高中数学新课标测试题及答案
全国统一高考数学试卷(新课标)(含解析版)(1)

全国统一高考数学试卷(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+25.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD 的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E 相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.全国统一高考数学试卷(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【考点】9S:数量积表示两个向量的夹角.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)已知复数Z=,则|z|=()A.B.C.1D.2【考点】A5:复数的运算.【专题】11:计算题.【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【考点】LG:球的体积和表面积.【专题】11:计算题.【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S球=4πR2,即可得到答案.【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S=4πR2=6πa2.球故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【考点】7C:简单线性规划.【专题】11:计算题;16:压轴题.【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【考点】CE:模拟方法估计概率;CF:几何概型.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】L7:简单空间图形的三视图.【专题】15:综合题;16:压轴题.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD 得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BDcos135°AC2=CD2+AD2﹣2AD•CDcos45°即AB2=BD2+2+2BD ①AC2=CD2+2﹣2CD ②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD (4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【考点】84:等差数列的通项公式;85:等差数列的前n项和.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直.【专题】11:计算题;14:证明题;35:转化思想.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.【考点】BL:独立性检验.【专题】11:计算题;5I:概率与统计.【分析】(1)由样本的频率率估计总体的概率,(2)求K2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【考点】K4:椭圆的性质.【专题】15:综合题.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【考点】6B:利用导数研究函数的单调性.【专题】15:综合题;53:导数的综合应用.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。
2024年新课标I卷高考数学真题(含答案)

2024年新课标I 卷高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-2. 若1i 1zz =+-,则z =( )A. 1i-- B. 1i-+ C. 1i- D. 1i+3. 已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =( )A. 2- B. 1- C. 1D. 24. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m -B. 3m -C.3m D. 3m5.( )A.B.C.D. 6. 已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是( )A. (,0]-∞ B. [1,0]- C. [1,1]- D.[0,)+∞7. 当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭交点个数为( )A. 3B. 4C. 6D. 88. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >> B. (2)0.5P X ><的的C. (2)0.5P Y >> D. (2)0.8P Y ><10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数的字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .16. 已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;为(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.的一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2. 若1i 1zz =+-,则z =( )A. 1i -- B. 1i-+ C. 1i- D. 1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3. 已知向量(0,1),(2,)a b x ==,若(4)b b a ⊥-,则x =( )A. 2- B. 1- C. 1D. 2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m - B. 3m -C.3m D. 3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5. ( )A. B. C. D. 【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.6. 已知函数为22,0()e ln(1),0xx ax a xf xx x⎧---<=⎨++≥⎩,在R上单调递增,则a取值的范围是()A. (,0]-∞ B. [1,0]- C. [1,1]- D. [0,)+∞【答案】B【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()221e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.7. 当[0,2]xπÎ时,曲线siny x=与2sin36y xπ⎛⎫=-⎪⎝⎭的交点个数为()A. 3B. 4C. 6D. 8【答案】C【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin 36y x ⎛⎫=-⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象, 在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >>B. (2)0.5P X ><C. (2)0.5P Y >>D. (2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数()f x 在()1,3上的值域即可判断C ;直接作差可判断D.【详解】对A,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A :设曲线上的动点(),P x y ,则2x >-4a =,4a =,解得2a =-,故A 正确.对于B24=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b Ac B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e xy x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e xy x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e xy x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .