拉格朗日方程与哈密顿方程(仲顺安)资料.
分析力学基础-拉格朗日方程

其他应用领域
要点一
机器人学
在机器人学中,拉格朗日方程被用于描述机器人的运动规 律。通过建立机器人运动的拉格朗日方程,可以求解出机 器人的关节角度和速度,为机器人的运动控制提供理论依 据。
要点二
生物力学
在生物力学中,拉格朗日方程也被应用于描述生物体的运 动规律。例如,在分析动物的运动行为或人体姿势控制时 ,可以使用拉格朗日方程来描述生物体的运动状态和变化 规律。
解析解法的优缺点分析
优点
解析解法可以得到系统的精确解,适用 于简单模型和特定条件下的复杂模型。
VS
缺点
对于复杂模型,解析解法可能非常困难甚 至无法求解,需要借助数值方法或其他近 似方法。
04
拉格朗日方程的数值解法
数值解法的概念和步骤
概念
数值解法是一种通过数学计算来求解数学问 题的方法,它通过将问题离散化,将连续的 问题转化为离散的问题,然后使用计算机进 行计算求解。
步骤
1.建立数学模型:根据实际问题建立数学模 型,将实际问题转化为数学问题。2.离散化 :将连续的问题离散化,将连续的时间和空 间划分为若干个小的单元,每个单元称为一 个网格点或节点。3.求解离散化后的方程: 使用数值方法求解离散化后的方程,得到每 个网格点的数值解。4.后处理:对计算结果 进行后处理,提取所需的信息,并进行分析
分析力学基础-拉格 朗日方程
目录
• 引言 • 拉格朗日方程的推导 • 拉格朗日方程的解析解法 • 拉格朗日方程的数值解法 • 拉格朗日方程的应用领域
01
引言
拉格朗日方程的背景和重要性
背景
拉格朗日方程是分析力学中的基 本方程,它描述了系统的运动规 律。
重要性
拉格朗日方程在理论物理、工程 技术和科学研究等领域有着广泛 的应用,是理解和研究复杂系统 运动行为的关键工具。
拉格朗日方程与哈密顿方程

01
通过勒让德变换,拉格朗日方程可以转化为哈密顿方程,两者
在描述物理系统的运动规律时具有等价性。
拉格朗日方程的优势
02
在处理具有约束条件的系统时,拉格朗日方程具有较大的优
势,可以通过引入拉格朗日乘子来简化问题的求解。
哈密顿方程的特点
03
哈密顿方程具有明确的物理意义,可以方便地引入正则量子化
方法,为量子力学的发展奠定了基础。
THANKS FOR WATCHING
感谢您的观看
05 拉格朗日方程与哈密顿方 程在物理学中的应用
在力学中的应用
描述质点和刚体的运动
拉格朗日方程和哈密顿方程可用于描述质点和刚体在力作用下的运动,通过定义适当的拉格朗日函数或哈密顿函数, 可以推导出质点和刚体的运动方程。
约束条件下的运动
对于受到约束的力学系统,拉格朗日方程和哈密顿方程同样适用。通过引入约束条件,可以推导出系统在约束条件下 的运动方程。
1 2 3
经典力学中的应用
哈密顿方程在经典力学中用于描述质点和刚体的 运动,可以方便地处理约束和非保守力的问题。
量子力学中的应用
在量子力学中,哈密顿算符对应于经典力学中的 哈密顿函数,用于描述微观粒子的运动状态和能 级结构。
控制理论中的应用
在控制理论中,哈密顿方程被用于描述系统的动 态行为和最优控制问题,如最小时间控制、最小 能量控制等。
哈密顿函数是描述物理系统总能量的函数,通常表示为H(q, p, t),其中q是广义坐 标,p是广义动量,t是时间。
哈密顿函数与拉格朗日函数的关系
哈密顿函数可以通过对拉格朗日函数进行勒让德变换得到,即H(q, p, t) = p·q̇ L(q, q̇, t),其中L是拉格朗日函数,q̇是广义速度。
理论力学(二)

动过程的作用量最小,无论用新旧变量描述,只相差
一个全微分。
正则变换的生成函数
• 虽然 f 任意,按照其全微分应该写为各个变
量微分的线性组合的原则,这里 f 称为生成
函数,它的自变量应该是
s
s
f1
=
f(q,Q,t)。因此
df1(q, Q, t) pidqi PidQi (K H )dt
qi
H pi
,
pi
H qi
• 方程给出了2s个变量随时间的变化率,可
一步步积分求出以后各个时刻的值。其中
前s个给出广义速度和广义动量之间的关系,
