实验预习报告-牛顿环
工作报告之牛顿环物理实验报告

牛顿环物理实验报告【篇一:用牛顿环测量透镜的曲率半径实验报告】一、实验名称:用牛顿环测量透镜的曲率半径二、实验目的:1、观察光的等厚干涉现象,了解干涉条纹特点。
2、利用干涉原理测透镜曲率半径。
3、学习用逐差法处理实验数据的方法。
三、实验仪器:牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为589.3nm)、读数显微镜(附有反射镜)。
四、实验原理:将一块曲率半径r较大的平凸透镜的凸面放在一个光学平板玻璃上,使平凸透镜的球面aob和平面玻璃cd面相切于o点,组成牛顿环装置,如图所示,则在平凸透镜球面和平板玻璃之间形成一个以接触点o为中心向四周逐渐增厚的空气劈尖。
当单色平行光束近乎垂直地向ab面入射时,一部分光束在aob面上反射,一部分继续前进,到cod面上反射。
这两束反射光在aob面相遇,互相干涉,形成明暗条纹。
由于aob面是球面,和o点等距的各点对o点是对称的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点(实际观察是一个圆斑),这些环纹称为牛顿环。
图(4)牛顿环装置图(5)牛顿环根据理论计算可知,和k级条纹对应的两束相干光的光程差为? 2?式中e为第k级条纹对应的空气膜的厚度,为半波损失。
2?由干涉条件可知,当??(2k?1)(k?0,1,2,3,?)时,干涉条纹为暗条纹。
即2解得??2e?e?k(2) 2设透镜的曲率半径为r,和接触点o相距为r处空气层的厚度为e,由图4所示几何关系可得r2??r?e??r2?r2?2re?e2?r2 由于r??e,则e2可以略去。
则r2e?(3)2r2?由式(2)和式(3)可得第k级暗环的半径为rk2?2re?kr? (4)由式(4)可知,如果单色光源的波长?已知,只需测出第k级暗环的半径rk,即可算出平凸透镜的曲率半径r;反之,如果r已知,测出rk后,就可计算出入射单色光波的波长?。
但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在光程差公式中附加了一项。
牛顿环测曲率半径实验报告

牛顿环测曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习用牛顿环测量平凸透镜的曲率半径。
3、掌握读数显微镜的使用方法。
二、实验原理将一块曲率半径较大的平凸透镜放在一块光学平板玻璃上,在透镜的凸面与平板玻璃之间就形成了一个从中心向四周逐渐增厚的空气薄层。
当一束单色平行光垂直照射到牛顿环装置上时,从空气薄层上下表面反射的两束光将产生干涉。
在空气薄层的上表面反射的光存在半波损失,而在空气薄层的下表面反射的光没有半波损失。
两束光的光程差取决于空气薄层的厚度。
在平凸透镜的凸面与平板玻璃接触点处,空气薄层的厚度为零,两束光的光程差为半波长的奇数倍,形成暗纹。
而在离接触点较远的地方,空气薄层的厚度逐渐增加,当光程差等于波长的整数倍时,形成亮纹;当光程差等于半波长的奇数倍时,形成暗纹。
由于同一干涉条纹对应的空气薄层的厚度相同,所以干涉条纹是以接触点为中心的一系列同心圆环,即牛顿环。
设平凸透镜的曲率半径为$R$,第$m$ 个暗环的半径为$r_m$,对应的空气薄层的厚度为$e_m$,则有:\\begin{align}e_m&=\frac{r_m^2}{2R}\\\Delta = 2e_m +\frac{\lambda}{2}&=m\lambda\\2\times\frac{r_m^2}{2R} +\frac{\lambda}{2}&=m\lambda\\r_m^2&=mR\lambda\\R&=\frac{r_m^2}{m\lambda}\end{align}\由于暗环的半径不易测量,而暗环的直径容易测量,所以可将上式改写为:\R=\frac{(D_m^2 D_n^2)}{4(m n)\lambda}\其中,$D_m$ 和$D_n$ 分别为第$m$ 个暗环和第$n$ 个暗环的直径。
三、实验仪器1、牛顿环装置2、读数显微镜3、钠光灯四、实验步骤1、调节读数显微镜调节目镜,使十字叉丝清晰。
牛顿环演示实验报告

