第15章 蛋白质的生物合成-翻译
第十五章蛋白质的生物合成

第一位
(5ˊ)
U
U
C
A
G
遗传密码字典 第二位
C
A
G
第三位
(3ˊ)
U C A G
U C A G
U C A G
U C A G
6 4 组 密 码 子 中 , AUG 既 是 甲 硫氨酸的密码,又是起始密码; 有三组密码不编码任何氨基酸, 而是多肽链合成的终止密码子: UAG、UAA、UGA。
• 在原核生物和真核生物中,均存在另一 种携带蛋氨酸的tRNA,识别非起动部位 的蛋氨酸密码,AUG。
第十五章蛋白质的生物合成
核糖体的研究历史
1.早在本世纪30年代后期就发现细胞质和细胞核中都有 核酸存在,不过用1924年福尔根发明的染色法只能使细胞核 中的核酸染色。但两种核酸在260nm的吸收非常相似。
第十五章 蛋白质合成及转运
蛋白质的生物合成
中心法则指出,遗传信息的表达最终是合成出 具有特定氨基酸顺序的蛋白质,这种以mRNA上所 携带的遗传信息,到多肽链上所携带的遗传信息的传 递,就好象以一种语言翻译成另一种语言时的情形 相似,所以称以mRNA为模板的蛋白质合成过程为 翻译(translation)。
2.Crick, F.比较了核酸和氨基酸的大小和形状后,认为不可 能在空间上互补,因此预测:(1) 存在一类分子转换器,使信 息从核酸序列转换成氨基酸序列;(2) 这种分子很可能是核酸; (3) 它不论以何种方式进入蛋白质翻译系统的模板,都必须与 模板形成氢键(即配对);(4) 有20种分子转换器,每种氨基 酸一个;(5) 每种氨基酸必定还有一个对应的酶,催化与特定 的分子转换器结合。
2.1941年,细胞学家J.Brachet和T.Caspersor注意到细 胞质中的核酸与蛋白质的合成有密切的关系。
蛋白质生物合成

There are sporadic alterations of the universal code
Changes in the genetic code in mitochondria can be traced in phylogeny. The minimum number of independent changes is generated by supposing that the AUA=Met and the AAA=Asn changes each occurred independently twice, and that the earlyAUA=Met change was reversed in echinoderms.
(一)三联子密码定义
遗传密码: DNA(或mRNA)中的核苷酸序列与蛋白质 中氨基酸序列之间的对应关系称为遗传密码。 密码子(codon):mRNA上每3个相邻的核苷酸编码蛋白 质多肽链中的一个氨基酸,这三个核苷酸就称为一个密 码子或三联体密码(triplet coden) 。
mRNA
5’ GCU AGU ACA AAA CCU 3’
CAT
CAT
CAT
CAT
ATC
CAT CAC ATC CAT CAC AXT
ATC ATC CAT
CAT CAT
CAX
TXC
ATX
CAT
CAT
CAT
以均聚物为模板指导多肽的合成
Poly U 为模板,产生的多肽链为Poly Phe
Poly C 为模板,产生的多肽链为Poly Pro Poly A 为模板,产生的多肽链为Poly Lys
甲硫氨酸本身, 而是甲酰甲硫氨酸,起始AA-tRNA为
第十五章 蛋白质的生物合成-翻译

二、tRNA
tRNA是氨基酸的搬运工具。 tRNA是多肽链和mRNA之间的 重要转换器。 每一种氨基酸可以有一种以上 tRNA作为运载工具。 能够携带相同氨基酸而反密码子 不同的一组tRNA分子称为氨基 酸的同工受体tRNA (isoaccepting tRNA) 。
tRNA须具备的功能 • 与氨基酸结合(3’末端) • 识别特异的氨酰-tRNA合成酶(D环) • 识别mRNA链上密码子 • 与核糖体结合,使延长中的肽链附着于核糖体上(TψC环)
蛋白质生物合成过程包括: 1. 氨基酸的活化; 2. 合成起始; 3. 肽链延伸:进入、转肽、移位; 4. 终止合成。
一、氨基酸的活化
二、合成的起始阶段
核糖体大小亚基分离; mRNA在小亚基定位结合; 起始氨酰tRNA的结合; 核糖体大亚基结合。
1. 核糖体大、小亚基分离 IF1和IF3与30S小亚基结合,促进核糖体大、小
翻译过程实际上就是由tRNA携带着氨基酸,逐一识别 mRNA上的密码子,并将氨基酸依密码子的排序相互 连接的过程。核糖体是翻译的场所。
一、mRNA模板和遗传密码
• mRNA是翻译的直接模板。 (一)遗传密码的破译
mRNA上四种核苷酸→组成蛋白质的20种aa
核苷酸与氨基酸对应关系?
