简谐运动的表达式动力学表达式

合集下载

简谐运动及其描述(精品课件)

简谐运动及其描述(精品课件)

刻,质点位移大小相等、方向
相同
运动学表达式:x=Asin(ωt+φ)
3.基本特征 回复力F与位移x大小成正比,回复力的方向与位移方 向相反.此式一方面向我们描述了简谐运动的动力学特征, 另一方面也向我们提供了判断物体是否做简谐运动的依 据.
►疑难详析◄ 1.当物体振动经过平衡位置时,物体受到的合外力
不一定等于零,物体不一定处于平衡状态.例如单摆经过
个运动周期的时间内通过的路程是振幅的4倍,在半个周期 的时间内通过的路程是振幅的2倍,但是在四分之一周期时
间内通过的路程就不一定等于振幅.当物体从平衡位置和
最大位移之间的某一位置开始运动四分之一周期时间通过 的路程就不等于振幅了.
2.判断各时刻振子的速度方向 在简谐运动图象中,用做曲线上某点切线(斜率)的
出的①②③④四条振动图线,可用于表示振动的图象是 (
时t=0,则图象为①
)
A.若规定状态a B.若规定状态b
时t=0,则图象为②
C.若规定状态c 时t=0,则图象为③
D.若规定状态d
时t=0,则图象为④
图3
[答案] AD
一质点做简谐运 动的图象如图4所示,下列说法正确的 是 速度为负 ( ) A.在0.035 s时,速度为正,加
注意: A.简谐运动的图象不是振动质点的轨迹.
B.简谐运动的周期性,体现在振动图象上是曲线的
重复性.简谐运动是一种复杂的非匀变速运动.但运动的 物点具有简单的周期性、重复性、对称性.所以用图象研
究要比用方程要直观、简便.
►疑难详析◄ 1.振幅与位移、路程的关系
位移的大小总小于等于振幅,做简谐运动的物体在一
发现树枝在10 s内上下振动了12次,将50 g的砝码换成500 g 砝码后,他发现树枝在15 s内上下振动了6次,你估计鸟的

高中物理【机械振动】知识点、规律总结

高中物理【机械振动】知识点、规律总结
第 1 讲 机械振动
一、简谐运动 1.概念:质点的位移与时间的关系遵从_正__弦__函__数___的规律,即它的振动图象(x -t 图象)是一条_正__弦__曲___线__. 2.简谐运动的表达式 (1)动力学表达式:F=___-__k_x__,其中“-”表示回复力与__位__移__的方向相反. (2)运动学表达式:x=Asin(ωt+φ),其中 A 代表振幅,ω=__2_π_f___表示简谐运动的 快慢,(ωt+φ)代表简谐运动的_相__位___,φ 叫做初相.
3.做简谐运动的物体经过平衡位置时,回复力一定为零,但所受合外力不一定为 零,如单摆.
4.物体做受迫振动的频率一定等于驱动力的频率,但不一定等于系统的固有频率, 固有频率由系统本身决定.
考点一 简谐运动的特征
师生互动
受力特征 回复力 F=-kx,F(或 a)的大小与 x 的大小成正比,方向相反
靠近平衡位置时,a、F、x 都减小,v 增大;远离平衡位置时,a、F、x 运动特征
4.周期公式:T=2π
l g.
5.单摆的等时性:单摆的振动周期取决于摆长 l 和重力加速度 g,与振幅和振子(小
球)质量都没有关系.
四、受迫振动及共振
1.受迫振动 (1)概念:物体在_周__期__性___驱动力作用下的振动. (2)振动特征:受迫振动的频率等于_驱__动__力___的频率,与系统的_固__有__频__率___无关. 2.共振 (1)概念:当驱动力的频率等于_固__有__频__率___时,受迫振动的振幅最大的现象. (2)共振的条件:驱动力的频率等于_固__有__频__率___. (3)共振的特征:共振时_振__幅___最大.
受迫振动
共振
由驱动力提供
振动物体获得的能量 最大

