步了解对数与指数的实际应用。
四、教学评价与反思
1. 指导学生完成作业,包括基础题与拓展题,以检验学生对于对数与指数的掌握情况。
2. 针对学生的学习表现与答疑情况,进行及时的评价和反思,为后续教学提供参考与调整。
通过以上教学方案,可以使学生全面了解对数与指数的概念、性质及运算规则,并能够运用所学知识解决实际问题。
同时,教学内容通俗易懂,注重提高学生的实际运用能力和问题解决能力。
希望本教学案能对您的教学工作提供一定的参考和帮助。