三相异步电动机能耗制动系统设计
能耗制动

1.工作原理:所谓能耗制动,就是在电动机脱离交流电源的瞬间,在定子绕组中通以直流电,产生静止磁场,与转子中感应电流相互作用,产生制动力矩,从而达到使异步电机迅速停转的一种制动方法。
试设计一套电机控制系统。
要求:能实现系统的自动能耗制动,有短路和过载保护,同时通过实验分析制动时间以及制动电流对于能耗制动的作用。
如图2-1,三相异步电动机的定子绕组断开三相交流电源而接入直流电时,定子绕组便产生一个恒定的磁场。
而转子由于惯性会继续旋转,从而切割恒定磁场产生感应电动势和感应电流,其方向可用右手定则判断。
同时,由于转子铁芯电流与磁场相互作用而产生同旋转方向相反的电磁制动转矩,使电动机迅速停车。
当电动机的转速下降到零时,转子感应电动势和感应电流均为零,此时制动过程结束。
图2-1能耗制动原理图对于容量较大的电动机,多采用有变压器全波整流能耗制动控制线路。
如图3-1所示的为有变压器全波整流单向启动能耗制动控制电路,该线路利用时间继电器进行自动控制。
其中直流电源有单向桥式整流器VC提供,TC是整流变压器,电阻R式用来调节直流电流的,从而调节制动强度,电阻R越大,电动机定子通过电流越小,转子切割磁感线产生的电磁转矩越小,制动时间越长;电阻R越小,电动机定子通过电流越大,转子切割磁感线产生的电磁转矩越大,制动时间越短。
主电路及控制电路图如下:图3-1主电路及控制电路控制线路的控制过程如下:合上电源开关QS,按下启动按钮SB1接触器KM1线圈通电,常开主触点和自锁触点闭合,电动机启动运行。
制动时,按下停止按钮SB2,接触器KM1断电释放,电动机脱离三相交流电源,同时接触器KM2与时间继电器KT通电,KT开始计时,KM2常开主触点和自锁触点闭合,电动机进入能耗制动。
经过一段延时后,电动机转速接近于零,时间继电器延时断开的常闭触点断开,使KM2断电释放,切断直流电源,KM2断电后,常开触点断开,使时间继电器KT断电释放,电动机能耗制动过程结束。
项目1.4 三相异步电动机能耗制动控制电路的设计

电动机制动的方法一般有两类: 电动机制动的方法一般有两类: 机械制动:利用电磁铁操纵机械装置进行的制动。 机械制动:利用电磁铁操纵机械装置进行的制动。例如 电磁抱闸制动器(在吊车、卷扬机、电梯设备上常用) 电磁抱闸制动器(在吊车、卷扬机、电梯设备上常用)等, 可使电动机在切断电源后迅速停转。 可使电动机在切断电源后迅速停转。 电气制动:实质上是在电动机停车过程中, 电气制动:实质上是在电动机停车过程中,产生一个 与转子原来旋转方向相反的电磁制动转矩, 与转子原来旋转方向相反的电磁制动转矩,迫使电动机转 速迅速下降。 速迅速下降。
Date: 6/20/2011 Page: 3
三相异步电动机能耗制动控制电路的设计
能耗制动特点: 能耗制动特点: a.制动作用的强弱与直流电流的大小和电动机转速有关, a.制动作用的强弱与直流电流的大小和电动机转速有关,在同 制动作用的强弱与直流电流的大小和电动机转速有关 样的转速下电流越大制动作用越强。 样的转速下电流越大制动作用越强。 一般取直流电流为电动机空 载电流的3 载电流的3~4倍,过大会使定子过热。 过大会使定子过热。 b.电动机能耗制动时, b.电动机能耗制动时,制动转矩随电动机的惯性转速下降而减 电动机能耗制动时 小,故制动平稳且能量消耗小,但是制动力较弱,特别是低速时 故制动平稳且能量消耗小,但是制动力较弱, 尤为突出;另外控制系统需附加直流电源装置。 尤为突出;另外控制系统需附加直流电源装置。 c.一般在重型机床中常与电磁抱闸配合使用,先能耗制动, c.一般在重型机床中常与电磁抱闸配合使用,先能耗制动,待 一般在重型机床中常与电磁抱闸配合使用 转速降至一定值时,再令抱闸动作,可有效实现准确、快速停车。 转速降至一定值时,再令抱闸动作,可有效实现准确、快速停车。 b.能耗制动一般用于制动要求平稳准确、 b.能耗制动一般用于制动要求平稳准确、电动机容量大和起制 能耗制动一般用于制动要求平稳准确 动频繁的场合,如磨床、龙门刨床及组合机床的主轴定位等等。 动频繁的场合,如磨床、龙门刨床及组合机床的主轴定位等等。