简谐运动的表达式动力学表达式

简谐运动的表达式动力学表达式
动的依据) 2.对称性——简谐振动物体具有对平衡位置的对称
性,在关于平衡位置对称的两个位置,动能、势 能相等,位移、回复力、加速度大小相等,方向 相反,速度大小相等,方向可能相同,也可能相 反,振动过程相对平衡位置两侧的最大位移值相等.
3.周期性——简谐运动的物体经过相同时间t=nT(n) 为整数,必回复到原来的状态,经时间t=(2n+1) T2 (n为整数),则物体所处的位置必与原来的位置 关于平衡位置对称,因此在处理实际问题中,
图2 3.简谐运动的能量
简谐运动过程中动能和势能相互转化,机械能 守恒,振动能量与 振幅 有关, 振幅 越大, 能量越大.
二、简谐运动的两种基本模型
弹簧振子(水 平)
单摆
模型示意图
条件 平衡位置
回复力
忽略弹簧质量、 无摩擦等阻力
细线不可伸长、质量 忽略、无空气等阻力、 摆角很小
弹簧处于原长处
最低点
度方向上的力充当向心力,即F向=F-mgcosθ;摆 球重力在平行于速度方向上的分力充当摆球的回复
力.当单摆做小角度摆动时,由于F回=-mgsinθ= - mg x=-kx,所以单摆的振动近似为简谐运动.
l
3.单摆的周期公式 (1)单摆振动的周期公式T=2π l ,该公式提供了
g
一种测定重力加速度g的方法. (2)l为等效摆长,表示从悬点到摆球重心的距离, 要区分摆长和摆线长,悬点实质为摆球摆动所在
2. 简谐运动的描述 (1)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的 有向线段表示振动位移,是矢量. ②振幅A:振动物体离开平衡位置的最大距离, 是标量,表示振动的强弱. ③周期T和频率f:做简谐运动的物体完成 一次 全振动所需要的时间叫周期,而频率则等于单 位时间内完成 全振动的次数 ;它们是表示振动 快慢的物理量.二者互为倒数关系.

谐振子

谐振子

O
2) 由: A
02
2 0
和已知条件:
2
0
x0
b
x0
mg k
0.05
m
b
O' 0
x0
可得:A 0.07 m
x
3)

tg 0
0 0
1
和初速度为负值,可知:0 4
4) (t) Acos(t ) 0.07cos(4t 4) (m)
5) E 1 kA2 0.039 (J) 6) 做图略
x0
和速度
0,由:
x0
Acos Asin
0
联立可得:
A
x02
2 0
2
tg1( 0 ) x0
简谐运动实例:
( 1 ) 单摆
准弹性力:
l
1. 细线质量不计 约
ft mg
定 2. <5 以保证sin 由牛顿定律:
m
ft
3. 阻力忽略不计
ft
பைடு நூலகம்
mg
mat
m
l
ml
d2
dt 2
mg
d2g 0
dt2 l
一个作简谐运动的质点所受的沿位移方向的合外力 与它对于平衡位置的位移成正比而反向。这样的力称为 恢复力(Restoring Forces)。
2. 动力学方程 (以水平弹簧振子为例)
由 f ma m d2 x dt2
及 f kx 得
f
k
m
0x
x
弹簧振子
d2 x m d t 2 kx
d 2x dt2
§4.2 谐振子(动力学部分) (Harmonic Oscillator)

2020版新一线高考物理(人教版)一轮复习教学案:第14章 第1节 机械振动 含答案

2020版新一线高考物理(人教版)一轮复习教学案:第14章 第1节 机械振动 含答案

第1节机械振动知识点一| 简谐运动的特征1.简谐运动(1)定义:如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。

(2)平衡位置:物体在振动过程中回复力为零的位置。

(3)回复力①定义:使物体返回到平衡位置的力。

②方向:总是指向平衡位置。

③来源:属于效果力,可以是某一个力,也可以是几个力的合力或某个力的分力。

2.简谐运动的两种模型[(1)简谐运动的平衡位置就是质点所受合力为零的位置。

(×)(2)做简谐运动的质点先后通过同一点,回复力、速度、加速度、位移都是相同的。

(3)做简谐运动的质点,速度增大时,其加速度一定减小。

(√)简谐运动的“五个特征”1.动力学特征:F =-kx ,“-”表示回复力的方向与位移方向相反,k 是比例系数,不一定是弹簧的劲度系数。

2.运动学特征:简谐运动的加速度的大小与物体偏离平衡位置的位移的大小成正比,而方向相反,为变加速运动,远离平衡位置时,x 、F 、a、E p 均增大,v 、E k 均减小,靠近平衡位置时则相反。