3个相邻的核苷酸→1个aa, 有43种排列→64种密码子
• 核糖体可以看作是一个大分子的机构,它具有许多精密的 配合部分,来挑选并管理参与蛋白质合成的各个组分。它 参与多肽链的启动、延伸和终止的各种因子的识别。
原核生物核糖体
5S rRNA, 23S rRNA 50S
34种蛋白质 70S
16S rRNA 30S
21种蛋白质
真核生物核糖体
5SrRNA,5.8SrRNA,28SrRNA 60S
第十一(15)章蛋白质的

摆动规则
反密码子第一个碱基 A C G U I 密码子第三个碱基 U G C、U A、G A、C、U
5′
3′
二、氨基酸的“搬运工具”----tRNA
1、tRNA的功能区 (四个功能位点)
氨基酸臂
与氨基酸结合
氨基酸臂
DHU环 与氨酰-tRNA合成酶结合 反密码环 识别、结合密码子 TψC环 核糖体结合位点
⑥变偶性:(摆动性) 密码子上第一、二位上碱基不变,第三位碱基可 改变
密码子的专一性主要是由前两位的碱基决定,而 第三位碱基有较大的灵活性。密码子的第三碱基 对反密码子的第一位碱基,更常出现这种摆动现 象。
摆动规则 Crick于1966年提出,用来解释一种tRNA反密码子如 何能够识别一种氨基酸的几个同义密码子以及某些含有稀 有碱基(如次黄嘌呤)的反密码子是怎样识别由正常碱基 构成的密码子的现象。 该规则的内容是: 密码子在与反密码子之间进行碱基配对的时候,前 两对碱基严格遵守标准的碱基配对规则,第三对碱基则具 有一定的自由度。但并非任何碱基之间都可以配对,当反 密码子第一位碱基是A或C者,只能识别一种密码子;第一 位碱基是G或U者,则能识别两种密码子;第一位碱基是I 者,则能识别三种密码子。
H2N-CH-C-O-tRNA
细胞质中进行
R
O
2、催化氨基酸活化的酶:氨酰-tRNA合成酶
绝对专一性:1种酶只催化1种AA活化。
此酶具有水解活性,有校对功能。 活化一个氨基酸消耗2分子ATP。
甲酰甲硫氨酰-tRNA
3、氨基酸的活化过程
氨基酸羧基通过酸酐键与AMP上的5-磷酸基相连
二、肽链合成的起始 1、起始密码子的识别 原核翻译系统起始密码子的识别主要是依赖于 mRNA 5′-端的SD序列与16S rRNA3′-端的反SD序 列之间的互补配对。 mRNA 的SD序列下游的第一个AUG用作起始密码子。
生物化学分子生物学部分课件--蛋白质代谢

用统计 法尝试 确定含 多种核 苷酸的 密码子 的碱基 组份
1964年Nirenberg等发现将核苷酸三联体与对应 的AA-tRNA放在一起,AA-tRNA就会结合到 核糖体上去。
核糖体结合 实验:
Decoding of the Genetic code
Proteins are synthesized at rough ER
核糖体 20世纪50年代Paul Zamecnik通过将同位素标记的氨基酸注射 到大鼠体内,按不同时间取肝脏分析同位素标记的氨基酸跑到 哪里去了。时间长了会在任何地方都有同位素标记,但在注射 后数分钟就检测,同位素全部跑到了含有RNA的小颗粒中(即 核糖体, ribosome)。
密码的特点
• 连续性 • 兼并性
在不同生物中使用同义密码子的频率是不相同 的——偏爱密码
• 摆动配对(变偶现象) • 通用性
– 线粒体的密码有一定的差别 – AUG—起始密码和甲硫氨酸 – UAG、UAA、UGA—终止密码
硒半胱氨酸是大肠杆菌的第21个拥有密码子 的氨基酸(识别UGA)
高浓度时取代 正常Cys,用 在同步辐射实 验中
丙氨基酰tRNA:Ala-tRNAala 精氨基酰tRNA:Arg-tRNAarg 甲硫氨基酰tRNA: Met-tRNAmet
起始密码子AUG编码的Met由tRNAimet (真 核) 或tRNAfmet(原核)转运。 真核细胞起始密码子编码的Met不须甲酰化 大肠杆菌起始密码子编码的Met须甲酰化
The final solution
几乎同时,Gobind Khorana成功地合成了 非随机重复的多聚核苷 酸。当这些多聚物得到 的结果与 Nirenberg的 结果进行比较时,得到 了确切的密码子信息。 如 (AC)n得到的结果是 H和T等量参入,而密 码的分布是等量的CAC 和ACA,因此CAC对应 H, ACA对应T.