一、实验目的1. 观察和分析牛顿环等厚干涉现象;2. 学习利用牛顿环干涉现象测量透镜的曲率半径;3. 理解光程差与干涉条纹之间的关系。
二、实验原理牛顿环是一种等厚干涉现象,当一块平凸透镜的凸面与平板玻璃接触时,在两表面之间形成一层厚度不等的空气膜。
当单色光垂直照射到牛顿环上时,空气膜上、下表面反射的光束发生干涉,形成以接触点为中心的一系列明暗相间的圆环。
根据干涉条件,明环和暗环的位置与空气膜的厚度有关,从而可以计算出透镜的曲率半径。
实验原理公式如下:对于明环:2d = mλ + λ/2对于暗环:2d = mλ - λ/2其中,d为空气膜厚度,m为干涉级数,λ为入射光波长。
三、实验仪器1. 牛顿环装置:由一块平面玻璃和一块平凸透镜组成;2. 钠光灯:提供单色光;3. 读数显微镜:用于测量干涉条纹间距;4. 移动平台:用于调节透镜与平板玻璃之间的距离。
四、实验步骤1. 将牛顿环装置放置在实验台上,调整钠光灯,使其光线垂直照射到牛顿环上;2. 将读数显微镜对准牛顿环,调节显微镜的焦距,使干涉条纹清晰可见;3. 调节移动平台,使透镜与平板玻璃之间的距离逐渐增大,观察干涉条纹的变化;4. 记录明环和暗环的间距,根据实验原理公式计算空气膜厚度;5. 改变透镜的曲率半径,重复实验步骤,比较不同曲率半径下的实验结果。
五、实验结果与分析1. 观察到随着透镜与平板玻璃之间距离的增大,干涉条纹间距逐渐增大,说明空气膜厚度逐渐增加;2. 通过计算,得到不同干涉级数的空气膜厚度,进一步计算出透镜的曲率半径;3. 对比不同曲率半径下的实验结果,发现实验结果与理论值基本一致。
六、实验结论1. 牛顿环是一种典型的等厚干涉现象,通过观察和分析牛顿环,可以加深对等厚干涉的理解;2. 利用牛顿环干涉现象可以测量透镜的曲率半径,实验结果与理论值基本一致,说明实验方法可靠;3. 通过本实验,掌握了读数显微镜的使用方法,提高了实验操作技能。
等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告一、实验目的1、观察等厚干涉现象,加深对光的波动性的认识。
2、掌握用牛顿环测量平凸透镜曲率半径的方法。
3、学会使用读数显微镜。
二、实验原理1、等厚干涉等厚干涉是指同一干涉条纹对应于薄膜的同一厚度。
当平行单色光垂直照射到薄膜表面时,在薄膜上表面反射的光和下表面反射的光会发生干涉。
薄膜厚度相同的地方,光程差相同,干涉条纹的明暗程度也相同,从而形成等厚干涉条纹。
2、牛顿环将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在两者之间形成一空气薄层。
当平行单色光垂直入射时,在空气薄层的上表面和下表面反射的光将发生干涉,形成以接触点为中心的一系列明暗相间的同心圆环,这些圆环被称为牛顿环。
设平凸透镜的曲率半径为$R$,入射光波长为$\lambda$,第$k$ 级暗环的半径为$r_k$,对应的空气薄层厚度为$h_k$。
由于在暗环处光程差为半波长的奇数倍,即:\2h_k +\frac{\lambda}{2} = k\lambda\又因为$h_k \approx \frac{r_k^2}{2R}$,可得:\r_k^2 = kR\lambda\则通过测量第$k$ 级暗环的半径$r_k$,就可以计算出平凸透镜的曲率半径$R$。
三、实验仪器1、读数显微镜用于测量牛顿环的直径。
2、钠光灯提供单色光源。
3、牛顿环装置由平凸透镜和平面玻璃组成。
四、实验步骤1、仪器调节(1)将牛顿环装置放置在显微镜的载物台上,调节显微镜的目镜,使十字叉丝清晰。
(2)调节显微镜的物镜,使其接近牛顿环装置,然后缓慢向上移动物镜,直至看到清晰的牛顿环。
(3)调节牛顿环装置的位置,使十字叉丝与牛顿环的中心大致重合。
2、测量数据(1)转动测微鼓轮,使十字叉丝从牛顿环的中心向左移动,依次测量第 10 到 25 级暗环的左侧位置和右侧位置,记录数据。
(2)继续转动测微鼓轮,使十字叉丝从牛顿环的中心向右移动,重复上述测量步骤。
3、数据处理(1)计算各级暗环的直径$D_k =|x_{k右} x_{k左}|$。
牛顿环法实验报告