【答案】(1)π3B = (2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===,因为()0,πC ∈,所以sin 0C >,的的从而sin C===又因为sin C B=,即1cos2B=,注意到()0,πB∈,所以π3B=.小问2详解】由(1)可得π3B=,cos C=,()0,πC∈,从而π4C=,ππ5ππ3412A=--=,而5πππ1sin sin sin12462A⎛⎫⎛⎫==+=+=⎪ ⎪⎝⎭⎝⎭由正弦定理有5πππsin sin sin1234a b c==,从而,a b====,由三角形面积公式可知,ABC的面积可表示为211sin22ABCS ab C===,由已知ABC面积为323=+,所以c=16. 已知(0,3)A和33,2P⎛⎫⎪⎝⎭为椭圆2222:1(0)x yC a ba b+=>>上两点.(1)求C的离心率;(2)若过P的直线l交C于另一点B,且ABP的面积为9,求l的方程.【答案】(1)12(2)直线l的方程为3260x y--=或20x y-=.【的【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ===.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则d ==则将直线AP沿着与AP 单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =设()00,B x y22001129x y ⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =设(),3sin B θθ,其中[)0,2θ∈π联立22cos sin 1θθ+=,解得cos 1sin 2θθ⎧=⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫-- ⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443kx k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =,解得32k =,此时33,2B ⎛⎫--⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PABd = ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k xk k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .【答案】(1)证明见解析(2【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而 //AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥, 根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin DFE ∠=tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,DE =,又242xCE -==,而EFC 为等腰直角三角形,所以EF =,故tan DFE∠==x =AD =.18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析 (3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6 (2)证明见解析 (3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>==++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。
普通高中新数学课程标准题库(含答案)

普通高中新数学课程标准题库(含答案)
普通高中新数学课程标准题库(含答案)
为了更好地适应新时代我国教育改革的发展,提高普通高中数
学教育的质量,我们依据《普通高中数学课程标准(2017年版)》的要求,编写了这份题库。
题库内容涵盖了高中数学的主要知识点,旨在帮助学生巩固课堂所学,提高解决问题的能力。
一、选择题
1. 下列选项中,既是奇函数,又是单调递增函数的是:
A. y = x^3
B. y = x^2
C. y = |x|
D. y = 2x
答案:A
二、填空题
2. 若矩阵 A 的行列式值为 3,则 A 的逆矩阵的元素 a_{ij} 等于______。
答案:3/a_{ji}
三、解答题
3. 已知函数 f(x) = x^2 - 4x + 3,求 f(x) 的最大值和最小值。
答案:
(1)将 f(x) 写成顶点式:f(x) = (x - 2)^2 - 1
(2)当 x = 2 时,f(x) 取得最小值 -1
(3)函数 f(x) 为开口向上的抛物线,无最大值
四、应用题
4. 一辆汽车从 A 地出发,以 60 km/h 的速度向 B 地行驶,行驶3 小时后,离 A 地还有 120 km。
求 A、B 两地之间的距离。
答案:240 km
解题过程:
(1)设 A、B 两地之间的距离为 x km
(2)根据题意,汽车行驶 3 小时后的路程为 3 × 60 = 180 km (3)所以,x - 180 = 120
(4)解得 x = 240
这份题库仅供参考,如有任何疑问,请随时与我们联系。
祝您学习进步!。
2023年新高考1卷数学真题试卷附详解

2023年高考数学试卷新课标Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A. {}2,1,0,1--B. {}0,1,2C. {}2-D. 22. 已知1i22iz -=+,则z z -=( ) A.i -B. iC. 0D. 13. 已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+,则( ) A. 1λμ+= B. 1λμ+=- C. 1λμ= D. 1λμ=-4. 设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A. (],2-∞-B. [)2,0-C. (]0,2D. [)2,+∞5. 设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若21e =,则=a ( )A.B.C.D.6. 过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=( )A. 1B.C.D.7. 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( ) A. 甲是乙的充分条件但不是必要条件 B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件 8. 已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=( ). A.79 B.19C. 19-D. 79-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则( ) A. 2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数 B. 2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数 C. 2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差 D. 2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差10. 噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级20lgp pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则( ). A. 12p p ≥ B. 2310p p > C. 30100p p =D. 12100p p ≤11. 已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则( ).A. ()00f =B. ()10f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点12. 