大学生物化学课件蛋白质的生物合成

核糖体结合的分子伴侣
非核糖体结合性分子伴侣— 热休克蛋白 伴侣蛋白
(1)热休克蛋白(heat shock protein, HSP ):
属于应激反应性蛋白,高温应激可诱导该蛋白 合成增加。
在大肠杆菌中包括HSP70, HSP40和GrpE三族
Peptidyl site (P Site)
E位
Aminoacyl site (A Site)
mRNA
肽链合成需要酶类和蛋白质因子
• 蛋白质因子: • (1)起始因子 • 原核生物 IF; 真核生物 eIF • (2)延长因子 • 原核生物 EF; 真核生物 eEF • (3)释放因子 • 原核生物 RF; 真核生物 eRF
第二节 蛋白质生物合成的过程
翻译过程从阅读框架的5’-AUG开始,按mRNA 模板三联体密码的顺序延长肽链,直至终止密码 出现。
整个翻译过程可分为三个阶段:
起始(initiation)
延长(elongation)
终止(termination)
一、肽键合成的起始(Initiation)
多肽链合成后需要逐步折叠成天然空间构象才成为有 功能的蛋白质。
时间: 新生肽链N端在核蛋白体上一出现,肽链的折叠
即开始,折叠在肽链合成中、合成后完成。
细胞中大多数天然蛋白质折叠都不是自动完 成,而需要其他酶、蛋白质辅助 :
•
分子伴侣
•
蛋白二硫键异构酶
•
肽-脯氨酰顺反异构酶
1.分子伴侣*(molecular chaperon)
需要:
转位酶(原核生物中是EFG,真核生物中是eEF-2), GTP 结果:
分子生物学第十五章 蛋白质的生物合成

1.遗传密码种类:
• mRNA 分子有4种碱基:A、G、C、U,可组合成64个密 码子,其中61个分别代表20种不同氨基酸
• 遗传密码共有43=64种, 64: UAA、UAG、UGA 终止密码 61: AUG 起始密码 代表Met 60: 代表19种氨基酸
9
遗传密码表 第一碱基
(5/-端)
第二碱基
43
一、起始阶段
(一)原核生物翻译起始复合物的形成
参与的物质: 核糖体50S和30S大小两类亚基 mRNA 起始作用的fMet-tRNAfMet GTP供能 起始因子(IF1、IF2、IF3)
44
起始过程:
• 核糖体大小亚基解离 • 小亚基与mRNA结合:
16sRNA识别mRNA的SD序列
• fMet-tRNAfMet与mRNA起始密码子AUG结合 • 核糖体大小亚基形成起始复合物
tRNAphe Phe-tRNAphe
• 肽链起始和延长的甲硫氨酰-tRNA:
真核生物:起始: Met-tRNAiMet 延长: Met-tRNAMet
原核生物: 起始:fMet-tRNAfMet 延长:Met-tRNAMet
39
40
第三节 肽链的合成过程
41
整个翻译过程可分为 :
• 翻译的起始 • 翻译的延长 • 翻译的终止
tRNA反密码子 第1位碱基
mRNA密码子 第3位碱基
I
U
G AC
U, C, A A, G U, C U G
17
摆 动 配 对
32 1
U
123
18
• ⑤遗传密码的通用性
从原核生物到人类都共用同一套遗传密码,被称为遗传密码的通用性。 密码的通用性进一步证明各种生物进化自同一祖先。
第十五章 蛋白质的合成-答案

一、选择题1.与原核生物核糖体小亚基结合的蛋白质合成抑制剂是(A )A.链霉素B.氯霉素C.利福霉素D.放线菌素E.青霉素3.大肠杆菌合成的所有未修饰的多肽链,其N末端的氨基酸残基应是(C)A.甲硫氨酸B.丝氨酸C.甲酰甲硫氨酸D.甲酰丝氨酸E.谷氨酸4.某5岁儿童突发咽痛,呼吸急促,表现烦躁。