3.运动的周期性特征:相隔T 或nT 的两个时刻,振子处于同一位置且振动状态相同。

4.对称性特征(1)相隔T 2或(2n +1)2T (n 为正整数)的两个时刻,振子位置关于平衡位置对称,位移、速度、加速度大小相等,方向相反。

(2)如图所示,振子经过关于平衡位置O 对称的两点P 、P ′(OP =OP ′)时,速度的大小、动能、势能相等,相对于平衡位置的位移大小相等。

(3)振子由P 到O 所用时间等于由O 到P ′所用时间,即t PO =t OP′。

(4)振子往复过程中通过同一段路程(如OP 段)所用时间相等,即t OP =t PO 。

5.能量特征:振动的能量包括动能E k 和势能E p ,简谐运动过程中,系统动能与势能相互转化,系统的机械能守恒。

[典例] (多选)如图所示,一轻质弹簧上端固定在天花板上,下端连接一物块,物块沿竖直方向以O 点为中心点,在C 、D 两点之间做周期为T 的简谐运动。

高中物理复习:简谐运动规律

高中物理复习:简谐运动规律

做机械振动的物体的偏离平衡位置的位移x 随时间t 做正弦规律变化时,物体的运动就被称之为简谐运动,其基本规律是sin()x A t ωϕ=+,其中ω为简谐运动的圆频率,由振动系统本身决定,A 为振幅,φ为初相位,这两者由振动系统的初始状态决定。

一、求导角度理解已知位移随时间的变化规律,即可根据x v t ∆=∆和v a t∆=∆得出振动物体的速度、加速度随时间的变化规律,这需要用到求导的知识。

1、简谐运动的速度规律:由x v t∆=∆得m cos()cos()v x A t v t ωωϕωϕ'==+=+,其中m v A ω=。

2、简谐运动的加速度规律:由v a t ∆=∆得2m sin()sin()a v A t a t ωωϕωϕ'==-+=-+,其中2m a A ω=。

由上述分析可知,振动物体的位移x 和速度v 这两个物理量中,一个振动量按正弦规律变化,另一个振动量就按余弦规律变化,而且有2a x ω=-,即振动物体的加速度a 大小正比于物体偏离平衡位置的位移x ,方向与位移x 的方向相反。

二、从运动方程角度理解将2a x ω=-写成微分方程,即222d d x x t ω=-,由数学知识可知,这个方程的解为sin()x A t ωϕ=+,其中A 为振幅,φ为初相位,这两者由振动系统的初始状态决定。

三、从动力学角度理解由牛顿第二定律,有2F ma m x ω==-,令2k m ω=,可得F kx =-,即做简谐运动的物体的回复力F 大小正比于物体偏离平衡位置的位移x ,方向与位移x 的方向相反。

将2k m ω=变形,可得ω=,则振动系统的周期为2πT ω==,此即为做简谐运动的物体的周期公式,由这个公式可以看出,简谐运动的周期仅仅由振动系统本身决定——振动物体的质量m 和比例系数k 。

对于弹簧振子模型,可以这样理解T =相同的回复力引起的加速度越小,振子回到平衡位置的时间就会越长;从最大位移处回到平衡位置过程中,弹簧的劲度系数越小,则相同位移处的回复力越小,振子的加速度越小,振子回到平衡位置的时间就会越长。

振动

振动

旋转矢量
x = Acosω t x
0 x
x = Acos ω t ) ( 2
π
x
0
π
2
x
2π x = Acos ω t + ) ( 3
x
0
2π 3
x
例题1 一质点沿x 轴作简谐振动,振幅为12 例题1 一质点沿 轴作简谐振动,振幅为 cm,周期 , 位移为6 为2s。当t = 0 时, 位移为 cm,且向 轴正方向运动。 。 ,且向x 轴正方向运动。 求(1)振动方程。(2)如果在某时刻质点位于 =- 6 )振动方程。 )如果在某时刻质点位于x cm,且向 轴负方向运动,求从该位置回到平衡位置 ,且向x 轴负方向运动, 所需要的时间。 所需要的时间。
x1 = Acos (ω t +1 )
-A
-A/2
o
A/2
A
A 2 = Acos (ω t +1 ) →ω t +1 = ±π 3 v1 = ω Asin (ω t +1 ) < 0
sin (ω t +1 ) > 0
ω t +1 = π 3
A 2 = Acos(ω t +2 )
→ ω t +2 = ± 2π 3
2π = π (rad / s) 解: (1) A=12cm , T=2s , ω = ) T
简谐振动表达式为: 简谐振动表达式为: x =0.12 cos (πt + ) y
初始条件: 初始条件: t = 0 时, x0 = 0.06m , v0 > 0
由旋转矢量图得: =
π
3
振动方程: 振动方程: x = 0.12cos(π t

