函数的定义域、值域
函数的定义域与值域

函数的定义域与值域一、函数的定义域自变量x 的取值范围叫做函数的定义域(即使得函数的解析式有意义的x 的取值范围)。
二、常见函数的定义域的求法:1、如果f(x)为二次根式,那么函数的定义域是使根号内的式子大于等于零的实数x 的集合;2、如果f(x)是分式,那么函数的定义域是使分母不等于零的实数x 的集合;3、当函数y=f(x)中含有x 的式子在对数真数位置时,需使真数大于零,进而求出x 的取值范围;当含有x 的式子在对数的底数位置时,要通过底数大于零且不等于1的x 的取值范围;4、如果f(x)是由几个函数组合而成的,那么函数的定义域是使各个函数同时有意义的实数x 的集合(即各个函数定义域的公共部分构成f(x)的定义域)。
注意:①当通过解不等式或不等式组求定义域时,常常借助数轴求交集,同时考虑端点是否可取;②在解决函数问题时首先考虑定义域,“定义域优先原则”;③定义域的最终结果一定要写成集合或者区间的形式;④实际问题的自变量范围应根据实际情况确定。
典例分析:23x 4x f=x--+1、函数的定义域为()A 、[-4,1] B[-4,0] C 、(0,1] D 、[]4- ,0)(0,12f(x)=x x x +、函数(-1)的定义域()A 、(][)01-∞+∞ ,, B 、[)∞1,+ C 、{0} D 、{}[)01+∞ ,3、若函数y=f (x )的定义域[0,2],则函数()(2)g x 1f x x =-的定义域是()A 、[0,1]B 、[0,1)C 、[0,1)U(1,4]D 、(0,1) 4、若函数f (2x-1)的定义域为[0,1) ,则f (1-3x )的定义域是() A 、(-2,4] B 、12,2⎛⎫-- ⎪⎝⎭ C 、10,6⎛⎤ ⎥⎝⎦ D 、20,3⎛⎤ ⎥⎝⎦三、函数的值域:1、函数值域的概念:所有函数值的集合叫做函数的值域。
2、求函数值域的常用方法(1)配方法:若函数类型为一元二次函数,则采用此法求其值域。
函数的定义域与值域分析

函数的定义域与值域分析函数是数学中的重要概念,它描述了两个集合之间的映射关系。
在函数的研究中,定义域和值域是两个重要的概念,它们对于理解函数的性质和特点有着重要的作用。
本文将对函数的定义域与值域进行分析和讨论。
一、定义域的概念在数学中,函数的定义域是指函数自变量的取值范围。
简单来说,就是函数中自变量可以取的实数的范围。
在定义域内的每一个实数都与函数中的唯一一个值相对应。
例如,对于函数f(x)=√x,定义域为非负实数集[0, +∞)。
这意味着函数中的自变量x必须大于等于0,否则函数无法定义。
在确定函数的定义域时,需要注意以下几个方面:1. 分式函数的定义域:对于分式函数,需要注意分母不能为0。
例如,对于函数f(x)=1/(x-1),定义域为实数集R中除了x=1的所有实数。
2. 根式函数的定义域:对于根式函数,需要注意根号内的值必须大于等于0。
例如,对于函数f(x)=√(x-2),定义域为[x≥2]。
3. 复合函数的定义域:对于复合函数,需要注意每个函数的定义域。
例如,对于函数f(g(x)),需要保证g(x)的定义域在f(x)的定义域内。
二、值域的概念函数的值域是指函数的所有可能的取值。
简单来说,就是函数中因变量的取值范围。
值域可以是一个集合,也可以是一个区间。
例如,对于函数f(x)=x^2,值域为非负实数集[0, +∞)。
这意味着函数中的因变量y的取值范围大于等于0。
在确定函数的值域时,需要注意以下几个方面:1. 一次函数的值域:对于一次函数,其值域为整个实数集R。
例如,对于函数f(x)=2x+1,值域为实数集R。
2. 幂函数的值域:对于幂函数,其值域取决于指数的奇偶性。
例如,对于函数f(x)=x^2,值域为非负实数集[0, +∞);对于函数f(x)=x^3,值域为整个实数集R。
3. 三角函数的值域:对于三角函数,其值域是有界的。
例如,对于函数f(x)=sin(x),值域为闭区间[-1, 1]。
三、定义域与值域的关系函数的定义域和值域之间存在着密切的关系。
函数定义域和值域

奇函数:如果函数在定义域上的图像关于原点对称,则称该函数为奇函数
偶函数:如果函数在定义域上的图像关于y轴对称,则称该函数为偶函数
混合函数:如果函数在定义域上的图像既关于原点对称,又关于y轴对称,则称该函数为混合函数
定义域和值域的周期性
确定函数的定义域和值域
注意函数的周期性,如正弦函数、余弦函数等
考虑函数的定义域和值域是否具有周期性
确定函数值域的方法
