三相异步电动机能耗制动

合集下载

三相异步电动机的制动特性

三相异步电动机的制动特性

三相异步电动机的制动特性常见的三种制动方式:能耗制动反馈制动反接制动1.能耗制动特性异步电动机的反接制动用于精确停车有肯定的困难,由于它简单造成反转,而且电能损耗也比较大;反馈制动虽然是比较经济的制动方法,但它只能在高于同步转速下使用;而能耗制动却是比较常用的精确停车的方法。

原理图如下:进行能耗制动时,首先将定子绕阻从三相电流电源断开(1KM打开),接着马上将一抵押直流电源统入定子绕阻(2KM闭合)。

直流电流通过定子绕阻后,在电动机内部建立一个固定不变的磁场,由于转子在运动系统存储的机械能维持下连续旋转,转子导体内就产生感应电势和电流,该电流于恒定磁场相互作用产生作用方向于转子实际旋转方向相反的制动转矩,在它的作用下,电动机转速快速下降,此时运动系统贮存的机械能被电动机转换成电能后消耗在转子电路的电阻中。

2.反馈制动特性由于某种缘由异步电动机的运行速度高于它的同步速度,异步电动机就进入发电状态。

反馈制动时,电机从轴上吸取功率后,一部分转化为转子铜耗,大部分则通过空气隙进入定子,并在供应定子铜耗和铁耗后,反馈给电网,所以,反馈制动又称发电制动。

原理图:反馈制动运行状态的两种状况:1.负载转矩为位能性转矩的起重机械在下放重物时的反馈制动状态;2.电动机在变极调速或变频调速过程中,极对数突然增多或供电频率突然降低,使同步转速突然降低时的反馈制动运行状态。

3.反接制动特性电源反接假如正常运行时异步电动机三相电源的相序突然转变(电源反接),这就转变了旋转磁场的方向,电动机状态下的机械特性曲线就由第一象限的曲线1变成了第三象限的曲线2。

但由于机械惯性的缘由,转速不能突变,系统运行点a只能平移至特性曲线2至b点,电磁转矩由正变负,则转子将在电磁转矩和负载转矩的共同作用下快速减速。

倒拉制动倒拉制动消失在位能负载转矩超过电磁转矩的时候,例如起重机下放重物,为了使下降速度不致太快,就常用这种工作状态。

三相异步电动机星三角形起动及带能耗制动控制线路的设计及调试

三相异步电动机星三角形起动及带能耗制动控制线路的设计及调试

三相异步电动机星三角形起动及带能耗制动控制线路的设计及调试三相异步电动机是工业领域中常见的电动机类型之一,它具有结构简单、可靠性高、维护成本低等优点,因此被广泛应用于各种机械设备中。