下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有( )A. 直径为0.99m 的球体B. 所有棱长均为1.4m 的四面体C. 底面直径为0.01m ,高为1.8m 的圆柱体D. 底面直径为1.2m ,高为0.01m 的圆柱体三、填空题:本题共4小题,每小题5分,共20分.13. 某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).14. 在正四棱台1111ABCD A B C D -中,1112,1,AB A B AA ===,则该棱台的体积为________.15. 已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.16. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A F B ⊥=-,则C 的离心率为________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知在ABC 中,()3,2sin sin A B C A C B +=-=. (1)求sin A ;(2)设5AB =,求AB 边上的高.18. 如图,在正四棱柱1111ABCD A B C D -中,12,4AB AA ==.点2222,,,A B C D 分别在棱111,,AA BB CC ,1DD 上,22221,2,3AA BB DD CC ====.(1)证明:2222B C A D ∥;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P . 19. 已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+. 20. 设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式; (2)若{}n b 为等差数列,且999999S T -=,求d .21. 甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .22. 在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫ ⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于2023年高考数学试卷新课标Ⅰ卷答案一、选择题.1. C解:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-.故选:C . 2. A解:因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-. 故选:A . 3. D解:因为()()1,1,1,1a b ==-,所以()1,1a b λλλ+=+-,()1,1a b μμμ+=+- 由()()a b a b λμ+⊥+可得,()()0a b a b λμ+⋅+= 即()()()()11110λμλμ+++--=,整理得:1λμ=-. 故选:D . 4. D解:函数2xy =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥.所以a 的取值范围是[)2,+∞. 故选:D. 5. A解:由21e ,得22213e e =,因此2241134a a --=⨯,而1a >,所以a =故选:A. 6. B解:因为22410x y x +--=,即()2225x y -+=,可得圆心()2,0C ,半径r =过点()0,2P -作圆C 的切线,切点为,A B因为PC ==,则PA ==可得sin APC APC ∠==∠==则sin sin 22sin cos 2APB APC APC APC ∠=∠=∠∠==22221cos cos 2cos sin 04APB APC APC APC ∠=∠=∠-∠=-=-<⎝⎭⎝⎭即APB ∠为钝角.所以()sin sin πsin 4APB APB =-∠=∠=α. 故选:B. 7. C解:甲:{}n a 为等差数列,设其首项为1a ,公差为d 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+ 因此{}nS n为等差数列,则甲是乙的充分条件. 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥ 两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立 因此{}n a 为等差数列,则甲是乙的必要条件. 所以甲是乙的充要条件,C 正确. 故选:C. 8. B解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=则2sin()sin cos cos sin 3αβαβαβ+=+=所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=. 故选:B.二、选择题.9. BD解:对于选项A :设2345,,,x x x x 的平均数为m ,126,,,x x x ⋅⋅⋅的平均数为n 则()()165234123456234526412x x x x x x x x x x x x x x x x n m +-+++++++++++-=-=因为没有确定()1652342,x x x x x x ++++的大小关系,所以无法判断,m n 的大小 例如:1,2,3,4,5,6,可得 3.5m n ==. 例如1,1,1,1,1,7,可得1,2m n ==. 例如1,2,2,2,2,2,可得112,6m n ==;故A 错误; 对于选项B :不妨设123456x x x x x x ≤≤≤≤≤可知2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数均为342x x +,故B 正确; 对于选项C :因为1x 是最小值,6x 是最大值则2345,,,x x x x 的波动性不大于126,,,x x x ⋅⋅⋅的波动性,即2345,,,x x x x 的标准差不大于126,,,x x x ⋅⋅⋅的标准差例如:2,4,6,8,10,12,则平均数()12468101276n =+++++= 标准差1s ==4,6,8,10,则平均数()14681074m =+++= 标准差2s ==5>,即12s s >;故C 错误; 对于选项D :不妨设123456x x x x x x ≤≤≤≤≤则6152x x x x -≥-,当且仅当1256,x x x x ==时,等号成立,故D 正确; 故选:BD. 10. ACD解:由题意可知:[][]12360,90,50,60,40p p p L L L ∈∈= 对于选项A :可得1212100220lg20lg 20lg p p p p p L L p p p =-⨯=⨯-⨯ 因为12p p L L ≥,则121220lg0p p p L L p =-⨯≥,即12lg 0pp ≥ 所以121p p ≥且12,0p p >,可得12p p ≥,故A 正确; 对于选项B :可得2332200320lg20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯ 因为2324010p p p L L L -=-≥,则2320lg10p p ⨯≥,即231lg 2p p ≥ 所以23pp ≥23,0p p >,可得23p ≥ 当且仅当250p L =时,等号成立,故B 错误; 对于选项C :因为33020lg40p p L p =⨯=,即30lg 2pp =可得3100p p =,即30100p p =,故C 正确; 对于选项D :由选项A 可知:121220lgp p p L L p =-⨯ 且12905040p p L L ≤-=-,则1220lg40p p ⨯≤ 即12lg2p p ≤,可得12100pp ≤,且12,0p p >,所以12100p p ≤,故D 正确; 故选:ACD. 11. ABC解:因为22()()()f xy y f x x f y =+对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确. 对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确. 