体温测得为38.5T,咽部检查见扁桃体肿大,甚至观察有循环系统衰竭的症状,诊断为咽白喉,白喉病产生的外毒素(白喉毒素)为致病的主要因素。
白喉毒素抑制蛋白质合成的主要机制是(E)A.降解核糖体大亚基的28SrRNA使其失活B.特异性结合40S亚基的A位干扰延长阶段的进位C.抑制肽酰转移酶从而抑制肽链延长D.与40S亚基结合影响翻译准确性E.使eEf-2失活从而阻断肽链延长6.小明因为受伤需要抹点红霉素,红霉素作为一种抗生素其作用原理是(C)A.阻止翻译起始复合物的形成B.抑制氨基酸tRNA与小亚基结合C.抑制肽酰转移酶D.引起读码错误E.抑制EF-G10.多肽链的延长与下列物质无关的是(B)A.肽酰转移酶B.甲酰甲硫氨酰-tRNAC.GTPD.mRNAE.EF-Tu、EF-Ts和EF-G11.肽键形成部位是(B)A.核糖体大亚基P位B.核糖体大亚基A位C.两者都是D.两者都不是E.核糖体大亚基E位13.氨基酰-tRNA合成酶的特点是(E)A.存在于细胞核内B.只对氨基酸的识别有专一性C.只对tRNA的识别有专一性D.催化反应需GTPE.对氨基酸、tRNA的识别都有专一性15.多数氨基酸都有两个以上密码子,下列氨基酸只有一个密码子的是(D)A.苏氨酸、甘氨酸B.脯氨酸、精氨酸C.丝氨酸、亮氨酸D.色氨酸、蛋氨酸E.天冬氨酸、天冬酰胺19.翻译起始复合物的组成(C)A.DNA模板+RNA+RNA聚合酶B.Dna蛋白+开键DNAC.核糖体+甲硫氨酰tRNA+mRNAD.翻译起始因子+核糖体E.核糖体+起始者tRNA20.下列关于核糖体的叙述,正确的是(B)A.是遗传密码的携带者B.由rRNA与蛋白质构成C.由snRNA与hnRNA构成D.由引物、DNA和蛋白质构成E.由tRNA与蛋白质构成21,下列关于密码子的叙述,正确的是(C)A.由DNA链中相邻的三个核苷酸组成B.由tRNA中相邻的三个核苷酸组成C.由mRNA上相邻的三个核苷酸组成D.由rRNA中相邻的三个核苷酸组成E.由多肽链中相邻的三个核苷酸组成22.遗传密码的简并性是指(C)A.密码子的第3位碱基决定编码氨基酸的特异性B.一个密码子可代表多个氨基酸C.多个密码子可代表同一氨基酸D.密码子与反密码子之间不严格配对E.所有生物可使用同一套密码23.下列关于遗传密码的叙述,正确的是(E)A.遗传密码只代表氨基酸B.一种氨基酸只有一个密码子C.一个密码子可代表多种氨基酸D.密码子与反密码子遵守严格的碱基配对原则E.密码子的简并性降低了基因突变的效应24.一个tRNA的反密码子为5,UGC3,,它可识别的密码子是(A )A.5'GCA3'B.5,ACG3'C.5'GCU3'D.5'GGC3'E.5'AUG3,25.氨基酸通过下列哪种化学键与tRNA进行特异结合(B)A.糖苷键B.酯键C.酰胺键D.磷酸酯键E.氢键26.蛋白质生物合成中氨基酸的活化与tRNA的结合需要(B )A.氨基酸tRNA合成酶B.氨基酰tRNA合成酶C.ATP合成酶D.转位酶E.GTP27.参与新生多肽链正确折叠的蛋白质是(A)A.分子伴侣B.G蛋白C.转录因子D.释放因子E.p因子28.原核生物起始tRNA是 (C)A.甲硫氨酰-tRNAB.缬氨酰-tRNAC.甲酰化的甲硫氨酰-tRNAD.氨酰-tRNAE.乙酰化的甲硫氨酰-tRNA29.新生肽链合成的方向是 (A )A.从N端到C端合成B.从C端到N端合成C.没有固定的方向D.先从N端到C端合成小片段,再连接成一条多肽链E.从中间部位向N端和C端两个方向同时进行30.