拉格朗日方程-刚体动力学-振动 习题课共33页文档

合集下载

拉格朗日方程-刚体动力学-振动知识题课

拉格朗日方程-刚体动力学-振动知识题课

, k'
}
欧拉角
y'
上式两边除以t 0
k n k' z n z' 角加速度 d / dt
(t) (t)l 0 (t) l 0 l0 1 2
x
N
x'
y
节线
11
BUAA
习题课
定点运动刚体上点的速度和加速度
1、速 度:v lim r t0 t
r r
x
1 2
m2
L
cos
C
系统的什么广义动量守恒?
研究整体:
x
A vA
研究圆盘:
LrA
1 2
mAr 2A
1 2 m1rx
FAy
A
F
vCA LrA Fr
A
r
FAx
c m1g
B
Px mAx FmNmAB2vgCx
Px
m1x F
m2 (x (1)
L 2
cos
)
LrA F (2) r
F m1g
p x
M g J z'
16
BUAA
习题课
6-4:具有固定顶点O的圆锥在水平面上作纯滚动,如图所示。 圆锥高CO=18cm,顶角,∠AOB=90o。圆锥面中心C作匀速 圆周运动,每秒绕行一周。试求圆锥的角速度和角加速度,并 求圆锥底面直径AB两端点A和B的速度和加速度。
z x
圆锥绕O点作定点运动 绕铅垂轴的进动角速度ω1 绕OC轴的自转角速度ω2 圆锥的绝对角速度 ω ω ω1 ω2
BUAA
拉格朗日方程 刚体动力学 振动 习题课
BUAA
第二类拉格朗日方程的总结
对于具有完整理想约束的质点系,若系统的自由度为k,

拉格朗日方程-振动

拉格朗日方程-振动
DOF = 3 n + 6 m -(约束方程数)
分析力学基础 2.1 自由度和广义坐标
例 1 图 (a)中,质量用一根
弹簧悬挂。图(b)中质量
用一根长度为l,变形可忽略
的悬丝悬挂。分析系统的自
由度,并建立系统的广义坐
(a)
标。
(b)
解 对图(a)所示的系统,尽管质量用弹簧悬挂,但弹簧能自由地伸长, 因此它的约束方程为零,自由度为3。
作用于质点系所有主动力在该位置处的任何虚位移中的虚功之和等于零。
分析力学基础 2 ຫໍສະໝຸດ 位移原理 虚位移原理受定常理想约束的质点系在某一位置平衡的必要与充分条件是:
作用于质点系所有主动力在该位置处的任何虚位移中的虚功之和等于零。
p
其数学表达式为: d W F d r 0
i
i
i 1
其中,Fi为作用于质点系的主动力, dri为虚位移。上式也称为虚功方程。
时的位置,即广义坐标数为2,自由度为2。
分析力学基础 1 自由度和广义坐标
例 2 右图表示由刚性杆l 1和质量m 1及刚性杆l 2和
质量m 2组成的两个单摆在O’ 处用铰链连接成
双摆,并通过铰链O与固定点连接,使双摆只能 在平面内摆动,分析系统的自由度,并建立系统 的广义坐标。 解 由于双摆只能在平面内摆动,因此, z 1 = 0,z 2 = 0, 而双摆的长度l 1和l 2不变,即
对图(b)所示的系统,悬挂质量的悬丝不可伸长, 因此在空间的位置必 须满足质量离悬挂点的距离保持不变的条件,即满足下列方程约束方程:
x2 y2 z2 l2
这样,坐标 x 、 y 和 z 就再不独立。若用球面坐标r 、y 和j 来表示, 必须满足条件 r = l ,只要用y 和j 两个坐标就能完全确定质量在任何瞬

理论力学 拉格朗日方程

理论力学 拉格朗日方程

xl
cos

1 2
k
x2

m2
gl
cos
L x

(m1

m2
)
x

m2
l
cos
,
L x

kx
d dt
L x

(m1

m2
)
x
m2
lcos

m2
l
2
sin
L


m2
l
2

m2
xlcos
,
L


m2
xl
sin

m2
glsin
(c)
代入质点系动力学普遍方程,得:
n
n
n
(Fi miai )ri Fi ri miairi 0 (d )
i 1
i 1
i 1
n
Fi
i 1
ri
n
Fi
i 1
( jk1qrij
q
j
kn
) (F
j1 i1
i
ri q j
)q j
kn
质点 M i : mi , 。ri 若取系统的一组广义坐标为
q,1则, q2 ,qk
ri ri (q1,q2 ,qk ,t) (i1,2,n)
(a)
vi
dri dt
jk1qrij
q j
ri t
(i 1,2n)
( b)