在实际应用中,为了实现电动机的起停控制和能耗制动控制,需要设计合适的线路并进行调试。

本文将详细介绍三相异步电动机星三角形起动及带能耗制动控制线路的设计及调试方法。

一、星三角形起动原理介绍1.1 三相异步电动机基本原理三相异步电动机是以交流电作为供电源的,通过交变磁场与转子磁场之间的相互作用来实现转矩输出。

其基本原理是根据法拉第定律和楞次定律,在三个互相位移120度的线圈上产生旋转磁场,从而驱使转子旋转。

1.2 星型接线和三角形接线在实际应用中,根据不同的负载特性和启动要求,可以采用星型接线或者三角形接线方式来供电给电动机。

星型接线方式适用于起始转矩较小、启动时无冲击负载的情况,而三角形接线方式适用于起始转矩较大、启动时有较大冲击负载的情况。

1.3 星三角形起动原理星三角形起动是一种常用的电动机启动方式,它通过在电动机绕组中采用星型接线方式进行起动,待电动机达到一定速度后再切换为三角形接线方式运行。

这种启动方式可以减小起动时的电流冲击,降低对供电系统的影响。

二、星三角形起动控制线路设计2.1 电源接线设计在设计星三角形起动控制线路时,首先需要将三相异步电动机的绕组按照星型接线方式连接。

其中,每个绕组的一个端子连接到公共节点,即为星点连接;另一个端子分别与供电系统的A、B、C相相连。

2.2 接触器选择和布置为了实现起停控制,需要选择适当的接触器来实现切换绕组的连接方式。

通常情况下,采用交流接触器作为主要控制元件。

在布置接触器时,应保证其能够承受所需负载,并且能够方便地进行维护和检修。

2.3 控制电路设计在星三角形起动控制线路中,需要设计一个控制电路来实现接触器的自动切换。

该控制电路通常由主回路和辅助回路组成。

主回路用于控制接触器的通断,而辅助回路则用于监测电动机的运行状态并进行相应的保护。

三相异步电动机能耗制动的方法

三相异步电动机能耗制动的方法

三相异步电动机能耗制动的方法三相异步电动机能耗制动是一种常用的制动方法,它通过改变电动机的工作方式来实现制动效果。

在实际应用中,三相异步电动机能耗制动具有以下几种方法。

首先是电阻制动。

电阻制动是通过将外接电阻与电动机绕组连接,形成一个回路,使电动机产生额外的电阻,从而减小电动机的转速。

当电动机停止供电时,外接电阻会吸收电动机的旋转能量,使其转速逐渐减小,最终停止转动。

这种方法简单易行,成本较低,但能耗较大。

其次是逆变器制动。

逆变器制动是通过控制逆变器的输出频率和电压来实现制动效果。

逆变器是一种将直流电转换为交流电的装置,通过改变输出频率和电压,可以改变电动机的工作方式和转速。

在制动过程中,逆变器会逐渐降低输出频率和电压,使电动机的转速逐渐减小,最终停止转动。

这种方法能耗较小,但需要较复杂的控制系统。

再次是反接制动。

反接制动是通过改变电动机的供电方式来实现制动效果。

在正常工作时,三相异步电动机是通过三相交流电源供电的,而在反接制动时,将两个相序反接,使电动机的旋转方向发生改变,从而实现制动效果。

这种方法简单易行,成本较低,但对电动机的损伤较大。

最后是短路制动。

短路制动是通过将电动机的两个绕组短路连接来实现制动效果。

当短路连接后,电动机会产生额外的电流,并形成一个磁场,从而产生制动力矩,使电动机的转速逐渐减小,最终停止转动。

这种方法能耗较小,但对电动机的损伤较大。

综上所述,三相异步电动机能耗制动有多种方法可选择,每种方法都有其优缺点。

在实际应用中,需要根据具体情况选择合适的方法来实现制动效果,并在能耗和设备损伤之间做出权衡。

同时,随着科技的发展和技术的进步,三相异步电动机能耗制动方法也在不断创新和改进,以提高能耗效率和减小设备损伤。

6.1.3-三相异步电动机能耗制动原理及控制电路的识读.

6.1.3-三相异步电动机能耗制动原理及控制电路的识读.

《机床电气控制系统运行与维护》
在如图6-19所示线路中,KM2的主触点分两组使用:其中一对用 在变压器的输入端,另两对用在变压器的输出端,这样就使得整流 变压器的原边(交流侧)与副边(直流侧)同时切换,有利于提高 触点的使用寿命。
《机床电气控制系统运行与维护》
小 结:
能耗制动时产生的制动力矩大小,与通入定子绕组中的直流电流大 小、电动机的转速及转子电路中的电阻有关。电流越大,产生的静止 磁场就越强,而转速越高,转子切割磁力线的速度就越大,产生的制 动力矩也就越大。
《机床电气控制系统运行与维护》
2.全波整流
用四只整流二极管构成桥式整流电路,有分立元件的,也有集成元件的。 这种整流电路输出的脉动电压较之半波整流平稳。 由于能耗制动并不要求恒稳电压,所以不需要设置滤波电路和稳压电路。
3.直流电源的选择
能耗制动中,通入电动机的直流电流不能太大,过大会烧坏定子绕组。 因此,能耗制动直流电源的选择有一定的要求
《机床电气控制系统运行与维护》
线路特点:
(1)该电路通过整流变压器TC和桥式全波整流器提供直流电源给电 动机绕组,而整流变压器和可调电阻用来调节直流电流,从而调节制 动强度。 (2)KM2的主触点分两组使用:其中一对用在变压器的输入端,另 两对用在变压器的输出端,这样就使得整流变压器的原边(交流侧) 与副边(直流侧)同时切换,有利于提高触点的使用寿命。
《机床电气控制系统运行与维护》
(四)无变压器单相半波整流双向启动能耗制动控制线路
1. 电路构成
图6-15 无变压器单相半波整流双向启动能耗制动控制电路
《机床电气控制系统运行与维护》
2. 电路工作原理
先合上电源开关QS 正向启动运行:
反转启动运行:

三相异步电动机能耗制动控制线路

三相异步电动机能耗制动控制线路
在具体实施过程中,控制器需要根据设定的参数(如制动时间、制动电流等)来 调整接触器的动作时间,以实现准确的能耗制动控制。同时,控制器还需要对系 统进行保护,防止出现过载、过流等故障。
02
电路设计
主电路设计
电源接入
主电路电源为三相交流电源,通过断路器、接触器和热继电 器等设备接入电源。
电动机接线
三相异步电动机的三个绕组通过六个出线端接至主电路,三 个绕组的首端接至电源的三个相线,尾端接至接触器的三个 主触头,实现电机的启动和运行。
在实验过程中,由于实验条件所 限,仅采用了简单的模拟负载进 行测试,未来可以考虑更加接近 实际情况的复杂负载进行实验验 证。
控制线路在实际应用中的前景
由于三相异步电动机能耗制动控制线 路具有较高的控制精度和稳定性,可 广泛应用于各种需要精确速度和位置 控制的工业生产机械中,例如机床、
印刷机、装配线等。
详细描述:控制变压器是一种用于调节电压的电器元件,它将输入的高电压或低 电压调节到合适的电压值,以满足电器设备的需求。
04
控制系统实现
硬件系统搭建
控制器选择
采用单片机或PLC作为主控制 器,根据实际需求选择合适的
硬件设备。
硬件电路设计
设计电源电路、输入输出电路、 AD/DA转换电路等,以满足系统 控制要求。
在节能减排方面,该控制线路也有着 广泛的应用前景,例如在风力发电、 水力发电等能源转换领域中,可以通 过精确控制电动机的能耗制动实现能
量的高效回收和利用。
在智能制造领域,该控制线路可以与 工业物联网、工业大数据等先进技术 相结合,实现生产过程的自动化、信 息化和智能化,提高生产效率和产品
质量。
THANKS
三相异步电动机能耗制动 控制线路

三相异步电动机的能耗制动

三相异步电动机的能耗制动

三相异步电动机的能耗制动
所谓能耗制动就是将正常运行的电动机的定子绕组的三相交流电源切断,同时给定子绕组的任意两相通入直流电,此时定子中的旋转磁场消失,由直流电产生了恒定磁场。

由于转子在惯性作用下继续转动,转子导体切割恒定磁场,产生转子感应电动势,从而产生感应电流;同时,转子中的感应电流又与磁场相互作用,产生与转速方向相反的电磁转矩,即制动转矩。

因此,转子转速迅速下降,当转速下降至零时,转子中的感应电动势和感应电流均为零,制动过程结束。

制动期间,转子的动能转变为电能消耗在转子回路的电阻上,所以称这种制动为能耗制动。

设电动机原来工作在固有机械特性曲线上的A点,制动瞬间,因转速不能突变,工作点由A点过渡到能耗制动机械特性曲线上(曲线1)的B点,在制动转矩的作用下,电动机开始减速,工作点沿曲线1变化,直到原点(n=0,T=0),制动结束。

若电动机负载为位能性负载,则当电动机转速为零时,就要实现停车,必须立即采用机械制动的方法将电动机轴刹住,否则电动机将在位能性负载的作用下反转,机械特性曲线将进入第IV象限。