蛋白质磷酸化修饰的潜在修饰位点是(B)A.甘氨酸B.酪氨酸C.苯丙氨酸D.谷氨酸E.赖氨酸34.蛋白质合成终止是 (B)A.核糖体到达mRNA分子的3'末端B.释放因子识别终止密码子进入A位C.释放因子进入P位D.mRNA出现发夹结构,核糖体无法移动E.特异的tRNA进入A位35.氯霉素对细菌蛋白质合成的生物学影响是(E )A.导致未成熟多肽链的释放B.抑制核糖体大小亚基的结合C.抑制tRNA功能D.抑制30S核蛋白体亚基的活化E.抑制50S核蛋白体亚基的肽酰转移酶活性38.若向mRNA的编码区插入一个核苷酸,则会出现(D)A.翻译出的蛋白质的第1个氨基酸残基改变B.翻译出的蛋白质的氨基酸残基序列不变C.插入处上游翻译出来的氨基酸序列完全改变D.插入处下游翻译出来的氨基酸序列完全改变E.仅在插入处一个氨基酸残基改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I
U
A,C,U A,G
G CA U,C G U
(4)翻译的起始
① fMet-tRNAfmet的生成 大肠杆菌中, 起始密码子AUG所编码的氨
基酸并不是甲硫氨酸本身, 而是甲酰甲硫氨 酸(fMet)。
甲酰化酶
Met-tRNA + N10-甲酰FH4 fMet-tRNAfmet + FH4
② 翻译的起始信号
和多种蛋白因子的共同作用下,将mRNA 中4种核苷酸的语言解读为蛋白质中20种 氨基酸的语言,又称翻译(Translation)。
原料:20种氨基酸 mRNA: 合成蛋白质的模板。 tRNA: 原料氨基酸的“搬运工”。 rRNA: 与多种蛋白质结合成核糖体,为
合成多肽链的装配机。
1.2 mRNA
1.3 tRNA
原核tRNA有30-40种,真核有50-60种,含7090个核苷酸, 并有多种稀有碱基。
tRNA是最小的RNA, 占细胞总RNA 的15% 左右,其功能是搬运氨基酸和解读密码子。
tRNA 具有“四环一臂”和“三叶草” 形的 典型 结构。
tRNA的结构-“四环一臂” 倒L形的三级结构
tRNA
↓
氨基酰-tRNA +
AMP + E
氨基酰-tRNA表示方法:Ser-tRNASer
(2)氨基酰-tRNA合成酶的特点
① 氨基酰-tRNA合成酶对底物氨基酸和 tRNA都有高度特异性。
② 催化氨基酰-tRNA脱酰基,具有校正活性。
(3)密码子-反密码子的相互作用
氨基酸的加入需 靠mRNA上的密 码子和tRNA上的 反密码子相互以 碱基配对辨认。
摆动学说:密码子的头两个碱基严格 遵守碱基配对规律为tRNA的反密码子识别, 他们中的任何不同即为不同tRNA识别,但 第三个碱基不这样,有一定的自由度,即摇 摆性。
反密码子 3’- X’-Y’-Z’-5’
密码子 5’- X- Y-Z - 3’
密码子、反密码子配对的摆动现象
反密码子 第一位碱基
密码子 第三位碱基
60S
rRNA
蛋白 质
16SrRNA
5SrRNA 23SrRNA
21种
34种
28SrRNA 18SrRNA 5SrRNA
5.8SrRNA
33种
49种
核 糖 体 的 组 成
蛋白质合成中,核糖体首先与mRNA 结合,按5’到3’方向移动,每次移动的距 离相当于一个密码子。
(2)核蛋白体是肽链合成的装置
第15章 蛋白质的生物合成-翻译 Protein Biosynthesis,Translation
本章主要内容
1.翻译系统 2.蛋白质生物合成的过程 3.多肽链翻译后的修饰 4.蛋白质的到位
重点和难点: 原核生物蛋白质合成的过程 原核生物与真核生物蛋白质合成的区别