添加标题
添加标题
添加标题
添加标题
代数法:通过代数运算,确定函数的值域
观察法:通过观察函数的定义域和值域,确定函数的值域
图像法:通过画函数的图像,确定函数的值域
解析法:通过解析函数的定义域和值域,确定函数的值域
常见函数的值域
单击此处添加项标题
单击此处添加项标题
单击此处添加项标题
单击此处添加项标题
确定函数定义域的方法
直接观察法:通过观察函数表达式,确定定义域
解析法:通过解析函数表达式,确定定义域
复合函数法:通过复合函数,确定定义域
反函数法:通过反函数,确定定义域
极限法:通过极限,确定定义域
图像法:通过函数图像,确定定义域
常见函数的定义域
线性函数:x属于R
指数函数:x大于0
对数函数:x大于0
判断函数的定义域和值域是否满足周期性条件
感谢观看
汇报人:XXX
单击此处添加项标题
函数定义域和值域的关系
03
定义域和值域的对应关系
对应关系:定义域中的每个x值,在值域中都有唯一的y值与之对应
关系性质:定义域和值域的关系是函数关系的基础,决定了函数的性质和图像特征
定义域:函数自变量x的取值范围
定义域与值域

函数的定义域与值域一、定义域1.基本函数的定义域求法(1)分式中的分母不为零 (2)偶次方根下的数(或式)大于或等于零;(3)指数式的底数大于零且不等于一; (4)对数式的底数大于零且不等于一,真数大于零; (5)正切函数x y tan =⎪⎭⎫ ⎝⎛∈+≠∈Z ππk k x R x ,2,且; (6)反三角函数的定义域y =arcsinx 的定义域是[-1,1],值域是; y =arccosx 的定义域是[-1,1],值域是[0,π] ;y =arctgx 的定义域是R ,值域是;2.复合函数的定义域求法 若已知)(x f 的定义域为A ,则)]([x g f 的定义域就是不等式A x g ∈)(的x 的集合;若已知)]([x g f 的定义域为A ,则)(x f 的定义域就是函数)(x g )(A x ∈的值域。
例1.⑴若函数)(x f 的定义域是[0,1],求)21(x f -的定义域; ⑵若)12(-x f 的定义域是[-1,1],求函数)(x f 的定义域; ⑶已知)3(+x f 定义域是[)5,4-,求)32(-x f 定义域.若()f x 的定义域为[]35-,,求()()(25)x f x f x ϕ=-++的定义域.例2. 已知函数862++-=m mx mx y 的定义域为R 求实数m 的取值范围。
分析:函数的定义域为R ,表明0862≥++-m mx mx ,使一切R x ∈都成立,由2x 项的系数是m ,所以应分0=m 或0≠m 进行讨论。
解:当0=m 时,函数的定义域为R ;当0≠m 时,0862≥++-m mx mx 是二次不等式,其对一切实数x 都成立的充要条件是⎩⎨⎧≤+--=∆>0)8(4)6(02m m m m 10≤<⇒m 综上可知10≤≤m 。
例3.已知函数347)(2+++=kx kx kx x f 的定义域是R ,求实数k 的取值范围。
函数的定义域和值域

函数的定义域、值域一、知识回顾第一部分:函数的定义域1.函数的概念:设集合A 是一个非空的数集,对于A 中的任意一个数x ,按照确定的法则f ,都有唯一的确定的数y 与它对应,则这种关系叫做集合A 上的一个函数,记作()x f y =,(A x ∈)其中x 叫做自变量,自变量的取值范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作)(a f y =或a x y =,所有的函数值所构成的集合{}A x x f y y ∈=),(叫做这个函数的值域.2.定义域的理解:使得函数有意义的自变量取值范围,实际问题还需要结合实际意义在确定自变量的范围,注意:定义域是个集合,所以在解答时要 用集合来表示. 3.区间表示法:设a ,R b ∈,且b a <.满足b x a ≤≤的全体实数x 的集合,叫做闭区间,记作[]b a ,. 满足b x a <<的全体实数x 的集合,叫做开区间,记作()b a ,.满足b x a ≤<或b x a <≤的全体实数x 的集合,都叫做半开半闭区间,记作(][)b a b a ,,或.b a 与叫做区间的端点,在数轴上表示时,包括端点时,用实心的点,不包括时用空心点表示.4.基本思想:使函数解析式有意义的x 的所有条件化为不等式,或不等式组的解集.5.定义域的确定方法:保证函数有意义,或者符合规定,或满足实际意义. (1)分式的分母不为零. (2)偶次方根式的大于等于零. (3)对数数函数的真数大于零.