三相异步电动机的能耗制动控制

L1 L2 L3
QS
FU1
FU
KM2
FR
KM1
FR
M 3~
R KM2
KM2
KS
KM2 SB1
TD
SB2 KM1
n KS
KM2
KM1
KM1 N
KM2
基于速度控制的能耗制动电路
制动控制过程分析
SB1 ↓
KM1断电
KM2通电 能耗制动
n↓
KS释放
KM2断电
制动结束
2 时 间 控 制 基于时间控制的单管能耗制动电路
《电机拖动与控制》课程
三相异步电动机的能耗制动控制
1 速 度 控 制 1.1 基于速度原则控制的能耗制动电路-电路组成
L1 L2 L3
QS
FU1
FU
KM2
FR
KM1
FR
R KM2 +
UVW
-
KM2
M
KS
O
KM2 SB1
TD
SB2 KM1
n KS
KM2
KM1
KM1 N
KM2
电路组成
1 直流电源TD---产生稳恒磁场 2 可变电阻R---调节制动力 3 KM1----运行接触器 4 KM2----制动接触器速度继电器 5 KS----控制制动过程
制动控制过程
SB1↓
KM1 断电
KT △t 接通
KM2 得电
KM2 断电
能耗 制动
制动 结束
直流通路为:电源L3→QF→ → KM2 U和V→W → KM2 → VD →R→ N
谢谢观看
THANKS YOU
L1 L2 L3 N R
QF
三相异步电动机星三角形起动及带能耗制动控制线路的设计及调试

三相异步电动机星三角形起动及带能耗制动控制线路的设计及调试三相异步电动机是工业领域中常见的电动机类型之一,它具有结构简单、可靠性高、维护成本低等优点,因此被广泛应用于各种机械设备中。
在实际应用中,为了实现电动机的起停控制和能耗制动控制,需要设计合适的线路并进行调试。
本文将详细介绍三相异步电动机星三角形起动及带能耗制动控制线路的设计及调试方法。
一、星三角形起动原理介绍1.1 三相异步电动机基本原理三相异步电动机是以交流电作为供电源的,通过交变磁场与转子磁场之间的相互作用来实现转矩输出。
其基本原理是根据法拉第定律和楞次定律,在三个互相位移120度的线圈上产生旋转磁场,从而驱使转子旋转。
1.2 星型接线和三角形接线在实际应用中,根据不同的负载特性和启动要求,可以采用星型接线或者三角形接线方式来供电给电动机。
星型接线方式适用于起始转矩较小、启动时无冲击负载的情况,而三角形接线方式适用于起始转矩较大、启动时有较大冲击负载的情况。
1.3 星三角形起动原理星三角形起动是一种常用的电动机启动方式,它通过在电动机绕组中采用星型接线方式进行起动,待电动机达到一定速度后再切换为三角形接线方式运行。
这种启动方式可以减小起动时的电流冲击,降低对供电系统的影响。
二、星三角形起动控制线路设计2.1 电源接线设计在设计星三角形起动控制线路时,首先需要将三相异步电动机的绕组按照星型接线方式连接。
其中,每个绕组的一个端子连接到公共节点,即为星点连接;另一个端子分别与供电系统的A、B、C相相连。
2.2 接触器选择和布置为了实现起停控制,需要选择适当的接触器来实现切换绕组的连接方式。
通常情况下,采用交流接触器作为主要控制元件。
在布置接触器时,应保证其能够承受所需负载,并且能够方便地进行维护和检修。
2.3 控制电路设计在星三角形起动控制线路中,需要设计一个控制电路来实现接触器的自动切换。
该控制电路通常由主回路和辅助回路组成。
主回路用于控制接触器的通断,而辅助回路则用于监测电动机的运行状态并进行相应的保护。
三相异步电动机可逆运行能耗制动控制(S7-200系列PLC).