1 蛋白质的翻译系统
1.1 蛋白质的生物合成 以mRNA为模板,在核糖体、tRNA
P位:肽酰基tRNA (peptidyl tRNA site) A位:氨酰基tRNA位 (aminoacyl tRNA site) E位:排出位
(exit site)
(3)核蛋体的功能
①P位:即肽位(Peptidyl site),3’端连接肽链的肽 酰tRNA占据的位置。
②A位:即氨基酰位(Aaminoacyl site),氨基酰 tRNA就加入到A位上,
密码子与反密码子的配对方 式
1.4 核糖体的结构和功能(ribosome)
(1) 核糖体的化学组成
核糖体呈颗粒状,由大小亚基组成, 每个亚基又含有不同的蛋白质和rRNA, 原核和真核生物不同。
不同细胞核糖体的组成
原核生物
真核生物
核糖 体
小亚基
大亚基
核糖 体
小亚基
大亚基
S 70S 30S
50S 80S 40S
在起始密码子AUG上游9-13个核苷酸 处,有一段可与核糖体结合、富含嘌呤的 3-9个核苷酸的共同序列,一般为AGGAG GU,此序列称SD序列。
(1)氨基酸的活化
氨基酰-tRNA合成 (aminoacyl-tRNA synthetase)
氨基酰-tRNA合成酶
氨基酸 + tRNA
氨基酰- tRNA
ATP
AMP+PPi
第一步反应
氨基酸 +ATP+E —→ 氨基酰-AMP-E + PPi
氨基酰tRNA合成酶
第二步反应
氨基酰-AMP-E +
遗传密码的破译
1961年,M. Nirenberg等用放射性同位素标 记的方法对密码子的组成进行了推测,证明 mRபைடு நூலகம்A中核苷酸的排列顺序与蛋白质中氨基酸 之间的对应关系,是以每三个核苷酸代表一个 氨基酸,又称三联体密码。
至1966年,20中氨基酸对应的61个密码子 和三个终止密码子全部被破译。
(2)遗传密码的主要特征:
mRNA是遗传信息的载体(载有遗传密 码),是合成蛋白质的模板,它以一系列三 联体密码子的形式从DNA转录了遗传信息。 每个密码子代表一个氨基酸。
(1) 遗传密码
遗传密码(genetic code):核酸中 的核苷酸碱基序列与蛋白质中的氨基酸 序列之间的对应关系。
三个碱基编码一个氨基酸,三联碱 基称为一个密码子(codon)。
AUG
ORF
UAA
② 简并性(同一氨基酸有多个不同密码 子, 除Trp,Met外)同义密码
③ 通用性(共同使用同一套密码子) ④ 不重叠性(三联体,连续性,无逗点,
连续阅读,5’ 到3’) ⑤ 兼职性(终止密码 编码氨基酸的密码) ⑥ 例外(支原体,UGA编码Trp;纤毛
虫,UAA和UAG编码Glu)
③E位:tRNA释放结合位点(Exit site)
(4)多核糖体
大肠杆菌由一 定数目的单个核糖 体与一个mRNA 分 子结合而成的念珠 状结构。
每个核糖体可独立完成一条肽链的合 成,所以在多核糖体上可以同时进行多条 肽链的合成,提高了翻译的效率。
2. 原核生物蛋白质合成过程
分为四个阶段: (1)活化 (2)起始 (3)延伸 (4)终止
① 编码性
由AUG开始,每3个核苷酸为一组,决 定肽链上某一个氨基酸或蛋白质合成的起始、 终止信号。
起始密码(initiation coden):AUG 终止密码(termination coden):
UAA,UAG,UGA
遗传密码表
从mRNA5’端起始密码子AUG到3’端终止 密码子之间的核苷酸序列,各个三联体密码连 续排列编码一个蛋白质多肽链,称为开放阅读 框架(open reading frame, ORF)。