q j

dq j为广义速度。 dt
7
ri jk1qrij q j (i1,2,n)
22
dL dt

理论力学经典课件第九章拉格朗日方程

理论力学经典课件第九章拉格朗日方程
第九章拉格朗日方程
理论力学经典课件第九章拉格朗日方程是理论力学的重要组成部分,涉及欧 拉-拉格朗日方程和拉格朗日函数。在本次课件中,我们将深入探讨拉格朗日 方程的定义、应用实例及求解原理,并介绍多自由度的系统和哈密顿原理。 让我们一起来了解这一重要的物理学概念。
引言
理论力学的概念
欧拉-拉格朗日方程
理论力学是研究质点、质点系、 星系、表面、弹性体、流体等 物质运动规律与作用的一门自 然科学。
对于任意系统,在所有可能的 运动中,其真实运动使得作用 量达到最小值,作用量函数是 由拉格朗日函数定义的。
拉格朗日函数
描述了系统状态、参数、状态 变量与计算所有物理量的关系, 对于每一个系统都是唯一的。
拉格朗日方程的概念
参考文献
相关教材
• 《理论力学》(屠光 绍编)
• 《哈密顿力学:平凡 而重要的力学》(丘
• 维《声方编法)学与系统形态 学:拉格朗日方程的 理论与应用》(杨晋 编)
相关论文章
• Wei-Chiam Chung ,David Nezlin, Chuan-Jong Shih (2002)The
• LVa. gBraalankgriiasnhnan, S. FMo.rBmhualtattaiochna,rjee S(p2r0in0g7e)r CUlSassical M echanics: Point Particles and Special Relativity
• , G.WEboardldi,SLc.iZeanntiefi(c 2008)On the Variational and Lag r an g i an Representations of Classical M echanics, INTECH Open Access Publisher

理论力学经典课件-第九章拉格朗日方程

理论力学经典课件-第九章拉格朗日方程

理想弹性振子的振动分析
总结词
理想弹性振子是一个简化的模型,用于研究振动的规 律。通过拉格朗日方程,可以分析其振动行为。
详细描述
理想弹性振子是一个质量为m的质点,连接到一个无 质量的弹簧上。当振子受到一个外部力作用时,它会 开始振动。通过应用拉格朗日方程,可以计算出振子 的振动频率和振幅。
地球的运动分析
详细描述
分离变量法是一种求解偏微分方程的常用方法。它通过假设解可以表示为多个独立变量的乘积,将偏微分方程转 化为多个常微分方程,从而简化了求解过程。这种方法在求解波动方程、热传导方程等偏微分方程时非常有效。
哈密顿正则方程法
总结词
利用哈密顿原理和正则方程推导出系统 的运动方程,适用于完整约束系统。
VS
相对论力学中的拉格朗日方程
总结词
相对论力学中的拉格朗日方程是经典拉格朗 日方程的进一步发展,它考虑了相对论效应 ,适用于高速运动和高能量密度的物理系统 。
详细描述
在相对论力学中,由于物体的高速运动和相 对论效应的影响,经典拉格朗日方程需要进 行相应的修正。相对论力学中的拉格朗日方 程能够更好地描述高速运动和高能量密度下 的物理过程,如相对论性粒子的运动、高能
要点一
总结词
地球的运动是一个复杂的系统,涉及到多个力和力的矩。 通过拉格朗日方程,可以分析地球的运动轨迹和规律。
要点二
详细描述
地球的运动包括自转和公转,受到太阳和其他天体的引力 作用。通过应用拉格朗日方程,可以计算出地球的运动轨 迹和周期,以及地球上不同地区的重力加速度和潮汐现象 等。
非保守系统的拉格朗日方程
总结词
非保守系统中的拉格朗日方程需要考虑非保 守力的影响,这需要引入额外的变量和方程 来描述系统的运动。