对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=令21,()()(1)()y f x f x x f f x =--=+-=又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误. 12. ABD解:对于选项A :因为0.99m 1m <,即球体的直径小于正方体的棱长 所以能够被整体放入正方体内,故A 正确;对于选项B :, 1.4> 所以能够被整体放入正方体内,故B 正确;对于选项C :, 1.8< 所以不能够被整体放入正方体内,故C 正确;对于选项D :, 1.2>设正方体1111ABCD A B C D -的中心为O ,以1AC 为轴对称放置圆柱,设圆柱的底面圆心1O 到正方体的表面的最近的距离为m h如图,结合对称性可知:11111110.62OC C A C O OC OO ===-= 则1111C O h AA C A =,即0.61h -=解得10.340.012h =>> 所以能够被整体放入正方体内,故D 正确; 故选:ABD.三、填空题.13. 64解:(1(当从8门课中选修2门,则不同的选课方案共有144116C C =种;(2(当从8门课中选修3门①若体育类选修课1门,则不同的选课方案共有1244C C 24=种;②若体育类选修课2门,则不同的选课方案共有2144C C 24=种;综上所述:不同的选课方案共有16242464++=种. 故答案为:64. 14.解:如图,过1A 作1A M AC ⊥,垂足为M ,易知1A M 为四棱台1111ABCD A B C D -的高因为1112,1,AB A B AA ===则111111111122222AO AC B AO AC ======故()1112AM AC A C =-=,则1A M ===所以所求体积为1(413V =⨯++=故答案为:6. 15. [2,3)解:因为02x π≤≤,所以02x πωω≤≤ 令()cos 10f x x ω=-=,则cos 1x ω=有3个根 令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<故答案为:[2,3).16.解:依题意,设22AF m =,则2113,22BF m BF AF a m ===+在1Rt ABF 中,2229(22)25m a m m ++=,则(3)()0a m a m +-=,故a m =或3a m=-(舍去)所以124,2AF a AF a ==,213BF BF a ==,则5AB a = 故11244cos 55AF a F AF ABa ∠===所以在12AF F △中,2221216444cos 2425a a c F AF a a +-∠==⨯⨯,整理得2259c a =故5c e a ==.四、解答题.17. (1 (2)6 【小问1详解】3A B C += π3C C ∴-=,即π4C =又2sin()sin sin()A C B A C -==+2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+ sin cos 3cos sin A C A C ∴= sin 3cos A A ∴=即tan 3A =,所以π02A <<sin10A ∴==. 【小问2详解】由(1)知,cos10A ==由sin sin()B A C =+sin cos cos sin A C A C =+=+=由正弦定理,sin sin c bC B=,可得52b ==11sin 22AB h AB AC A ∴⋅=⋅⋅sin 6h b A ∴=⋅==. 18. (1)证明见解析 (2)1 【小问1详解】以C 为坐标原点,1,,CD CB CC 所在直线为,,x y z 轴建立空间直角坐标系,如图则2222(0,0,0),(0,0,3),(0,2,2),(2,0,2),(2,2,1)C C B D A2222(0,2,1),(0,2,1)B C A D ∴=-=- 2222B C A D ∴∥又2222B C A D ,不在同一条直线上2222B C A D ∴∥.【小问2详解】 设(0,2,)(04)P λλ≤≤则22222(2,2,2)(0,2,3),=(2,0,1),A C PC D C λ=--=---设平面22PA C 的法向量(,,)n x y z =则22222202(3)0n A C x y z n PC y z λ⎧⋅=--+=⎪⎨⋅=-+-=⎪⎩ 令 2z =,得3,1y x λλ=-=-(1,3,2)n λλ∴=--设平面222A C D 的法向量(,,)m a b c =则2222222020m A C a b c m D C a c ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩ 令 1a =,得1,2==b c(1,1,2)m ∴=cos ,cos1506n m n m n m⋅∴===︒=化简可得,2430λλ-+= 解得1λ=或3λ=(0,2,1)P ∴或(0,2,3)P21B P ∴=.19. (1)答案见解析 (2)证明见解析 【小问1详解】解:因为()()e x f x a a x =+-,定义域为R ,所以()e 1xf x a '=-当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立所以()f x 在R 上单调递减;当0a >时,令()e 10xf x a '=-=,解得ln x a =-当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减; 当ln x a >-时,0fx,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增. 【小问2详解】由(1)得,()()()ln min 2ln ln ln e 1af a a x a f a a a --+=++=+=要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立. 令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在0,2⎛⎫⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增.所以()2min 1ln 02222g a g ⎛⎛==--=>⎝⎭⎝⎭,则()0g a >恒成立. 所以当0a >时,3()2ln 2f x a >+恒成立,证毕. 20.(1)3n a n = (2)5150d =【小问1详解】21333a a a =+,132d a d ∴=+,解得1a d = 32133()6d d S a a =+==∴又31232612923T b b b d d d d=++=++= 339621S T d d∴+=+= 即22730d d -+=,解得3d =或12d =(舍去) 1(1)3n a a n d n ∴=+-⋅=.【小问2详解】{}n b 为等差数列,2132b b b ∴=+,即21312212a a a =+ 2323111616()d a a a a a ∴-==,即2211320a a d d -+=,解得1a d =或12a d = 1d >,0n a ∴>又999999S T -=,由等差数列性质知,5050999999a b -=,即50501a b -=505025501a a ∴-=,即2505025500a a --=,解得5051a =或5050a =-(舍去) 当12a d =时,501495151a a d d =+==,解得1d =,与1d >矛盾,无解; 当1a d =时,501495051a a d d =+==,解得5150d =. 综上,5150d =. 21. (1)0.6(2)1121653i -⎛⎫⨯+ ⎪⎝⎭(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 【小问1详解】记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B 所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6=⨯-+⨯=.【小问2详解】设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+ 构造等比数列{}i p λ+设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭ 又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭. 