三相异步电动机可逆运行能耗制动控制(S7-200系列PLC)解:1) I/O编址:I0.1——SB1停车 I0.4——FR过载保护 Q0.1——KM1线圈I0.2——SB2正转 Q0.2——KM2线圈I0.3——SB3反转 Q0.3——KM3线圈2) KT的对应指令——选定时器:T37(100ms时基接通延时定时器)设定时时间:PT=100(定时时间10s)2)梯形图(注意:I0.4过载保护设为常开触点)说明:在控制线路中,设置有KT的瞬动触点与KM3辅助常开触点串联,在PLC控制中,定时器是软器件,不存在机械故障的问题,所以不必设KT 的瞬动触点。
如果直接翻译,则根据定时器的工作时序,在Q0.3的自锁支路上串联的应是T37的常闭触点。
3)I/O端子接线图(略)多路定时器——多台电动机的顺序循环控制(S7-200系列PLC)控制要求:(1)由运行开关控制:“1”= 起动,“0”= 停止解:1) I/O编址:I0.0 ——运行开关定时器:T37 PT=800Q0.1——1#设备Q0.2——2#设备Q0.3——3#设备Q0.4——4#设备Q0.5——5#设备2)梯形图:如图8-3-14 (a)所示。
这里,利用了比较指令进行各时段的控制,非常方便3)I/O端子接线图(略)。
S7-200 PLC的PPI协议及其开发实例通过硬件和软件侦听的方法,分析PLC内部固有的PPI通讯协议,然后上位机采用VB编程,遵循PPI通讯协议,读写PLC数据,实现人机操作任务。
这种通讯方法,与一般的自由通讯协议相比,省略了PLC的通讯程序编写,只需编写上位机的通讯程序资源S7-226的编程口物理层为RS-485结构,SIEMENS提供MicroWin软件,采用的是PPI(Point to Point)协议,可以用来传输、调试PLC程序。
在现场应用中,当需要PLC与上位机通讯时,较多的使用自定义协议与上位机通讯。
在这种通讯方式中,需要编程者首先定义自己的自由通讯格式,在PLC 中编写代码,利用中断方式控制通讯端口的数据收发。
三相异步电动机能耗制动系统

《电机与拖动》课程设计三相异步电动机能耗制动系统System of three phase asynchronous motor energy consumption braking学生姓名刘庆_学生学号20120501157学院名称信电工程学院专业名称电气工程及其自动化指导老师韩成春2015 年1月22日摘要本文介绍了基于三相异步电动机的制动方法——能耗制动。
正常运行的电动机,切断电动机定子侧的三相交流电源,并将电动机的定子绕组任意两相出线端接到直流电源上,则直流电源将在定子内形成固定磁场,转子靠惯性旋转并切割此固定磁场,在转子绕组中产生感应电动势并形成感应电流,此电流与固定磁场相互作用,便产生电磁转矩,这个电磁转矩与转子转动方向相反,达到制动状态。
转子动能消耗在转子电阻内,这个过程就是能耗制动。
关键词三相异步电动机;能耗制动;直流电源;制动转矩;定子绕组目录1、绪论 (1)1.1 课题研究背景 (1)1.2 课题研究意义 (1)1.3 课程设计的目的和任务 (1)2、三相异步电动机的结构和工作原理 (2)2.1三相异步电动机的结构 (2)2.2三相异步电动机的工作原理 (2)2.2.2 转差率 (3)3、三相异步电动机的能耗制动 (4)3.1三相异步电动机能耗制动的原理 (4)3.2三相异步电动机能耗制动电路 (4)3.3 能耗制动过程分析 (6)4、三相异步电动机的选取和制动参数的计算 (7)4.1三相异步电动机的型号 (7)4.3计算直流电压、电流以及串入电路的电阻值 (8)4.4制动时间的确定 (9)结论 (10)心得 (11)参考文献 (12)附录 (13)附录1 (13)附录2 (14)致谢 (15)1、绪论1.1 课题研究背景异步电动机主要用作电动机,其功率范围从几瓦到上万千瓦,是国民经济各行业和人们日常生活中应用最广泛的电动机,为多种机械设备和家用电器提供动力。