后s个等价于原来的s个拉格朗日方程。
• p 和 q 称为正则共轭变量,正则方程具有 对称形式。
哈密顿正则方程中的循环坐标
• 从对应关系
pi
i 1
i 1
s ( f1 i1 qi
dqi
f1 Qi
dQi
)
f1 t
dt
• 对应各项系数,有
pi
f1 qi
,
Pi
f1 Qi
,
K
H
f1 t
正则变换的第2种类型
• 还可以通过勒让德变换,用 p 或 P 作为 f 的
自变量,能得到其他3种类型的正则变换。 s df2 (q, P, t) d[ f1(q, Q, t) PiQi ] i 1
• 对于循环坐标,哈密顿正则方程处理起来方 便很多,无论哈密顿函数缺少任意一个q,p, t,都可以找到它相应的守恒量。
• 拉格朗日方程和哈密顿方程本质上是等价的。
理论力学经典课件第九章拉格朗日方程

理论力学经典课件第九章拉格朗日方程是理论力学的重要组成部分,涉及欧 拉-拉格朗日方程和拉格朗日函数。在本次课件中,我们将深入探讨拉格朗日 方程的定义、应用实例及求解原理,并介绍多自由度的系统和哈密顿原理。 让我们一起来了解这一重要的物理学概念。
引言
理论力学的概念
欧拉-拉格朗日方程
理论力学是研究质点、质点系、 星系、表面、弹性体、流体等 物质运动规律与作用的一门自 然科学。
对于任意系统,在所有可能的 运动中,其真实运动使得作用 量达到最小值,作用量函数是 由拉格朗日函数定义的。
拉格朗日函数
描述了系统状态、参数、状态 变量与计算所有物理量的关系, 对于每一个系统都是唯一的。
拉格朗日方程的概念
参考文献
相关教材
• 《理论力学》(屠光 绍编)
• 《哈密顿力学:平凡 而重要的力学》(丘
• 维《声方编法)学与系统形态 学:拉格朗日方程的 理论与应用》(杨晋 编)
相关论文章
• Wei-Chiam Chung ,David Nezlin, Chuan-Jong Shih (2002)The
• LVa. gBraalankgriiasnhnan, S. FMo.rBmhualtattaiochna,rjee S(p2r0in0g7e)r CUlSassical M echanics: Point Particles and Special Relativity
• , G.WEboardldi,SLc.iZeanntiefi(c 2008)On the Variational and Lag r an g i an Representations of Classical M echanics, INTECH Open Access Publisher
拉格朗日方程和哈密顿正则方程

重要性
这两个方程的数学结构和原理具有普适性, 可以应用于各种不同的领域。它们为解决复 杂系统的运动和控制问题提供了重要的理论 框架和方法。
05
总结与展望
对拉格朗日方程和哈密顿正则方程的总结
拉格朗日方程
拉格朗日方程是经典力学中的基本方程,用于描述一个质点系的运动。它基于拉格朗日 函数,通过最小化或最大化的原则,确定质点系在给定初始条件下的运动轨迹。拉格朗
拉格朗日方程的应用实例
总结词
拉格朗日方程在物理学、工程学等领域有广泛的应用 。
详细描述
拉格朗日方程是经典力学中描述系统运动的基本方程 之一,具有广泛的应用价值。在物理学中,它可以用 于分析各种力学系统的运动规律,如行星运动、振荡 器等。在工程学中,拉格朗日方程也被广泛应用于各 种实际问题,如控制理论、机器人学、航天器轨道力 学等。通过求解拉格朗日方程,我们可以得到系统的 运动轨迹和状态演化,从而为实际应用提供重要的理 论支持。
与其他理论的结合
拉格朗日方程和哈密顿正则方程作为经典力学的基本理论,可以与其他理论进行结合,例 如相对论、量子力学等。这种结合将有助于更深入地理解物质的运动规律,推动物理学和 其他学科的发展。
THANKS
感谢观看
总结词
拉格朗日函数是描述系统运动状态的函数,具有特定的物理 意义和数学性质。
详细描述
拉格朗日函数是描述系统运动状态的函数,通常表示为L(q, ,t), 其中q是系统的广义坐标,t是时间。它具有一些重要的性质, 如时间无关性、对称性、最小作用量等。这些性质对于理解和 应用拉格朗日方程非常重要。