【小问3详解】因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅ 所以当*N n ∈时,()122115251263185315nn n n n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- 故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 22. (1)214y x =+ (2)见解析 【小问1详解】设(,)P x y ,则y =两边同平方化简得214y x =+ 故21:4W y x =+. 【小问2详解】法一:设矩形的三个顶点222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在W 上,且a b c <<,易知矩形四条边所在直线的斜率均存在,且不为0.则1,AB BC k k a b b c =⋅-+<+,令2240114AB k b a b a b am ⎛⎫+-+ ⎪⎝=+⎭==<- 同理令0BC k b c n =+=>,且1mn =-,则1m n=-设矩形周长为C ,由对称性不妨设||||m n ≥,1BC AB k k c a n m n n-=-=-=+则11||||(((2C AB BC b a c b c a n n ⎛=+=--≥-=+ ⎝.0n >,易知10n n ⎛+> ⎝则令()222111()1,0,()22f x x x x f x x x x x x '⎛⎫⎛⎫⎛⎫=++>=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 令()0f x '=,解得x =当0,2x ⎛∈ ⎝⎭时,()0f x '<,此时()f x 单调递减当,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭,()0f x '>,此时()f x 单调递增则min 27()4f x f ==⎝⎭故122C ≥=,即C ≥当C =时,n m ==,且((b a b a -=-,即m n =时等号成立,矛盾,故C >得证.法二:不妨设,,A B D 在W 上,且BA DA ⊥依题意可设21,4A a a ⎛⎫+ ⎪⎝⎭,易知直线BA ,DA 的斜率均存在且不为0则设BA ,DA 的斜率分别为k 和1k-,由对称性,不妨设1k ≤ 直线AB 的方程为21()4y k x a a =-++则联立22141()4y x y k x a a ⎧=+⎪⎪⎨⎪=-++⎪⎩得220x kx ka a -+-=()()222420k ka a k a ∆=--=->,则2k a ≠则||2|AB k a =-同理||2AD a =+||||2|2AB AD k a a ∴+=-1122k a a k k ⎫≥-++≥+=⎪⎭令2k m =,则(]0,1m ∈,设32(1)1()33m f m m m m m+==+++则2221(21)(1)()23m m f m m m m '-+=+-=,令()0'=f m ,解得12m =当10,2m ⎛⎫∈ ⎪⎝⎭时,()0f m '<,此时()f m 单调递减 当1,2m ⎛⎫∈+∞⎪⎝⎭,()0f m '>,此时()f m 单调递增 则min 127()24f m f ⎛⎫==⎪⎝⎭||||AB AD ∴+≥但12|2|2|2k a a k a a k ⎫-+≥-++⎪⎭,此处取等条件为1k =,与最终取等时k =,故AB AD +>. 法三:为了计算方便,我们将抛物线向下移动14个单位得抛物线2:W y x '=,\矩形ABCD 变换为矩形A B C D '''',则问题等价于矩形A B C D ''''的周长大于设 ()()()222001122,,,,,B t t A t t C t t ''', 根据对称性不妨设 00t ≥.则 1020,A B B C k t t k t t ''''=+=+, 由于 A B B C ''''⊥, 则 ()()10201t t t t ++=-.由于 1020,A B t B C t ''''=-=-, 且 0t 介于 12,t t 之间,则 1020A B B C t t ''''+=--. 令 20tan t t θ+=10πcot ,0,2t t θθ⎛⎫+=-∈ ⎪⎝⎭,则2010tan ,cot t t t t θθ=-=--,从而))002cot tan 2A B B C t t θθ''''+=++-故330022222(cos sin )11sin cos sin cos 2sin cos cos sin sin cos sin cos t A B B C t θθθθθθθθθθθθθθ''''-+⎛⎫+=-++=+ ⎪⎝⎭①当π0,4θ⎛⎤∈ ⎥⎝⎦时第 21 页 共 21 页332222sin cos sin cos sin cos cos sin A B B C θθθθθθθθ''''++≥=+≥=≥ ②当 ππ,42θ⎛⎫∈⎪⎝⎭ 时,由于102t t t <<,从而000cot tan t t t θθ--<<- 从而0cot tan 22t θθ-<<又00t ≥ 故0tan 02t θ≤<,由此330222(cos sin )sin cos sin cos sin cos t A B B C θθθθθθθθ''''-++=+ 3323222sin (cos sin )(sin cos )sin cos 1cos sin cos sin cos cos sin θθθθθθθθθθθθθθ-+>+=+==2≥≥=当且仅当cos 3θ=时等号成立,故A B B C ''''+>,故矩形周长大于。
普通高级中学新数学课程标准试题(含答案)

普通高级中学新数学课程标准试题(含答案)第一部分:选择题1. 以下哪个是二次方程的解?A. x = 2B. x = -3C. x = 1D. x = 0答案:B2. 一条直线的斜率是2,过点(3, 4),则直线方程为:A. y = 2x - 6B. y = 2x + 2C. y = 4x + 1D. y = 2x + 4答案:D3. 若a = 3,b = 4,c = 5,则直角三角形的斜边长度为:A. 6B. 8C. 10D. 12答案:C4. 已知函数f(x) = x^2 + 3x + 2,求f(1)的值。
A. 2B. 4C. 6D. 8答案:65. 一辆汽车以每小时60公里的速度行驶,2小时后行驶的距离为:A. 30公里B. 60公里C. 90公里D. 120公里答案:120公里第二部分:填空题1. 一个等差数列的公差是3,首项是4,第5项是__。
答案:162. 一个等比数列的公比是2,首项是3,第4项是__。
答案:243. 设两个数的和是8,差是2,则这两个数分别为__和__。
答案:5和34. 已知直角三角形的直角边长分别为3和4,则斜边长为__。
答案:55. 若a = 3,b = 4,则a^2 + b^2 = __。
答案:25第三部分:解答题1. 解方程:2x + 5 = 15解答:2x + 5 = 152x = 15 - 52x = 10x = 10 / 2x = 52. 计算下列算式的值:(3 + 4) × 2 - 5解答:(3 + 4) × 2 - 57 × 2 - 514 - 593. 求直角三角形的斜边长。
已知直角边长分别为6和8。
解答:斜边长= √(6^2 + 8^2)斜边长= √(36 + 64)斜边长= √100斜边长 = 104. 若函数f(x) = 2x + 3,求f(4)的值。
解答:f(x) = 2x + 3f(4) = 2(4) + 3f(4) = 8 + 3f(4) = 115. 求一个等差数列的第10项,已知公差为3,首项为2。
普通高中新数学课程标准的测试题(包括答案)

普通高中新数学课程标准的测试题(包括答案)第一题已知直线AB与直线CD垂直交于点E,且AE=8cm,BE=6cm,CE=12cm,求ED的长度是多少?答案:根据直角三角形的勾股定理可得,ED的长度为10cm。
第二题已知函数f(x) = 2x^2 + 3x - 5,求f(x)的最小值点的横坐标是多少?答案:首先,可以通过求导数的方法找到f(x)的最小值点。
对f(x)求导得到f'(x) = 4x + 3。
令f'(x) = 0,解得x = -3/4。
所以,f(x)的最小值点的横坐标为-3/4。
第三题已知集合A = {1, 2, 3, 4, 5},集合B = {3, 4, 5, 6, 7},求A与B的交集和并集分别是哪些元素?答案:A与B的交集是{3, 4, 5},并集是{1, 2, 3, 4, 5, 6, 7}。
第四题已知三角形ABC的三个内角分别为30°,60°,90°,求三角形ABC的周长。
答案:根据三角形的性质可知,三角形ABC是一个特殊的30°-60°-90°三角形。
设BC = x,则AC = x√3,AB = 2x。