例如机床、中小型轧钢设备、风机、水泵、轻工机械、冶金和矿山机械等,大都采用三相异步电动机拖动;电风扇、洗衣机、电冰箱、空调器等家用电器中则广泛使用单相异步电动机。
三相异步电动机能耗制动控制线路

02
电路设计
主电路设计
电源接入
主电路电源为三相交流电源,通过断路器、接触器和热继电 器等设备接入电源。
电动机接线
三相异步电动机的三个绕组通过六个出线端接至主电路,三 个绕组的首端接至电源的三个相线,尾端接至接触器的三个 主触头,实现电机的启动和运行。
在实验过程中,由于实验条件所 限,仅采用了简单的模拟负载进 行测试,未来可以考虑更加接近 实际情况的复杂负载进行实验验 证。
控制线路在实际应用中的前景
由于三相异步电动机能耗制动控制线 路具有较高的控制精度和稳定性,可 广泛应用于各种需要精确速度和位置 控制的工业生产机械中,例如机床、
印刷机、装配线等。
详细描述:控制变压器是一种用于调节电压的电器元件,它将输入的高电压或低 电压调节到合适的电压值,以满足电器设备的需求。
04
控制系统实现
硬件系统搭建
控制器选择
采用单片机或PLC作为主控制 器,根据实际需求选择合适的
硬件设备。
硬件电路设计
设计电源电路、输入输出电路、 AD/DA转换电路等,以满足系统 控制要求。
在节能减排方面,该控制线路也有着 广泛的应用前景,例如在风力发电、 水力发电等能源转换领域中,可以通 过精确控制电动机的能耗制动实现能
量的高效回收和利用。
在智能制造领域,该控制线路可以与 工业物联网、工业大数据等先进技术 相结合,实现生产过程的自动化、信 息化和智能化,提高生产效率和产品
质量。
THANKS
三相异步电动机能耗制动 控制线路
三相异步电动机的能耗制动

三相异步电动机的能耗制动
所谓能耗制动就是将正常运行的电动机的定子绕组的三相交流电源切断,同时给定子绕组的任意两相通入直流电,此时定子中的旋转磁场消失,由直流电产生了恒定磁场。
由于转子在惯性作用下继续转动,转子导体切割恒定磁场,产生转子感应电动势,从而产生感应电流;同时,转子中的感应电流又与磁场相互作用,产生与转速方向相反的电磁转矩,即制动转矩。
因此,转子转速迅速下降,当转速下降至零时,转子中的感应电动势和感应电流均为零,制动过程结束。
制动期间,转子的动能转变为电能消耗在转子回路的电阻上,所以称这种制动为能耗制动。
设电动机原来工作在固有机械特性曲线上的A点,制动瞬间,因转速不能突变,工作点由A点过渡到能耗制动机械特性曲线上(曲线1)的B点,在制动转矩的作用下,电动机开始减速,工作点沿曲线1变化,直到原点(n=0,T=0),制动结束。
若电动机负载为位能性负载,则当电动机转速为零时,就要实现停车,必须立即采用机械制动的方法将电动机轴刹住,否则电动机将在位能性负载的作用下反转,机械特性曲线将进入第IV象限。
为了限制制动电流,在转子回路中串入了制动电阻RB,制动电阻的选择要适当,不能太大,否则制动效果不好,也不能太小,否则制动电流又太小,影响电动机的可靠性。