拉格朗日方程的推导和证明
03
哈密顿正则方程
哈密顿函数的定义和性质
哈密顿函数
理论力学经典课件-第九章拉格朗日方程

理想弹性振子的振动分析
总结词
理想弹性振子是一个简化的模型,用于研究振动的规 律。通过拉格朗日方程,可以分析其振动行为。
详细描述
理想弹性振子是一个质量为m的质点,连接到一个无 质量的弹簧上。当振子受到一个外部力作用时,它会 开始振动。通过应用拉格朗日方程,可以计算出振子 的振动频率和振幅。
地球的运动分析
详细描述
分离变量法是一种求解偏微分方程的常用方法。它通过假设解可以表示为多个独立变量的乘积,将偏微分方程转 化为多个常微分方程,从而简化了求解过程。这种方法在求解波动方程、热传导方程等偏微分方程时非常有效。
哈密顿正则方程法
总结词
利用哈密顿原理和正则方程推导出系统 的运动方程,适用于完整约束系统。
VS
相对论力学中的拉格朗日方程
总结词
相对论力学中的拉格朗日方程是经典拉格朗 日方程的进一步发展,它考虑了相对论效应 ,适用于高速运动和高能量密度的物理系统 。
详细描述
在相对论力学中,由于物体的高速运动和相 对论效应的影响,经典拉格朗日方程需要进 行相应的修正。相对论力学中的拉格朗日方 程能够更好地描述高速运动和高能量密度下 的物理过程,如相对论性粒子的运动、高能
要点一
总结词
地球的运动是一个复杂的系统,涉及到多个力和力的矩。 通过拉格朗日方程,可以分析地球的运动轨迹和规律。
要点二
详细描述
地球的运动包括自转和公转,受到太阳和其他天体的引力 作用。通过应用拉格朗日方程,可以计算出地球的运动轨 迹和周期,以及地球上不同地区的重力加速度和潮汐现象 等。
非保守系统的拉格朗日方程
总结词
非保守系统中的拉格朗日方程需要考虑非保 守力的影响,这需要引入额外的变量和方程 来描述系统的运动。
经典力学的拉格朗日与哈密顿形式

经典力学的拉格朗日与哈密顿形式经典力学是物理学中的一个重要分支,用来研究物体在作运动时的力学规律。
在经典力学的发展历程中,拉格朗日力学和哈密顿力学是两个基本的理论框架。
本文将对拉格朗日力学和哈密顿力学的基本概念、原理和应用进行介绍。
一、拉格朗日力学拉格朗日力学是由意大利数学家拉格朗日于18世纪提出的一种描述力学系统的方法。
它基于一个称为“拉格朗日函数”的函数来描述物体的运动。
拉格朗日函数由广义坐标和广义速度构成,具体形式为L(q, ẋ),其中q表示广义坐标,ẋ表示广义速度。
在拉格朗日力学中,通过引入一个称为“作用量”的量来描述系统的运动。
作用量定义为物体在运动过程中受到的广义力与广义坐标变化的积分,即S = ∫L(q, ẋ)dt。
拉格朗日原理指出,物体在运动时,其实际路径是使作用量S取极值的路径。
通过应用拉格朗日原理,可以得到运动方程及其解。
对于单个质点的运动,拉格朗日力学方程可以写为∂L/∂q - d(∂L/∂ẋ)/dt = 0。
对于多个质点的系统,可以将拉格朗日函数写为各质点的质量、速度以及势能、动能的函数,并将系统的位形空间表示为广义坐标的空间。
拉格朗日力学具有坐标变换不变性、方程形式简洁等优点,适用于描述各种复杂力学系统的运动。
二、哈密顿力学哈密顿力学是由爱尔兰物理学家威廉·哈密顿于19世纪提出的一种力学描述方法。
它是拉格朗日力学的一种等价形式,通过引入广义动量,将力学系统的描述从坐标空间转化为相空间。
在哈密顿力学中,广义动量定义为p = (∂L/∂ẋ),并利用广义动量和广义坐标构成哈密顿函数H(q, p)。
哈密顿函数描述了系统的总能量,并在相空间中表示系统的状态。
利用哈密顿原理,可以推导出哈密顿力学的运动方程,即哈密顿正则方程。
对于单个质点的运动,哈密顿正则方程写为dq/dt = (∂H/∂p),dp/dt = - (∂H/∂q)。
对于多个质点的系统,可以将哈密顿函数表示为各质点坐标、动量以及势能、动能的函数。
拉格朗日方程

拉格朗日方程拉格朗日方程(Lagrange Equations)是描述质点系统在广义坐标下的运动的一种方法。