9-3 简谐运动的图示法

9-3 简谐运动的图示法
5 t =0 24 3
第九章 振 动
5 t =0 24 3
3)到达点P相应位置所需时间
t P= .6s 1
9
物理学
第五版
物理学
第五版
9-3 简谐运动的图示法
二 简谐运动的矢量图示法
旋转矢量:自
原点O作一矢量 A ( A A ),且 A
在Oxy平面内绕点O 作逆时针匀角速转
v
0.08 0.04
x/m
o
0.04
0.08
28
第九章 振 动
物理学
第五版
物理学
第五版
9-3 简谐运动的图示法
法二
t
时刻

t
π3 π3
起始时刻
x/m
0.08
2 3
0.08 0.04
o
0.04
π t 3
π3 1 t T T 2π 6
第九章 振 动
0.667 s
29
x/m
x A cos( t )
解一(解析法):
0.10 0.05
0
P 4.0 t/s
A 0.10m t 0 0 x0 0.05m
0.05 0.10 cos


v0 A sin 0
t1 4.0s x1 0m

3 π 0 0.10 cos(4 )
x/m
0.10 0.05
0
P t/s
4.0
第九章 振 动
21
物理学
第五版
物理学
第五版
9-3 简谐运动的图示法
x/m 0.10 0.05 0 P
x A cos( t )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B.若t时刻和(t+Δt)时刻振子运动速度的大小相
等、方向相反,则Δt一定等于T/2的整数倍
C.若Δt=T,则在t时刻和(t+Δt)时刻振子运动
的加速度一定相等
D.若Δt=T/2,则在t时刻和(t+Δt)时刻弹簧的长
度一定相等
精选课件
15
解析 弹簧振子做简谐运动的图
象如右图所示,图中A点与B、E、 F、I等点的振动位移大小相等,方 向相同.由图可知,A点与E、I等点对应的时间差为 T或T的整数倍,A点与B、F等点对应的时间差不为T 或T的整数倍,因此A选项不正确. 图中A点跟B、C、F、G等点的振动速度大小相等, 方向相反,由图可知A点与C、G等点对应的时间差 为T/2或T/2的整数倍,A点与B、F等点对应的时间 差不为T/2或T/2的整数倍,因此B选项不正确;如果 t时刻和(t+Δt)时刻相差为一个周期T,则这两个时 刻振动情况完全相同,加速度一定相等,选项C正
在图中t1时刻质点位移x1为正,则加速度a1为负;
t2时刻质点位移x2为负,则加速度a2为正,又因
为|x1|>|x2|,所以|a1|>|a2|.
精选课件
14
题型探究
题型1 简谐运动的规律
【例1】一弹簧振子做简谐运动,周期为T,则正确
的说法是
()
A.若t时刻和(t+Δt)时刻振子运动位移的大小相
等、方向相同,则Δt一定等于T的整数倍
精选课件
12
热点三 振动图像
1.物理意义:表示振动物体的位移随时间变化的
规律.
特别提示:振动图象不是质点的运动轨迹.
2.应用
(1)确定振动物体在任意时刻的位
移.如图5中,对应t1、t2时刻的位
移分别为x1=+7 cm,x2=-5 cm.
(2)确定振动的振幅.如图振幅是
图5
10 cm.
精选课件
13
(3)确定振动周期和频率.振动图象上一个完整
选修3-4
第十二章 机械振动 机械波
第1课时 机械振动
考点自清
一、简谐运动
1.概念
如果质点的位移与时间的关系遵从正弦函数的规
律,即它的振动图象(x-t图象)是一条正弦曲
线,这样的振动叫做简谐运动.
精选课件
1
2. 简谐运动的描述 (1)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的 有向线段表示振动位移,是矢量. ②振幅A:振动物体离开平衡位置的最大距离, 是标量,表示振动的强弱. ③周期T和频率f:做简谐运动的物体完成 一次 全振动所需要的时间叫周期,而频率则等于单 位时间内完成 全振动的次数 ;它们是表示振动 快慢的物理量.二者互为倒数关系.
要注意多解的可能性或需要写出解答结果的
通式.
精选课件
9
热点二 对单摆的理解
1.单摆及成立条件
如图4所示,一根轻细线,悬挂着一个小
球,就构成所谓的单摆.能够视为单摆需
要满足两个条件:(1)和小球的质量m相 图4 比,线的质量可以忽略;(2)小球可视为质点,
如果小球不能视为质点,则单摆半径为悬点到重
心的距离.
1.回复力——F=-kx.(判断一个振动是不是简谐运
动的依据)
2.对称性——简谐振动物体具有对平衡位置的对称
性,在关于平衡位置对称的两个位置,动能、势
能相等,位移、回复力、加速度大小相等,方向
相反,速度大小相等,方向可能相同,也可能相
反,振动过程相对平衡位置两侧的最大位移值相等.
精选课件
8
3.周期性——简谐运动的物体经过相同时间t=nT(n) 为整数,必回复到原来的状态,经时间t=(2n+1)T2 (n为整数),则物体所处的位置必与原来的位置 关于平衡位置对称,因此在处理实际问题中,
做受迫振动的物体,它的周期(或频率)等于
驱动力 的周期(或频率),而与物体的固有周 期(或频率) 无 关.
2.共振:做受迫振动的物体,它的
固有频率与驱动力的频率越接近,
其振幅就越大,当二者 相等 时,
振幅达到最大,这就是共振现象.
共振曲线如图3所示.ຫໍສະໝຸດ 图3精选课件7
热点聚焦
热点一 简谐运动规律及应用
2.单摆的受力特征
当单摆做小角度摆动时,其受力情况为:受到一
个恒定的竖直向下的重力mg和一个变化的始终沿
绳方向指向悬点的拉力F,垂直于速
精选课件
10
度方向上的力充当向心力,即F向=F-mgcosθ;摆 球重力在平行于速度方向上的分力充当摆球的回复 力.当单摆做小角度摆动时,由于F回=-mgsinθ= - mg =x-kx,所以单摆的振动近似为简谐运动.
弹簧处于原长处
最低点
摆球重力沿与摆线 弹簧的弹力提供 垂直(即切向)方
向的分力
精选课件
5
周期公式
m
T=2π k (不作要求)
T=2π
l g
能量转化
弹性势能与动 重 力 势 能 与
能 的 相 互 转 化 ,动 能 的 相 互 机 械 能 守 转化,机械能