能耗制动广泛应用于要求平稳准确停车的场合,也应用于起重机一类位能性负载的机械上,用来限制重物的下降速度,以使重物稳定下放。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计说明书作者: hh 学号:jj学院: kk专业: pp题目: 三相异步电动机能耗制动系统设计指导者:hh hh目录1、引言 (1)1.1课程研究背景 (1)1.2课程研究的价值 (1)1.3课程设计的任务 (2)2、三项异步电动机的基本结构和工作原理 (2)2.1三项异步电动机的基本结构 (2)2.1.1定子 (2)2.1.2转子 (3)2.2三项异步电动机的工作原理 (4)3、三相异步电动机的能耗制动 (5)3.1能耗制动的原理 (5)3.2能耗制动的设计 (6)3.2.1电器元件的选择 (6)3.2.2计算与校验 (6)3.2.3能耗制动原理图 (7)3.3能耗制动的分析 (7)3.3.1能耗制动特点[9] (7)3.3.2能耗制动控制线路 (8)结论 (8)参考文献: (9)1、引言1.1课程研究背景三相异步电动机又称三项感应电动机,它的应用非常广泛,几乎涵盖了农业生产和人类生活的各个领域。
随着电气化、自动化技术的发展,三项异步电动机得到了越来越好的控制。
而电气化控制相较其他控制方法而言,更简洁便于操作,所以应用比较广泛。
本课题的控制是采用PLC的梯形图编程语言来实现的。
梯形图语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能、使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路。
三相异步电动机切断电源后,由于惯性作用,转子需要经过一定时间才能停止旋转,这往往不能满足有些机械设备的工艺要求,造成运动部件的停机位置不准确,同时也影响生产效率的提高,因此必须对电动机采取有效的制动措施。
停机制动方法有两大类,即机械制动和电气制动。
机械制动是采用机械制动装置来强迫电机迅速停止,常用的有电磁抱闸制动和电磁离合器制动等。
电气制动是使电动机产生一个与原来转子转动方向相反的制动转矩而使其迅速停止常用的有反接制动能、耗制动等[2]。
长期以来,能耗制动始终处于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用。
它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。
由于能耗制动综合了计算机和自动化技术,所以它发展日新月异,大大超出其出现时的技术水平。
它不但可以很容易地完成逻辑、顺序、定时、计数、数字运算、数据处理等功能,而且可以通过输入输出接口建立与各类生产机械数字量和模拟量的联系,从而实现生产过程的自动控制[10]。
1.2课程研究的价值特别是超大规模集成电路的迅速发展以及信息、网络时代的到来,扩大了能耗制动的功能,使其具有很强的的联网通讯能力,从而更广泛地应用于众多行业,不管是农业还是工业,都有着举足轻重的作用。
随着科学技术的发展与不断进步,电气工程与自动化技术正以令人瞩目的发展快速的改变着我国的工业基础整体面貌。
与此同时,该技术的不断发展,对社会的生产方式、人们的生活方式和思想观念也产生了重大的影响,并在现代化建设中发挥着越来越重要的作用,它正朝着智能化、网络化和集成化的方向发展。
1.3课程设计的任务1.设计能耗制动系统,合理选择实现能耗制动的电气元件2.根据所选电气元件,设计能耗制动主回路及其控制回路3.要求三相异步电动机停机后迅速切除电源2、三项异步电动机的基本结构和工作原理2.1三项异步电动机的基本结构三项异步电动机主要由定子和转子两个部分组成,定子是静止不动的部分,转子是旋转的部分,在定子与转子之间有一定的空隙,如图4.1所示[7]。