它是由意大利数学家拉格朗日在1755年提出的。
拉格朗日方程是一种非常有用的方法,可以用来解决复杂的力学问题。
本文将阐述拉格朗日方程的概念、定义、推导和应用。
一、拉格朗日方程的概念拉格朗日方程是一种描述物理系统的运动的数学工具。
它是在广义坐标系下描述系统的运动的。
广义坐标系是指可以描述系统运动的坐标系,与传统的笛卡尔坐标系不同。
拉格朗日方程允许我们用少量的代数方程式描述物理系统的运动,而不必考虑物体的确切轨迹。
二、拉格朗日方程的定义拉格朗日方程可以用来描述质点系统的运动。
一个质点系统是由一些质点组成的体系,它们在一起相互作用并受到外力的作用。
拉格朗日方程消除了这些参与到系统运动中的力,并通过一组数学公式描述质点的运动。
这些公式通常由拉格朗日函数和广义坐标定义。
三、拉格朗日方程的推导假设有一个质点系统,它包含了n个质点。
每个质点都有质量m(i),位于位置向量r(i)。
一个质点所受的总力为F(i),则拉格朗日函数为:L = T - V其中,T表示动能,V表示势能,它们都是广义坐标的函数,正好表示质点的位置。
T的公式为:T = 1/2 m(i)*v(i)^2其中,v(i)表示第i个质点的速度向量。
势能V可以描述整个质点系统的势能。
假设在质点系统中有m个约束条件C(k),它们是广义坐标q的函数,如C(k)(q) = 0。
约束条件通常是描述系统中相互作用的限制条件。
根据达朗贝尔原理,可以推导出拉格朗日方程的表达式。
达朗贝尔原理是指系统中所有质点所受力的合力是零,即:∑F(i) = 0假设广义坐标为q = (q1, q2, …, qn),其变化率为dq(i)/dt。
则对于所有的i,可以得到:F(i) = m(i) d^2r(i)/dt^2然后对约束条件C(k)求偏微分:∂C(k) / ∂ri * d^2ri/dt^2 + ∂C(k) / ∂rj * d^2rj/dt^2 = 0其中,i和j分别代表C(k)所属于的质点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把牛顿运动方程写成关于动能和势能的形式。
N个质点的牛顿运动方程写为:
mi xi X i , mi yi Yi , mizi Zi , (i 1,2..., N )
质点系的动能表示为:
分力
T
1 2
N
mi
i 1
xi2 yi2 zi2
分力为保守力(保守力系中,势能与力的关系:势能梯度的负 值为力,势能下降最快的方向为力的方向。),可表示为:
低速 宏观物体
、 的运动。
这里:l 指物体的特征尺度;a 指原子的尺度。
拉格朗日在《分析力学》序中宣称:“在这本书中找不到一
张图,我所叙述的方法既不需要作图,也不需要任何几何的 或力学的推理,只需要统一而有规则的代数(分析)运算”。
法国数学家、物理学家
分析力学的创立者。在其名著《分析 力学》中,把数学分析应用于质点和刚 体力学,提出了运用于静力学和动力学 的普遍方程,引进广义坐标的概念,建 立了拉格朗日方程,把力学体系的运动 方程从以力为基本概念的牛顿形式,改 变为以能量为基本概念的分析力学形式, 奠定了分析力学的基础,为把力学理论 推广应用到物理学其他领域开辟了道路
仲顺安 等 北京理工大学出版社
力学:主要指牛顿力学
光学
普通物理
热学
感性认识 建立在实验的基础上
大
电磁学
学
原子物理学
物
理
理论力学:核心是分析力学
理论物理 (四大力学)
热力学与统计物理
电动力学 量子力学
理性认识 形成系统的理论
1 态度端正,不要有任何思想包袱 2 掌握正确的学习方法 3 除了教材以外,应准备1-2本相关的参考书 4 数学基础知识的预备 5 不要旷课,提前预习,按时交作业
c:把质点的运动平面扩展到空间中的任意平面, 改制点的平面运动方程Ax+By+Cz+D=0(该方程 称为约束方程),独立地确定x、y,就可以确定z, 则称该质点有2个自由度。
d:依此类推,假如限制质点只在一条直线上运动,
则约束方程为两个,可供独立选择的坐标变量是一 个,则称质点有1个自由度。