一、实验目的1. 理解牛顿环的原理及其形成条件。
2. 通过观察牛顿环的干涉条纹,测量平凸透镜的曲率半径。
3. 熟悉光学仪器和实验操作方法。
二、实验原理牛顿环是由平凸透镜与平板玻璃之间形成的空气薄层引起的等厚干涉现象。
当光线垂直照射到平凸透镜和平板玻璃的接触面时,部分光线在接触面发生反射,部分光线穿过空气薄层后再发生反射。
这两束反射光相互干涉,形成明暗相间的干涉条纹。
根据干涉条件,明纹处的光程差为半个波长,即Δl = (m + 1/2)λ,其中m为干涉级数,λ为光的波长。
对于牛顿环,空气薄层的厚度h与干涉级数m之间的关系为:h = (m + 1/2)λR其中R为平凸透镜的曲率半径。
通过测量干涉条纹的级数,可以计算出平凸透镜的曲率半径。
三、实验仪器与设备1. 平凸透镜2. 平板玻璃3. 平行光源4. 凸透镜支架5. 米尺6. 干涉条纹观察仪7. 记录纸8. 镜子9. 光具座四、实验步骤1. 将平板玻璃放在光具座上,将平凸透镜放在平板玻璃上,调整使其与平板玻璃接触良好。
2. 将平行光源照射到平凸透镜和平板玻璃的接触面,调整光源方向,使光线垂直照射。
3. 将干涉条纹观察仪放置在光具座上,调整使其与平行光源和透镜平行。
4. 观察干涉条纹,记录明纹和暗纹的位置,用米尺测量条纹间距。
5. 根据干涉级数m和条纹间距,计算平凸透镜的曲率半径R。
五、实验结果与分析1. 通过观察干涉条纹,记录了10个明纹和暗纹的位置,计算出干涉级数m。
2. 根据干涉级数m和条纹间距,计算平凸透镜的曲率半径R。
实验数据如下:m = 5d = 0.5 mmR = (m + 1/2)λ/d = (5 + 1/2)×600 nm/0.5 mm = 3.6 m六、实验总结1. 通过牛顿环法实验,成功测量了平凸透镜的曲率半径。
2. 实验过程中,注意了光线的垂直照射和干涉条纹的观察,保证了实验结果的准确性。
3. 通过实验,加深了对牛顿环原理和等厚干涉现象的理解。
牛顿环预习实验报告

一、实验目的1. 了解牛顿环实验的基本原理和实验方法;2. 观察和分析牛顿环的等厚干涉现象;3. 学习利用牛顿环测量透镜的曲率半径。
二、实验原理牛顿环实验是利用等厚干涉原理,通过观察和分析牛顿环,测量透镜的曲率半径。
实验装置由一块平面玻璃板和一个平凸透镜组成,两者之间形成一层空气膜。
当单色光垂直照射到牛顿环装置上时,空气膜上下表面的反射光发生干涉,形成一系列明暗相间的同心圆环,称为牛顿环。
根据波动理论,设形成牛顿环处空气薄层厚度为d,两束相干光的光程差为:2dλ/2k 当k为整数时,产生明环;2dλ/2(2k+1) 当k为整数时,产生暗环。
其中,λ为入射光的波长,k为干涉级数。
通过测量牛顿环的半径,可以计算出透镜的曲率半径。
三、实验仪器与材料1. 平面玻璃板;2. 平凸透镜;3. 读数显微镜;4. 单色光源(如钠光灯);5. 照相机(可选)。
四、实验步骤1. 将平面玻璃板放置在实验台上,调整光源使其垂直照射到牛顿环装置上;2. 将读数显微镜放置在牛顿环装置的下方,调整显微镜的焦距,使牛顿环的干涉条纹清晰可见;3. 测量牛顿环的半径,记录数据;4. 通过公式计算透镜的曲率半径;5. 对实验数据进行处理和分析。
五、实验注意事项1. 实验过程中,注意保持牛顿环装置的稳定,避免因振动导致干涉条纹的模糊;2. 调整显微镜的焦距时,要缓慢、均匀,以免损坏牛顿环;3. 测量牛顿环的半径时,要准确读取数据,减小误差;4. 实验过程中,注意安全,避免受伤。
六、预期结果与分析通过实验,预期得到一系列明暗相间的牛顿环干涉条纹,并计算出透镜的曲率半径。
分析实验数据,验证实验原理的正确性,并探讨实验过程中可能存在的误差来源。
七、实验总结通过本次牛顿环实验,我们对等厚干涉原理有了更深入的了解,掌握了利用牛顿环测量透镜曲率半径的方法。
在实验过程中,我们注意到了实验仪器的使用技巧和注意事项,为今后类似实验打下了基础。
同时,我们也认识到实验过程中可能存在的误差,为今后提高实验精度提供了参考。
牛顿环测透镜曲率半径实验报告