(4)指数函数与对数函数的底大于零且不等于1. (5)正切函数的角的终边不能在y 轴上. (6)零次幂的底数不能为零.(7)分段函数:①分段函数是一个函数.②分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(8)复合函数定义域的求法:①已知)(x f y =的定义域是A ,求()[]x f y ϕ=的定义域的方法为解不等式:A x ∈)(ϕ,求出x 的取值范围.②已知()[]x f y ϕ=的定义域为A ,求)(x f y =的定义域的方法:A x ∈,求)(x ϕ的取值范围即可.第二部分:函数的值域函数值域的确定方法:(1)直接观察法对于一些比较简单的函数,其值域可通过观察得到. (2)分离常数法:分子、分母是一次函数得有理函数,形如,dcx bax y ++=,,,,,(d c b a 为常数,)0≠c 可用分离常数法,此类问题一般也可以利用反函数法.(3)换元法:运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常用此法求解. (4)配方法:适用于二次函数值域的求值域. (5)判别式法:适用于二次函数型值域判定.(6)单调性法:利用单调性,端点的函数值确定值域的边界.(7)函数的有界性:在直接求函数值域困难的时候,可以利用已学过函数的有界性,反过来确定函数的值域.(8)不等式法:利用不等式的性质确定上下边界.(9)数形结合法:函数解析式具有明显的某种几何意义,如两点间的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目.二、 精选例题第一部分:函数的定义域例1.函数x x y +-=1的定义域为( )A .{}1x x ≤B .{}0x x ≥ C.{}10x x x ≥≤或 D.{}01x x ≤≤【解析】由题意⎩⎨⎧≥≤⇒⎩⎨⎧≥≥-01001x x x x 即∈x {}10≤≤x x ,故选D. 例2.函数()()xx x x f -+=01的定义域是( )A .()0,+∞B .(),0-∞ C.()(),11,0-∞-- D.()()(),11,00,-∞--+∞【解析】由⎩⎨⎧≠-≠+001x x x 得,01⎩⎨⎧<-≠x x 故选C.例3.若函数()1+=x f y 的定义域是[],3,2-则()12-=x f y 的定义域是( )5.0,2A ⎡⎤⎢⎥⎣⎦[]4,1.-B []5,5.-C []7,3.-D 【解析】 ()1+=x f y 的定义域是[],3,2-,32≤≤-∴x[]4,11-∈+∴x ,即()x f 的定义域是[]4,1-.又由4121≤-≤-x 解得250≤≤x即()12-=x f y 的定义域是⎥⎦⎤⎢⎣⎡25,0故选.A例4.设函数()x f y =的定义域是()1,0,则()2x f y =的定义域是什么?【解析】 函数()x f y =的定义域是()1,0.102<<∴x 即11<<-x故()2x f y =的定义域是()1,1-∈x 且0≠x .例5.已知函数(),11+=x x f 则函数()[]x f f 的定义域是( ) {}1.-≠x x A {}2.-≠x x B {}21.-≠-≠x x x C 且{}21.-≠-≠x x x D 或【解析】:()11+=x x f 的定义域是101-≠⇒≠+x x 则()[]x f f 的定义域是111-≠+x 即21012-≠-≠⇒≠++x x x x 且故选.C 例6.已知()x f21-求函数⎪⎭⎫⎝⎛-x x f 213的定义域是?【解析】由()x f21-可知021≥-x 即0213≥-xx()2100312≤≤⇒≤-⇒x x x 故函数⎪⎭⎫⎝⎛-x x f 213的定义域是⎥⎦⎤⎢⎣⎡∈21,0x例7.若函数y =R ,求实数k 的取值范围.【解析】当0=k 时,86+-=x y ,当34>x 时,无意义,∴0≠k ; 当0<k 时,()268y kx x k =-++为开口向下的二次函数,图像向下延伸,函数值总会出现小于零的情况,进而,0<k 不成立,当0>k 时,同时要求0≤∆,即解得1≥k .例8.已知函数x x x f -+=11lg )(,求函数)2(12)1()(xf x x f x F +++=的定义域. 【解析】由题意011>-+xx,即0)1)(1(<+-x x ,解得11<<-x 故函数xxx f -+=11lg )(的定义域为)1,1(-所以⎩⎨⎧≠+<+<-012111x x 解得02<<-x 且21-≠x .