为了限制制动电流,在转子回路中串入了制动电阻RB,制动电阻的选择要适当,不能太大,否则制动效果不好,也不能太小,否则制动电流又太小,影响电动机的可靠性。

能耗制动广泛应用于要求平稳准确停车的场合,也应用于起重机一类位能性负载的机械上,用来限制重物的下降速度,以使重物稳定下放。

三相异步电动机能耗制动的原理

三相异步电动机能耗制动的原理

三相异步电动机能耗制动的原理嘿,朋友们!今天咱来唠唠三相异步电动机能耗制动的原理。

你说这电动机啊,就像个勤劳的小毛驴,一直在那转啊转,给咱干各种活儿。

那啥是能耗制动呢?咱可以这么想,电动机就好比一辆正在飞驰的汽车,突然你想让它快速停下来,咋办呢?那就是给它来点阻力,让它赶紧刹住车。

这能耗制动啊,就类似这个道理。

当电动机要停下来的时候,咱就给它通上直流电。

这直流电一进去,就像给电动机的轮子上卡了个大木块,让它转不动啦。

然后呢,电动机就把它的动能转化成热能消耗掉了,这不就是能耗制动嘛。

你想想看,要是没有这个能耗制动,电动机可不得一直转下去啊,那多吓人!就像那失控的马车,不知道会闯出啥祸来。

有了能耗制动,咱就能让电动机乖乖听话,说停就停。

这就好比咱跑步,跑着跑着要停下,也得有个阻力让咱慢慢减速不是?能耗制动就是给电动机提供了这么个阻力。

它能让电动机快速、平稳地停下来,不造成啥乱子。

而且啊,这能耗制动还有很多好处呢。

它操作简单,效果还特别好。

就像你有个特别听话的小助手,你让它干啥它就干啥。

咱再换个例子,电动机就像个调皮的小孩子,一直在那疯跑,能耗制动就是能把这个调皮孩子拉住的那只手,让他别乱跑,乖乖待在原地。

这多好啊,让咱的工作啊、生活啊都能更有序。

咱生活中很多地方都用到了三相异步电动机能耗制动呢。

比如那些大型的机器设备,要是没有能耗制动,那可不得了,说不定会出啥大事故。

所以说啊,这三相异步电动机能耗制动可真是个了不起的东西。

它虽然看起来不显眼,但在关键时刻能发挥大作用。

咱可别小瞧了它,它可是保障咱各种设备正常运行的大功臣呢!它让电动机变得更可控,让我们的生活和工作更加安全、高效。

这难道不是很神奇、很厉害吗?。

三相异步电动机能耗制动控制

三相异步电动机能耗制动控制

三相异步电动机能耗制动控制简介三相异步电动机是常见的工业电机,其广泛应用于各种机械设备中,是工业自动化领域的核心部件。

但是在一些场景下,需要对电机进行能耗控制和制动控制,尤其是在工程机械上,这一需求尤为常见。

本文将简单介绍三相异步电动机的能耗制动控制技术。

能耗制动能耗制动是一种通过将电机回馈电能返回电网以实现制动的方法。

当电机在运行中需要减速或停止时,可以将电机转子接通到直流电源造成一个短路,在这个时候,电机会将其运动动能转化为电能并反向输入到电网中,这样就实现了电机的能耗制动。

根据电机的工作原理,可以将三相异步电机分为彩绘电机和鼠笼电机。

彩绘电机彩绘电机能耗制动的方法比较简单,因为彩绘电机的转子是由绕组转子构成的,所以可以通过给转子加上额外的接线使其转子电路短路,使得电机在停止使用时通过短路将电能回馈到网络中,实现电机的能耗制动。

在实际应用中,还可以使用直接转矩控制,通过调节直流电流实现电机的能耗制动。

鼠笼电机鼠笼电机的转子由短路环和绕组组成,鼠笼电机能耗制动则是通过电网反向给电机供电,在电机转速逐渐降低的过程中,发生电磁感应使得电机的绕组中产生感电势,并产生一定的电流,从而使电机能量得以回馈到电网中。

与彩绘电机相比,鼠笼电机的能耗制动需要注意保护电机,避免因电机突然停止导致电流过大,损坏电机。

电机制动控制电机的制动控制主要包括电阻制动和反电动势制动两种方式。

在彩绘电机中,由于电机转子绕组可以方便地接入外部电阻,因此电阻制动成为一种常见的控制方式。

对于鼠笼电机,其产生的反电动势比较大,可以通过控制电机漏感和截止角来进行制动控制。

电阻制动电阻制动通过在电机强制加上电阻来消耗电机的能量,实现制动的目的。

电阻制动的控制电路简单,但是其能量消耗效率较低。

实际应用中,可以通过控制电阻的值和接入时间优化电机的能耗。

反电动势制动反电动势制动则是通过电机转子所产生的反电动势来制动电机。

反电动势是一种通过电机转子运动所产生的电势,与电机的电磁感应相似,但却与电源的相关性极小,电机速度逐渐降低的过程中,反电动势会随之降低,从而实现电机制动的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

首先,合上电源 开关QS。 单向起动运转:
精品课件
能耗制动停转:
精品课件
2.有变压器单相桥式整流单向起动能耗制动自动控制电路
精品课件
能耗制动的优点: 1)制动平稳,便于实现准确停车; 2)吸收系统储存动能并转换成电能消耗在转 子电路的电阻上;
能耗制动的缺点: 制动较慢,需要一套直流电源装置,而且拖 动系统制动至转速较低时,制动转矩较小,此时 制动效果不理想。
精品课件
能耗制动控制
能耗制动:是在电动机脱离三相交流电源后,向 定子绕组内通入直流电流,建立静止磁场。转子 以惯性旋转时,转子导体就会切割定子恒定磁场 而产生转子感应电动机及感应电流,感应电流受 到恒定磁场的作用力又产生制动的电磁转矩,达 到制动目的
精品课件
Hale Waihona Puke 能耗制动控制1.无变压器单相半波整流单向起动能耗制动自动控制电路
相关文档
最新文档