分析力学拉格朗日方程

分析力学拉格朗日方程

分析力学拉格朗日方程分析力学是物理学中的一个重要分支,它主要研究物体的运动规律和力学系统的宏观性质。

拉格朗日力学是分析力学的基础,是分析力学发展过程中的一个重要理论。

它由意大利数学家拉格朗日于18世纪发展而来,利用广义坐标和拉格朗日方程来描述物体的运动学和动力学。

在拉格朗日力学中,系统的运动由极值原理来决定。

这个极值原理是“达朗贝尔原理”,即系统的运动满足使作用量(S)是极值的路径。

作用量是拉格朗日力学中的一个重要概念,它表示物体在运动过程中所受到的所有力的作用。

具体来说,作用量可以表示为:S = ∫ (L - T) dt其中,L是拉格朗日函数,表示系统的动能和势能之差;T是系统的动能,表示物体的运动能量。

积分表示对整个运动过程的积分求和。

根据达朗贝尔原理,系统的运动满足作用量的极值条件,即δS=0。

为了使作用量的变分δS等于零,我们可以通过拉格朗日方程来推导系统的运动方程。

假设系统有n个自由度,我们引入广义坐标q1, q2, ..., qn来描述系统的位置。

每个广义坐标都是关于时间的函数,即q(t)。

拉格朗日函数L也是广义坐标的函数,即L(q, dq/dt, t)。

其中dq/dt表示广义坐标的时间导数。

利用拉格朗日函数,我们可以定义拉格朗日方程:d/dt (∂L/∂(dq/dt)) - ∂L/∂q = 0这个方程就是拉格朗日方程。

其中∂L/∂(dq/dt)表示拉格朗日函数对广义速度的偏导数,∂L/∂q表示拉格朗日函数对广义坐标的偏导数。

该方程描述了系统在广义坐标下的运动规律。

拉格朗日方程的推导过程是基于变分法和哈密顿原理的。

通过对作用量进行变分,我们可以得到极值的条件,即达朗贝尔原理。

然后利用这个极值条件,我们可以推导出拉格朗日方程。

拉格朗日方程在物理学中有着广泛的应用,不仅可以用来描述质点的运动,还可以用来描述刚体的运动、连续介质的运动、以及相对论力学等。

它提供了一种统一的描述物体运动的方法,同时也为我们研究物体的宏观性质提供了一个有力的工具。

理论力学经典课件-拉格朗日方程

理论力学经典课件-拉格朗日方程

y A a1 C1 ae C2 α
D α2 ar B
求:1,三棱柱后退的加速度a1; 三棱柱后退的加速度a OC 2,圆轮质心C2相对于三棱 圆轮质心C 相对于三棱 柱加速度a 柱加速度ar. 解:1,分析运动 三棱柱作平动, 三棱柱作平动,加速度为 a1. 圆轮作平面运动,质心的牵连 圆轮作平面运动, 加速度为a 加速度为ae= a1 ;质心的相对加 速度为a 圆轮的角加速度为α 速度为ar;圆轮的角加速度为α2.
O1 l α α l FIA m1g l
C A
x1
ωB
l m1g m2g y1
FIB
球A,B绕 y轴等速转动;重锤静止不动. 轴等速转动;重锤静止不动. 球A,B的惯性力为
FA = FB = mlsinαω2 I I
2,令系统有一虚位移δα.A,B,C 三处的 虚位移分别为δ 虚位移分别为δrA,δrB, δrC . 3,应用动力学普遍方程 δrA FIA m1g l
x
解:2,施加惯性力
y A δx OC a1
FI 2 r
MI2
δ D C2 α
m2 g FI 2 e
F = ma I1 1 1
F =m a I2e 2 1
ae C1
FI1
F = m ar I2r 2
MI2 = J2 α2 1 J2 = m R2 2 2
ar B
x
m1g
解:3,确定虚位移 考察三棱柱和圆盘组成的 系统,系统具有两个自由度. 系统,系统具有两个自由度. 二自由度系统具有两组虚 位移: 位移: 第一组
如果将位矢对任意一个广义坐标 求偏导数, 如果将位矢对任意一个广义坐标 qj 求偏导数,再对时间求 导数, 导数,则得到

理论力学拉格朗日方程

理论力学拉格朗日方程

0
(k 1,2,, N )
n
i 1
mi ri
ri qk
n i 1
mi
d dt
(ri
ri qk
)
n i 1
mi ri
d ( ri dt qk
)
ri
ri t
N k 1
ri qk
qk
qk
dqk dt
广义速度
ri 和 ri 仅为时间和广义坐标的函数, t q j
与广义速度q j无关
ri qk
根据几何关系,有
A
FIA m1g l
C
xA lsin yA lcos
xA l cos yA l sin
B
FIB l m1g
m2g y1
xB lsin
xB l cos
yB lcos
yB l sin
yC 2lcos
yC 2l sin
3、应用动力学普遍方程
FIA δxA FIB δxB m1g δyA m1g δyB m2 g δyC 0
ri qk
第一个拉格朗日关系式
ri
ri t
N k 1
ri qk
qk
对任意一个广义坐标 qj 求偏导数
ri
q j
2ri q jt
N k 1
2ri q jqk
qk
如果将位矢对任意一个广义坐标 qj 求偏导数,再对时间求 导数,则得到
d
dt
ri q j
2 ri q jt
N k 1
2 ri q jqk
xA l cos yA l sin xB l cos
O1
x1
rA
l l rB
FIA A m1g l
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档