2.1.1定子定子由铁芯绕组及机座组成。
定子铁芯是磁路的一部分,它由0.5毫米的硅钢片叠压而成一个整体固定于机座上,片与片之间是绝缘的,以减少涡流损耗。
定子铁芯的内圆冲有定子槽,槽中安放线圈如图4.2所示[7]。
定子绕组是电动机的电路部分。
三相电动机的定子绕组分为3个部分对称地分布在定子铁芯上,称为三相绕组,分别用AX、BY、CZ表示,其中A、B、C 称为首端,X、Y、Z称为末端,三相绕组接入三相交流电源,三相绕组中的电流在定子铁芯中产生旋转磁场。
机座主要用来固定与支撑定子铁芯。
中小心型异步电动机一般采用铸铁机座。
根据不同的冷却方式采用不同的机座。
2.1.2转子转子由铁芯和绕组组成。
转子铁芯也是电动机磁路的一部分,由硅钢片叠压而成为一个整体装在转轴上。
转子铁芯的内圆冲有转子槽,槽中安放线圈如图4.2所示。
异步电动机转子多采用绕线式和鼠笼式两种形式。
因此异步电动机按绕组形式的不同分为绕线异步电动机和笼型异步电动机两种。
绕线电动机和笼形电动机的转子构造虽然不同,但工作原理是一致的。
转子的作用是产生转子电流及产生电磁转矩。
绕线异步电动机转子绕组是由线圈组成,三相绕组对称放入转子铁芯槽内。
转子绕组通过轴上的滑环和电刷在转子回路中接入外加电阻,用以改善启动性能与调节转速,如图4.3所示[7]。
笼型异步电动机转子绕组是在转子铁芯槽里插入铜条,再将全部同条两端焊在两个同端环上组成,如图4.4所示。
小型鼠笼式转子绕组多用铝离心浇铸而成,转子铁芯如图4.5所示[7]。
2.2三项异步电动机的工作原理三项异步电动机的工作原理,基于定子旋转磁场(定子绕组内三项电流所产生的合成磁场)和转子电流(转子绕组内的电流)的相互作用。
如图4.13(a)所示。
当电动机的三相定子绕组(各相差120度电角度),通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。
如图4.13(b)所示[7]。
3、三相异步电动机的能耗制动3.1能耗制动的原理异步电动机能耗制动的电路原理图一般如图4.45(a)所示。
进行能耗制动时,首先将定子绕组从三相交流电源断开(KM1断开),接着立即将一低压直流电源接入定子绕组(KM2闭合)。
直流电流通过定子绕组后,在电动机内部建立一个固定不变的磁场,由于转子在运动系统储存的机械能作用下继续旋转,转子导体内就会产生感应电动势和电流,该电流与恒定磁场相互作用产生作用方向与转子实际旋转方向相反的制动转矩。
在它的作用下,电动机转速迅速下降,此时运动系统储存的机械能被电动机转换成电能后消耗在转子电路的电阻中。
能耗制动时的机械特性如图 4.45(b)所示。
制动时系统运行点从特性曲线1的a点平移至特性曲线2的b点,在制动转矩和负载转矩的共同作用下,沿特性曲线2迅速减速。
直到n等于0为止,当n等于0时,T等于0。
所以,能耗制动能准确停车,不像电源反接制动那样,如不及时切断电源会使电动机反转,不过当电动机停止后不应再接通直流电源,因为那样将会烧坏电子绕组[8]。
另外,制动的后阶段随着转速的降低能耗制动转矩也很快减小,所以制动较平稳,但制动效果比电源反接制动差。