e:假设有N个质点组成的一个系统。①系统的质点 自由运动时,自由度数为3N;②若有k个约束方程, 则自由度数为3N-k。
牛顿力学(牛顿三大定律+万有引力定律)
经典力学
历史发展的先后 研究方法的不同
(低速、宏观) 分析力学
力
(拉格朗日力学+哈密顿力学)
学
量子力学(微观)
现代力学
相对论力学(高速)
牛顿力学回顾
一、研究对象及研究方法
物体的机械运动(物质世界最低级、最基本的运动
形态),即物体的空间位置随时间变化的规律。
二、适用范围
广义动量:
T 1 m x2 y2 z2 2
U与速度 无关:
p
L q
变换形式,令: 微分:
独立变量
勒让德变换公式: 只换一个变量时:
独立变量
对拉格朗日函数进行勒让德变换得到哈密顿函数:
广义动量:
p
L q
对上式两边求微分,
左边: 右边:
由拉格朗日方程:
d L dt q j
L q j
§1-1 自由度 约束与广义坐标
自由度:为单值地确定一个系统的位置所必需给定的 独立变量的数目。
质点:为了确定一个质点在空间的位置,常需要三个 坐标x、y、z。
a:假如质点是完全自由的,即x、y、z彼此独立, 则称该质点有3个自由度。
b:假如质点被限制在xy平面上运动,此时有z=0, 它就是限制质点自由运动的条件,称为“约束”。 z=0称为约束方程。此时,这个质点只剩下两个坐标 可以任意取值,则称该质点有2个自由度。
参考书
1.理论物理导论 2.理论物理导论 3. 量子力学I 4. 统计物理学导论 5. 统计热力学
李卫 刘义荣 程建春 曾谨言 王竹溪 梁希侠,班士良
平时成绩(30%):包括考勤(累计5次旷课则平时 成绩以零分处置),课堂听课情况,作业完成情况, 课堂测验成绩
期末考试成绩(70%)
力学的发展
爱尔兰人
他的研究工作涉及不少领域,成果 最大的是光学、力学和四元数.他 研究的光学是几何光学,具有数学 性质;力学则是列出动力学方程及 求解;因此哈密顿主要是数学 家.但在科学史中影响最大的却是 他对力学的贡献.哈密顿量是现代 物理最重要的量,当我们得到哈密 顿量,就意味着得到了全部
第一章 拉格朗日方程和哈密顿方程
② 方程中不出现约束条件,因而在建立体系的方程时,只需分 析已知的主动力。体系越复杂,约束条件越多,自由度越少, 方程个数也越少,问题也就越简单。
3.
§1-4 哈密度函数 哈密顿方程
哈密顿提出用s个广义坐标和s个广义动量描述体 系的运动,导出了三种不同形式的方程:哈密顿正则 方程、哈密顿原理和哈密顿——雅可比方程,称为经 典力学的哈密顿理论。哈密顿理论和拉格朗日理论、 牛顿理论是等价的。
广义坐标、广义速度
假设一个系统有s个自由度,那么确定该系统位置, 需要用到s个变量,把这s个变量用q1、q2、q3、……、 qs来表示,称为该系统的s个广义坐标。
广义坐标对时间t的微商,dq/dt,记为
•
q
,称为
广义速度。
导数
§1-2 拉格朗日方程
拉格朗日函数:它是由系统的动能和势能定义的函数。
T
1 2
N
mi
i 1
xi2
yi2 zi2
d dt
T xi
dmidt Nhomakorabea•
xi
mi
d
•
xi
dt
mi
••
xi
Xi
得到:
d dt
T xi
U xi
0
d dt
T xi
U xi
0
同理 可得 到:
与速度无关
d dt
L U xi
T
xi
L
0
与坐标无关
d dt
L
xi
L xi
0
d L L
dt
yi
yi
0
d dt
L zi
L zi
0
用广义坐标表示的拉格朗日方程: d L dt q j
L q j
0
拉氏方程的特点:
(j=1,2,…,s)
① 是一个二阶微分方程组,方程个数与体系的自由度相同。形 式简洁、结构紧凑。而且无论选取什么参数作广义坐标,方 程形式不变。
0
q p
H p
H q
----哈密顿正则(运动)方程是哈密顿函数的微分形式.
s
H L p jq j j 1
§1-5 哈密度函数的物理意义
对于一个保守系,并且L不显含t时, 哈密顿函数的物理意义:通过化简:
H=U+T=E(总能量)
哈密顿函数正好为系统的势能和动能的总和, 即为系统的总能量。