牛顿环测透镜曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习利用牛顿环测量平凸透镜的曲率半径。
3、掌握读数显微镜的使用方法。
二、实验原理将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面与平面玻璃之间就会形成一个厚度由中心向边缘逐渐增加的空气薄层。
当单色光垂直入射时,从空气薄层上下表面反射的两束光将会产生干涉。
在反射光中,相同厚度处的光程差相同,形成以接触点为中心的一系列明暗相间的同心圆环,即牛顿环。
设平凸透镜的曲率半径为$R$,与接触点$O$ 相距为$r$ 处的空气薄层厚度为$d$。
由于$R >> d$,可以将这一空气薄层近似看作一个楔形薄膜。
由几何关系可得:\d = r^2 / 2R\两束反射光的光程差为:\Delta = 2d +\frac{\lambda}{2}\其中,$\lambda$ 为入射光的波长。
当光程差为波长的整数倍时,出现亮条纹;当光程差为半波长的奇数倍时,出现暗条纹。
对于暗条纹,有:\2d +\frac{\lambda}{2} =(2k + 1) \frac{\lambda}{2}\\d = k\frac{\lambda}{2}\\r^2 = 2kR\lambda\则第$k$ 级暗环的半径为:\r_k =\sqrt{2kR\lambda}由于中心为暗斑,所以第$k+m$ 级暗环半径与第$k$ 级暗环半径之差为:\r_{k+m}^2 r_k^2 = 2mR\lambda\所以,平凸透镜的曲率半径为:\R =\frac{(r_{k+m}^2 r_k^2)}{2m\lambda}\三、实验仪器1、读数显微镜:用于测量牛顿环的直径。
2、钠光灯:提供单色光源。
3、牛顿环装置:由平凸透镜和平面玻璃组成。
四、实验步骤1、仪器调节将牛顿环装置放置在显微镜的载物台上,调节显微镜的目镜,使十字叉丝清晰。
调节显微镜的物镜,使其接近牛顿环装置,但不接触。
然后缓慢向上移动物镜,直到能清晰地看到牛顿环。
等厚干涉—牛顿环、劈尖

《等厚干涉-牛顿环、劈尖》预习报告模版
注:阴影部分不在报告上呈现,只向学生提出书写内容和具体要求。
非阴影部分可直接照抄或自答
实验目的:(按照书上提示抄写)
1,
2,
3,
实验原理:(按次序回答以下问题)
问题1:什么是牛顿环和劈尖?
问题2:牛顿和劈尖等厚干涉条纹的特点?
问题3:牛顿环透镜曲率半径公式的推导?
问题4:劈尖薄片厚度的公式推导?
问题5:实验过程中回程差怎么消除
实验仪器:(按照书上提示抄写)
实验步骤:
1,数显式读书显微镜的调整和使用方法
2,实验步骤(抄写并填空)
1)牛顿环测量凸透镜的曲率半径:启动钠光源,使钠灯正对着
____,旋转___旋钮,使钠光灯经反射后____入射到待测的牛顿环上,显微镜视场中出现____;轻轻调节牛顿环的____,使视场中心无畸变;调节____使视场的叉丝像最清楚;旋转____使显微镜能清楚的看到干涉条纹;转动____,使牛顿环的中心
暗斑通过视场中心,先使叉丝到右侧25环处再退回20环相切,清零;继续向左移动,测出表格中的数据,写出测量顺序右
20____________左____________。
2)调节劈尖位置,使条纹与双丝线____,与测量方向____;测____
个条纹的间距和____的长度。
实验数据记录表格:
(分别画出测量暗环直径和微小厚度的两个数据记录表格)。