可以用改变定子励磁电流If或转子电路串接附加电阻绕线异步电动机的大小来调节制动转矩,从而调节制动的强弱,由于制动时间很短,所以通过定子的直流电流If可以大于电动机的电子额定电流,一般取If =(2~3)I1N[7]3.2能耗制动的设计3.2.1电器元件的选择1.三相异步电动机2.接触器FR3.热继电器FU4.开关SB5.时间继电器KT6.滑动变阻器 R7.整流装置8.变压装置9.继电器KM10.二极管11.热敏电阻PTC设计要求电动机自选,其主要参数为:3.2.2计算与校验能耗制动的强弱与通入直流电的大小和电动机转速有关系。
在同样转速下,直流越大制动作用越强,一般直流电为电动机空载电流的3-4倍。
电机的空载电流按不同磁极有所不同的,空载电流与额定电流之比有一定的关系:2极:20~30% 6极:35~50% 4极:30~45% 8极:35~60% [4]所以先根据电机磁极数和额定电流计算出空载电流I,然后算出电机两相之间的电阻R,根据欧姆定律,即可计算出直流电压:U=3IR。
知道了电机两相电阻,和直流电压,可以根据自己的需要来选择限流电阻了,想要直流电流为,则=U/(R+),和U,R已知,就可以计算出了。
已知技术参数和条件,根据电机数据可得:P=60f/n0=3,确定电机是6极的。
额定定子线电流为=12.8A,所以取空载电流I=×40%=5.12A。
制动时的直流电流为3I=15.36A。
再算电机定子相电阻。
由=(-)/Ns=0.04,R=0.95/,所以可以算出R=0.65Ω。
再确定经整流后的电压。
因为采用的是桥式整流,任意两相电流电压=220V,整流电路输出电压平均值U=0.9=198V。
制动时的电流由上面可知为15.36A。
所以选的可调电阻最小=(U/3I)-R=12.24Ω。
故可调阻>12.24Ω。
因为异步电动机制动直流电流为15.36A,故桥式电路中所选二极管流过的电流为0.5×15.36=7.68A,其所能承受的电压为×198=225.8V。
二极管应选承受的最大电流大于7.68A,最大电压大于226V。
交流继电器和时间继电器应该是能受的最大电压大于130V。
直流电压为:U=3IR=9.984V。
根据经验,取定时器(1.5-2s)/kw,所以定时器取TON,T37,设置参数45 3.2.3能耗制动原理图能耗制动原理图[5]如下:由于延时继电器在延时所设置的时间后便自动断开主触点,所以不用担心电机转速为零时依然接入直流电源的问题。
3.3能耗制动的分析3.3.1能耗制动特点[9]制动作用的强弱与直流电流的大小和电动机转速有关,在同样的转速下电流越大制动作用越强。
一般取直流电流为电动机空载电流的3~4倍,过大会使定子过热。
电动机能耗制动时,制动转矩随电动机的惯性转速下降而减小,故制动平稳且能量消耗小,但是制动力较弱,特别是低速时尤为突出;另外控制系统需附加直流电源装置。
一般在重型机床中常与电磁抱闸配合使用,先能耗制动,待转速降至一定值时,再令抱闸动作,可有效实现准确、快速停车。
能耗制动一般用于制动要求平稳准确、电动机容量大和起制动频繁的场合,如磨床、龙门刨床及组合机床的主轴定位等等。
3.3.2能耗制动控制线路切断电动机的三相交流电源后,立即在定子绕组中通入一个直流电源,以产生一个恒定的磁场,而因惯性旋转的转子绕组则切割磁力线产生感应电流,继而产生与惯性转动方向相反的电磁转矩,对转子起到制动作用。
当电动机转速降至零时,再切除直流电源。
这种消耗转子的机械能,并将其转化成电能,从而产生制动力的制动方法,称为能耗制动法[4]。
启动控制:按下SB2→KM1线圈得电→制动控制:需停时间KT延时断开常闭触点断开KM2线圈断电→结论本次课程设计主意为:设计一个三相异步电动机能耗制动的主电路和控制电路。