所以,三角形ABC的周长为x + x√3 + 2x = (3 + √3)x。
第五题已知函数f(x) = 3x^2 - 2x + 4,求f(x)的对称轴方程。
答案:对称轴方程可以通过求函数f(x)的一阶导数的零点得到。
对f(x)求导得到f'(x) = 6x - 2。
令f'(x) = 0,解得x = 1/3。
所以,f(x)的对称轴方程为x = 1/3。
第六题已知等差数列的首项是2,公差是5,求该等差数列的前10项之和。
答案:等差数列的前n项和可以通过公式Sn = (n/2)(a + l)得到,其中Sn表示前n项和,a表示首项,l表示末项。
根据已知条件,首项a = 2,公差d = 5,所以末项l = a + (n-1)d = 2 + 9*5 = 47。
高一数学高中数学新课标人教B版试题答案及解析

高一数学高中数学新课标人教B版试题答案及解析1.若的图像是()【答案】B【解析】主要考查指数函数与对数函数的图象和性质、指数函数与对数函数互为反函数关系。
解:,所以,,故选B。
2.设任意实数x0>x1>x2>x3>0,要使1993+1993+1993≥k•1993恒成立,则k的最大值是.【答案】9【解析】先利用换底公式进行化简,然后令a=lgx0﹣lgx1,b=lgx1﹣lgx2,c=lgx2﹣lgx3,将题目转化成不等式恒成立问题,最后利用柯西不等式求出最值即可求出所求.解:要使1993+1993+1993≥k•1993恒成立即使++≥k•恒成立令a=lgx0﹣lgx1,b=lgx1﹣lgx2,c=lgx2﹣lgx3,而x>x1>x2>x3>0∴a>0,b>0,c>0即使得≥k•(a>0,b>0,c>0)恒成立即k≤()(a+b+c)的最小值根据柯西不等式可知()(a+b+c)≥(++)2=(1+1+1)2=9∴k的最大值是9故答案为:9点评:本题主要考查了函数恒成立问题,以及柯西不等式的应用,同时考查了转化的思想,属于中档题.3.已知x+5y+3z=1,则x2+y2+z2的最小值为.【答案】【解析】利用题中条件:“x+5y+3z=1”构造柯西不等式:(x2+y2+z2)×(1+25+9 )≥(x+5y+3z)2这个条件进行计算即可.证明:∵35=1+25+9,∴35(x2+y2+z2)=(x2+y2+z2)×(1+25+9 )≥(x+5y+3z)2=1可得:x2+y2+z2≥,即x2+y2+z2的最小值为,故答案为:.点评:本题考查用综合法证明不等式,关键是利用:(x2+y2+z2)×(1+25+9 )≥(x+5y+3z)2.4.(不等式选讲)若实数x,y,z满足x2+y2+z2=9,则x+2y+3z的最大值是.【答案】【解析】由柯西不等式可得:(x2+y2+z2)×(12+22+32)≥(x+2y+3z)2,结合已知x2+y2+z2=9,可求x+2y+3z的最大值.解:由柯西不等式可得:(x2+y2+z2)×(12+22+32)≥(x+2y+3z)2已知x2+y2+z2=9,∴(x+2y+3z)2≤9×14,∴x+2y+3z的最大值是.故答案为:.点评:本题考查柯西不等式,构造柯西不等式(x2+y2+z2)×(12+22+32)≥(x+2y+3z)2是关键.5.(2007•北京)如果正数a,b,c,d满足a+b=cd=4,那么()A.ab≤c+d且等号成立时a,b,c,d的取值唯一B.ab≥c+d且等号成立时a,b,c,d的取值唯一C.ab≤c+d且等号成立时a,b,c,d的取值不唯一D.ab≥c+d且等号成立时a,b,c,d的取值不唯一【答案】A【解析】根据均值不等式分别有:;;则a,b,c,d满足a+b=cd=4,进而可得2化简即得.当且仅当a=b=c=d=2时取等号.解:如果a,b是正数,则根据均值不等式有:,则(a+b)2≥4ab如果c,d是正数,则根据均值不等式有:;则∵a,b,c,d满足a+b=cd=4,∴2当且仅当a=b=c=d=2时取等号.化简即为:ab≤c+d且等号成立时a,b,c,d的取值唯一.故选A.点评:要熟练使用均值不等式,能正用、逆用,而且还要会变用.使用时还要特别注意等号成立的条件.6.设a1,a2,…,an为实数,证明:≤.【答案】见解析【解析】利用排序原理,n个式子相加,可得n(a12+a22+…+an2)≤(a1+a2+…+an)2,上式两边除以n2,并开方可得结论.证明:不妨设a1≤a2≤…≤an,则由排序原理得:a 12+a22+…+an2=a1a1+a2a2+…+anana 12+a22+…+an2≤a1a2+a2a3+…+ana1a 12+a22+…+an2≤a1a3+a2a4+…+an﹣1a1+a n a2…a 12+a22+…+an2≤a1an+a2a1+…+anan﹣1.将上述n个式子相加,得:n(a12+a22+…+an2)≤(a1+a2+…+an)2,上式两边除以n2,并开方可得:≤.点评:本题考查排序原理,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.7.设a1,a2,…,an为正数,求证:++…++≥a1+a2+…+an.【答案】见解析【解析】不妨设a1>a2>…>an>0,则a12>a22>…>an2,,由排序原理:乱序和≥反序和,可得结论.证明:不妨设a1>a2>…>an>0,则a12>a22>…>an2,由排序原理:乱序和≥反序和,可得:++…++≥=a1+a2+…+an.点评:本题考查不等式的证明,考查排序原理:乱序和≥反序和,考查学生分析解决问题的能力,属于中档题.8.设a,b,c是正实数,求证:a a b b c c≥(abc).【答案】见解析【解析】不妨设a≥b≥c>0,则lga≥lgb≥lgc,据排序不等式,可得三个不等式,相加,即可得出结论.证明:不妨设a≥b≥c>0,则lga≥lgb≥lgc.据排序不等式有:alga+blgb+clgc≥blga+clgb+algcalga+blgb+clgc≥clga+algb+blgcalga+blgb+clgc=alga+blgb+clgc上述三式相加得:3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc)即lg(a a b b c c)≥lg(abc)故a a b b c c≥(abc).点评:本题考查不等式的证明,考查排序不等式,考查学生分析解决问题的能力,属于中档题.9.(2011•绵阳二模)若不等式|x﹣a|﹣|x|<2﹣a2当x∈R时总成立,则实数a的取值范围是()A.(﹣2,2)B.(﹣2,1)C.(﹣1,1)D.(﹣∞,﹣1)∪(1,+∞)【答案】C【解析】先利用绝对值不等式的性质:﹣|a+b|≤|a|﹣|b|≤|a+b|,去绝对值符号确定|x﹣a|﹣|x|的取值范围,然后让2﹣a2大于它的最大值即可.解:令y=|x﹣a|﹣|x|≤|a|所以要使得不等式|x﹣a|﹣|x|<2﹣a2当x∈R时总成立只要2﹣a2≥|a|即可∴a∈(﹣1,1)故选C.点评:本题主要考查不等式恒成立问题.关键是利用结论:大于一个函数式只需要大于它的最大值即可.10.(2014•南昌三模)若关于x的不等式|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集为空集,则实数a的取值范围为()A.(0,1)B.(﹣1,0)C.(﹣∞,﹣1)D.(﹣∞,﹣1)∪(0,+∞)【答案】D【解析】依题意,关于x的不等式|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集为空集⇔a2+a+1>|x﹣1|﹣|x﹣2|恒成立,构造函数f(x)=|x﹣1|﹣|x﹣2|,可求其最大值,从而可解关于a的不等式即可.解:∵|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集为空集,∴a2+a+1>|x﹣1|﹣|x﹣2|恒成立,构造函数f(x)=|x﹣1|﹣|x﹣2|=,则a2+a+1>f(x)max ,∵f(x)max=1,∴a2+a+1>1,∴a2+a>0,解得a>0或a<﹣1.∴实数a的取值范围为(﹣∞,﹣1)∪(0,+∞)故选D.点评:本题考查绝对值不等式的解法,考查函数恒成立问题,突出等价转化思想的应用与一元二次不等式的解法的考查,属于中档题.11.(2014•吉安二模)已知f(x)=|x﹣1|+|x+m|(m∈R),g(x)=2x﹣1,若m>﹣1,x∈[﹣m,1],不等式f(x)<g(x)恒成立,则实数m的取值范围是()A.(﹣1,﹣]B.(﹣1,﹣)C.(﹣∞,﹣]D.(﹣1,+∞)【答案】B【解析】依题意,x∈[﹣m,1]时,f(x)=1﹣x+x+m=1+m;又x∈[﹣m,1],不等式f(x)<g(x)恒成立,问题转化为1+m<g(x)min=﹣2m﹣1恒成立,从而可得答案.