守恒
精选课件
6
三、受迫振动和共振
1.受迫振动:物体在 周期性驱动力 作用下的振动.
l
3.单摆的周期公式 (1)单摆振动的周期公式T=2π l ,该公式提供了
g
一种测定重力加速度g的方法. (2)l为等效摆长,表示从悬点到摆球重心的距离, 要区分摆长和摆线长,悬点实质为摆球摆动所在 圆弧的圆心. (3)g为当地重力加速度.
精选课件
11
特别提示 如单摆没有处于地球表面或所处环境为非平衡 态,则g为等效重力加速度,大体有这样几种情 况(1)不同星球表面g=GM/r2;(2)单摆处于超重或 失重状态等效g=g0±a,如轨道上运行的卫星a=g0 完全失重,等效g=0;(3)不论悬点如何运动还是受 别的作用力,等效g的取值等于在单摆不摆动 时,摆线的拉力F与摆球质量的比值,即等效 g=F/m.
的正弦(余弦)图形在时间轴上拉开的“长度”
表示周期.
由图可知,OD、AE、BF的间隔都等于振动周 期,T=0.2 s,频率f = 1 =5 Hz.
T
(4)确定各质点的振动方向.例如图中的t1时刻, 质点正远离平衡位置向位移的正方向运动;在t3 时刻,质点正向着平衡位置运动.
(5)比较各时刻质点加速度的大小和方向.例如
精选课件
2
(2)简谐运动的表达式 动力学表达式:F=-kx
运动学表达式:x=Asin(ωt+ )
(3)简谐运动的图象 ①物理意义:表示振子的位移随时间变化的规 律,为正弦(或余弦)曲线. ②从平衡位置开始计时,函数表达式为x=
Asinωt,图象如图1.
图1
精选课件
3
从最大位移处开始计时,函数表达式为x=
Acosωt,图象如图2.
图2 3.简谐运动的能量
简谐运动过程中动能和势能相互转化,机械能 守恒,振动能量与 振幅 有关, 振幅 越大, 能量越大.
精选课件
4
二、简谐运动的两种基本模型
弹簧振子(水 平)
单摆
模型示意图
条件 平衡位置
回复力
忽略弹簧质量、 无摩擦等阻力
细线不可伸长、质量 忽略、无空气等阻力、 摆角很小
相关文档
最新文档