解:∵f(x)=|x﹣1|+|x+m|,∴当m>﹣1,x∈[﹣m,1]时,f(x)=1﹣x+x+m=1+m;又g(x)=2x﹣1,x∈[﹣m,1],不等式f(x)<g(x)恒成立,即1+m<2x﹣1(x∈[﹣m,1])恒成立,又当x∈[﹣m,1]时,g(x)min =﹣2m﹣1,∴1+m<﹣2m﹣1,解得:m<﹣,又m>﹣1,∴﹣1<m<﹣.故选:B.点评:本题考查绝对值不等式的解法,考查等价转化思想与综合运算能力,属于中档题.12.(2014•安徽模拟)已知关于x的不等式:|2x﹣m|≤1的整数解有且仅有一个值为2,则关于x 的不等式:|x﹣1|+|x﹣3|≥m的解集为()A.(﹣∞,0]B.[4,+∞)C.(0,4]D.(﹣∞,0]∪[4,+∞)【答案】D【解析】(1)已知关于x的不等式:|2x﹣m|≤1,化简为,再利用不等式整数解有且仅有一个值为2,求出m的值.(2)可以分类讨论,根据讨论去掉绝对值,然后求解.解:(1)由不等式|2x﹣m|≤1,可得,∵不等式的整数解为2,∴,解得3≤m≤5.再由不等式仅有一个整数解2,∴m=4.(2)(2)本题即解不等式|x﹣1|+|x﹣3|≥4,当x≤1时,不等式等价于1﹣x+3﹣x≥4,解得x≤0,不等式解集为{x|x≤0}.当1<x≤3时,不等式为x﹣1+3﹣x≥4,解得x∈∅,不等式解为∅.当x>3时,x﹣1+x﹣3≥4,解得x≥4,不等式解集为{x|x≥4}.综上,不等式解为(﹣∞,0]∪[4,+∞).故选D.点评:此题考查绝对值不等式的性质及其解法,这类题目是高考的热点,难度不是很大,要注意进行分类讨论,解题的关键是去掉绝对值,属于中档题.13.(2014•武汉模拟)若关于x的不等式|x﹣3|+|x﹣4|<a的解集是空集,则实数a的取值范围是()A .(﹣∞,1]B .(﹣∞,1)C .[1,+∞)D .(1,+∞)【答案】A【解析】不等式|x ﹣3|+|x ﹣4|<a 的解集是空集⇔|x ﹣3|+|x ﹣4|≥a 恒成立,令f (x )=|x ﹣3|+|x ﹣4|,利用绝对值不等式可求得f (x )min =1,从而可得答案. 解:∵不等式|x ﹣3|+|x ﹣4|<a 的解集是空集, ∴|x ﹣3|+|x ﹣4|≥a 恒成立,令f (x )=|x ﹣3|+|x ﹣4|,则a≤f (x )min .∵f (x )=|x ﹣3|+|x ﹣4|≥|(x ﹣3)﹣(x ﹣4)|=1,即f (x )min =1, ∴a≤1,即实数a 的取值范围是(﹣∞,1], 故选:A .点评:本题考查绝对值不等式的解法,考查绝对值不等式的应用,突出等价转化思想的考查,属于中档题.14. (2014•郴州三模)在平面直角坐标系xOy 中,已知P 是函数f (x )=xlnx ﹣x 的图象上的动点,该曲线在点P 处的切线l 交y 轴于点M (0,y M ),过点P 作l 的垂线交y 轴于点N (0,y N ).则的范围是( )A .(﹣∞,﹣1]∪[3,+∞)B .(﹣∞,﹣3]∪[1,+∞)C .[3,+∞)D .(﹣∞,﹣3]【答案】A【解析】设出P 的坐标,求导函数,可得曲线在点P 处的切线l 的方程,过点P 作l 的垂线的方程,令x ﹣0,可得y M =﹣a ,y N =alna ﹣a+,进而可求=﹣lna+1﹣,利用基本不等式,即可求出的范围.解:设P (a ,alna ﹣a ),则 ∵f (x )=xlnx ﹣x , ∴f′(x )=lnx ,∴曲线在点P 处的切线l 的方程为y ﹣alna+a=lna (x ﹣a ),即y=﹣a+xlna . 令x=0,可得y M =﹣a ,过点P 作l 的垂线的方程为y ﹣alna+a=﹣(x ﹣a ),令x=0,可得y N =alna ﹣a+,∴=﹣lna+1﹣,∵lna+≥2或lna+≤﹣2,∴﹣(lna+)≤﹣2或﹣(lna+)≥2, ∴=﹣lna+1﹣的范围是(﹣∞,﹣1]∪[3,+∞).故选A .点评:本题考查导数知识的运用,考查导数的几何意义,考查基本不等式的运用,属于中档题.15. (2014•长春三模)已知函数f (x )=x 2的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))处的切线互相垂直,并交于点P ,则点P 的坐标可能是( ) A .(﹣,3)B .(0,﹣4)C .(2,3)D .(1,﹣)【答案】D【解析】由已知函数解析式求得A ,B 的坐标,求出原函数的导函数,得到函数在A ,B 两点出的导数值,由图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))处的切线互相垂直得到,由点斜式写出过A ,B 两点的切线方程,通过整体运算求得,即P 点纵坐标为,然后逐一核对四个选项可得答案. 解:由题意可知,(x 1≠x 2),由f (x )=x 2,得f′(x )=2x ,则过A ,B 两点的切线斜率k 1=2x 1,k 2=2x 2, 又切线互相垂直, ∴k 1k 2=﹣1,即.两条切线方程分别为,联立得(x 1﹣x 2)[2x ﹣(x 1+x 2)]=0, ∴2x ﹣(x 1+x 2)=0,x=.代入l 1得,,结合已知选项可知,P 点坐标可能是D . 故选:D .点评:本题考查利用导数研究曲线上某点处的切线方程,曲线上过某点的切线的斜率,就是该点处的导数值,考查了整体运算思想方法,是中档题.16. (2014•吉林二模)已知曲线y=﹣3lnx 的一条切线的斜率为﹣,则切点的横坐标为( )A .3B .2C .1D .【答案】B【解析】求出原函数的导函数,设出斜率为的切线的切点为(x 0,y 0),由函数在x=x 0时的导数等于2求出x 0的值,舍掉定义域外的x 0得答案. 解:由y=﹣3lnx ,得,设斜率为2的切线的切点为(x 0,y 0), 则.由,解得:x 0=﹣3或x 0=2.∵函数的定义域为(0,+∞), ∴x 0=2. 故选:B .点评:考查了利用导数求曲线上过某点切线方程的斜率,考查了基本初等函数的导数公式,是中档题.17. (2014•齐齐哈尔一模)已知曲线f (x )=x 3﹣x 2﹣(x >1),则在该曲线上点(x 0,f(x 0))处切线斜率的最小值为( ) A .7 B .8C .9D .10【答案】A【解析】先求出曲线对应函数的导数,由基本不等式求出导数的最小值,即得到曲线斜率的最小值.解:f(x)=x3﹣x2﹣(x>1)的导数f′(x)=x2﹣2x+,∴在该曲线上点(x0,f(x))处切线斜率 k=x2﹣2x+,即k=(x﹣1)2+﹣1,由函数的定义域知 x0>1,即x﹣1>0,∴k≥2﹣1=7,当且仅当(x0﹣1)2=,即x="3" 时,等号成立.∴k的最小值为7.故选A.点评:本题考查曲线的切线斜率与对应的函数的导数的关系,以及基本不等式的应用,体现了转化的数学思想.18.(2014•揭阳三模)已知函数f(x)是定义在R上的奇函数,且当x∈(﹣∞,0]时,f(x)=e﹣x﹣ex2+a,则函数f(x)在x=1处的切线方程为()A.x+y=0B.ex﹣y+1﹣e=0C.ex+y﹣1﹣e=0D.x﹣y=0【答案】B【解析】利用f(0)=0先求出a的值,设x∈(0,+∞),根据已知条件求出f(﹣x),再利用奇函数,求出f(x)在(0,+∞)上的解析式,同时可求出导函数;求出切点坐标,再求出该点处的导数即为切线的斜率,利用点斜式表示出直线方程即可.解:由题意得,f(0)=1﹣0+a=0,解得a=﹣1,∴当x∈(﹣∞,0]时,f(x)=e﹣x﹣ex2﹣1,设x∈(0,+∞),则﹣x<0,f(﹣x)=e x﹣ex2﹣1,∵f(x)是定义在R上的奇函数,∴f(x)=﹣f(﹣x)=﹣e x+ex2+1,此时x∈(0,+∞),∴f′(x)=﹣e x+2ex,∴f′(1)=e,把x=1代入f(x)=﹣e x+ex2+1得,f(1)=1,则切点为(1,1),∴所求的切线方程为:y﹣1=e(x﹣1),化简得ex﹣y﹣e+1=0,故选B.点评:本题主要考查了利用导数研究曲线上某点切线方程,奇函数性质的利用,以及函数解析式,求函数在某范围内的解析式,一般先将自变量设在该范围内,再想法转化到已知范围上去,考查了转化思想.19.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()A.B.C.D.【答案】B【解析】根据点B是点A(1,2,3)在坐标平面yOz内的正投影,得到点B与点A的纵标和竖标相同,而横标为0,写出点B的坐标,根据两点之间的距离公式,得到结果.解:∵点B是点A(1,2,3)在坐标平面yOz内的正投影,∴点B与点A的纵标和竖标相同,而横标为0,∴B的坐标是(0,2,3)∴|OB|==,故选B.点评:本题考查空间两点之间的距离公式,考查点的正投影,是一个基础题,注意在运算过程中不要出错,本题若出现是一个送分题目.20.直角坐标平面上连结点(﹣2,5)和点M的线段中点是(1,0),那么点M坐标为()A.(﹣4,5)B.(4,﹣5)C.(4,5)D.(﹣4,﹣5)【答案】B【解析】设点M的坐标为(a,b),根据题意利用中点公式可得,解得a、b的值,即可得到点M坐标.解:设点M的坐标为(a,b),根据直角坐标平面上连结点(﹣2,5)和点M的线段中点是(1,0),由中点公式可得,解得,∴点M坐标为(4,﹣5),故选B.点评:本题主要考查线段的中点公式的应用,属于中档题.。
新课标高中数学同步测试题含答案

新课标高二数学期末同步测试题说明:本试卷分第一卷和第二卷两部分,第一卷50分,第二卷100分,共150分;答题时间120分钟。
第Ⅰ卷(选择题共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.设a >0, b >0,则以下不等式中不恒成立....的是 ( )A .)11)((b a b a ++≥4B .33b a +≥22abC .222++b a ≥b a 22+D .b a -≥b a -2.△ABC 中,BC=1,B A ∠=∠2,则AC 的长度的取值范围为 ( )A .(1,21) B .(23,1)C .[1,21] D .[23,1] 3.下列四个结论中正确的个数有( )①y = sin|x |的图象关于原点对称;②y = sin(|x |+2)的图象是把y = sin|x |的图象向左平移2个单位而得; ③y = sin(x +2)的图象是把y = sin x 的图象向左平移2个单位而得;④y = sin(|x |+2)的图象是由y = sin(x +2)( x ≥0)的图象及y = -sin(x -2) ( x <0)的图象 组成的.A .1个B .2个C .3个D .4个 4.已知sin θ-cos θ=21, 则sin 3θ- cos 3θ的值为 ( )A .167 B .-1611 C .1611D .-1675.平面直角坐标系中, O 为坐标原点, 已知两点A(3, 1), B(-1, 3), 若点C 满足OC =OB OA βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为( )A .3x +2y -11=0B .(x -1)2+(y -2)2=5C .2x -y=0D .x +2y -5=06.已知钝角三角形的三边分别是a,a+1,a+2,其最大内角不超过120°,则a 的取值范围是( )A .23≥a B .30<<aC .323<<a D .323<≤a 7.已知f(x )=b x +1为x 的一次函数, b 为不等于1的常数, 且g (n)=⎩⎨⎧≥-=)1()]1([)0(1n n g f n ,设a n = g (n)- g (n -1) (n ∈N ※), 则数列{a n }是( )A .等差数列B .等比数列C .递增数列D .递减数列8.定义()3nn N *∈为完全立方数,删去正整数数列1,2,3……中的所有完全立方数,得到一个新数列,这个数列的第2005项是( )A .2017B .2018C .2019D .20209.已知θ为第二象限角,且2cos2sin θθ<,那么2cos2sinθθ+的取值范围是 ( )A .(-1,0)B .)2,1(C .(-1,1)D .)1,2(--10.若对任意实数a ,函数y =5sin(312+k π,x -6π)(k ∈N)在区间[a ,a +3]上的值45出现不少于4次且不多于8次,则k 的值是( )A .2B .4C .3或4D .2或3第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.10cos 310sin 1-的值为 . 12.已知等差数列{a n }的公差d ≠0, 且a 1, a 3, a 9成等比数列, 则1042931a a a a a a ++++的值是 .13.已知向量),sin ,(cos θθ=a 向量)1,3(-=b , 则b a -2的最大值是 . 14.已知α、β是实数, 给出四个论断:①|α+β|=|α|+|β|; ②|α-β|≤|α+β|; ③|α|>22,|β|>22; ④|α+β|>5. 以其中的两个论断作为条件, 其余论断作为结论, 写出正确的一个 . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学新课标测试题及答案新课程标准考试数学试题
一、填空题(本大题共10道小题,每小题3分,共30分)
1、数学是研究(空间形式和数量关系)的科学,是刻画自然规
律和社会规律的科学语言和有效工具。
2、数学教育要使学生掌握数学的基本知识、(基本技能)、基本思想。
3、高中数学课程应具有多样性和(选择性),使不同的学生在数学上得到不同的发展。
4、高中数学课程应注重提高学生的数学(思维)能力。
5、高中数学选修2-2的内容包括:导数及其应用、(推理与证明)、数系的扩充与复数的引入。
6、高中数学课程要求把数学探究、(数学建模)的思想以不同的形式渗透在各个模块和专题内容之中。
7、选修课程系列1是为希望在(人文、社会科学)等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。
8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(情感、态度、价值观)。
9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与(三角函数)的一种工具。
10、数学探究即数学(探究性课题)研究,是指学生围绕某个数学问题,自主探究、研究的过程。
二、判断题(本大题共5道小题,每小题2分,共10分)
1、高中数学课程每个模块1学分,每个专题2学分。
(错)改:高中数学课程每个模块2学分,每个专题1学分。
2、函数关系和相关关系都是确定性关系。
(错)
改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。
3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。
(对)
4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。
(对)
5、教师应成为学生进行数学探究的领导者。
(错)改:教师应成为学生进行数学探究的组织者、指导者和合作者。
三、简答题(本大题共4道小题,每小题7分,共28分)
1、高中数学课程的总目标是什么?
使学生在九年制义务教育数学课程的根蒂根基上,进一步提高作为将来百姓所必要的数学素养,以满足个人发展与社会进步的需求。
2、高中数学新课程设置的准绳是什么?
必修课内容确定的准绳是:满足将来百姓的基本数学需求,为学生进一步的研究提供必要的数学筹办;
选修课内容确定的准绳是:满足学生的兴趣和对将来发展的需求,为学生进一步研究、获得较高数学素养奠定根蒂根基。
3、评价学生在数学建模中的表现时,评价内容应关注哪几个方面?评价内容应关注以下几个方面:
创新性——问题的提出和解决的方案有新意。
理想性——问题起原于学生的理想。
真实性——确实是学生本人参与制作的,数据是真实的。
合理性——建模过程中使用的数学方法得当,求解过程合乎常理。
有效性——建模的结果有一定的实际意义。
4、请简述《必修三》中《算法开端》一章的内容与请求。
四、论述题(本大题共2道小题,第一小题12分,第二小题20分)1、请完成《等差数列前n项和》第一课时的教学设计。
2、请您结合自己的教学经验,从理论和实践两个方面谈谈如何改善课堂教学中的教与
学的方式,能使学生更主动地研究?
谜底
新课程标准考试数学试题答案
一、填空题
1、空间形式和数量关系
2、基本技能
3、选择性
4、思维
5、推理与证明
6、数学建模
7、人文、社会科学
8、情感、态度、价值观
9、三角函数10、探究性课题
二、判断题
1、错,改:高中数学课程每个模块2学分,每个专题1学分。
2、错,改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。
3、对。
4、对。
5、错,改:教师应成为学生进行数学探究的组织者、指点者和合作者。
三、XXX
1、答:使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要
的数学素养,以满足个人发展与社会进步的需求。
2、答:必修课内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学
提供必要的数学准备;
选修课内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步研究、获得较高数学素养奠定根蒂根基。
3、答:评价内容应关注以下几个方面:
创新性——问题的提出和解决的方案有新意。
真实性——确实是学生本人参与制作的,数据是真实的。
合理性——建模过程中使用的数学方法得当,求解过程合乎常理。