即12)1()(++=x x f x m 的定义域为)0,21()21,2(---又121<<-x ,解得22<<-x ,即)2(xf 的定义域为)2,2(-)2(12)1()(x f x x f x F +++=的定义域即为)(x m 和)2(xf 的定义域的交集,即)0,21()21,2(--- )2,2(- =)0,21()21,2(---故函数)2(12)1()(xf x x f x F +++=的定义域为)0,21()21,2(--- . 例9.已知函数()23x x f x a b =⋅+⋅,其中常数,a b 满足0ab ≠. (1)若0ab >,判断函数()f x 的单调性; (2)若0ab <,求(1)()f x f x +>时x 的取值范围. 【解析】(1)当0,0a b >>时,任意1212,,x x R x x ∈<,则121212()()(22)(33)xxxxf x f x a b -=-+-∵121222,0(22)0x x x x a a <>⇒-<,121233,0(33)0x x x x b b <>⇒-<,∴12()()0f x f x -<,函数()f x 在R 上是增函数. 当0,0a b <<时,同理,函数()f x 在R 上是减函数. (2)(1)()2230x x f x f x a b +-=⋅+⋅>当0,0a b <>时,3()22xa b >-,则 1.5log ()2ax b >-;当0,0a b ><时,3()22x a b <-,则 1.5log ()2ax b<-.第二部分:函数的值域1.观察法:例1.求函数x y 1=的值域. 【解析】0≠x 01≠∴x0≠∴y ,即值域为:()()+∞∞-,00,2.分离常数法:分子、分母是一次函数得有理函数,形如)0,,,(,≠++=c d c b a dcx bax y 为常数,,可用分离常数法,此类问题一般也可以利用反函数法.通式解析:)(,)(cad b d cx c ad b c a d cx b c ad d cx c a d cx b ax y ≠+-+=++-+=++= 故值域为⎭⎬⎫⎩⎨⎧≠c a y y 例2.求函数125xy x -=+的值域. 【解析】因为177(25)112222525225x x y x x x -++-===-++++, 所以72025x ≠+,所以12y ≠-,所以函数125x y x -=+的值域为1{|}2y y ≠-.3.换元法:运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常用此法求解.例3.(A 类)求函数2y x =.【解析】令x t 21-=(0t ≥),则212t x -=,所以22151()24y t t t =-++=--+因为当12t =,即38x =时,max 54y =,无最小值所以函数2y x =5(,]4-∞.4.三角换元:例4.求函数2)1(12+-++=x x y 的值域.【解析】0)1(12≥+-x 1)1(2≤+∴x ,令[]πββ,0,cos 1∈=+x1)4sin(21cos sin cos 11cos 2++=++=-++=∴πβββββy ,,0πβ≤≤ 4544ππβπ≤+≤,1)4sin(22≤+≤-πβ, 121)4sin(20+≤++≤πβ故值域为:[]12,0+ 5.配方法:例5.求函数242y x x =-++([1,1]x ∈-)的值域.【解析】2242(2)6y x x x =-++=--+, 因为[1,1]x ∈-,所以2[3,1]x -∈--,所以21(2)9x ≤-≤,所以23(2)65x -≤--+≤,即35y -≤≤, 所以函数242y x x =-++在([1,1]x ∈-)的值域为[3,5]-.6.判别式法:例6.求函数2211xx x y +++=的值域. 【解析】原函数化为关于x 的一元二次方程,0)1()1(2=-+--y x x y (1)当1≠y 时,R x ∈,0)1(4)1(22≥---=∆y .解得2321≤≤y , 当1=y 时,0=x ,而⎥⎦⎤⎢⎣⎡∈23,211,故函数的值域为⎥⎦⎤⎢⎣⎡23,21.7.单调性法:例7.求函数x x x f 4221)(-+-=的值域. 【解析】由042≥-x ,解得21≤x , 令x x g 21)(-=,x x m 42)(-=,在21≤x 上)(),(x m x g 均为单调递减函数, 所以x x x m x g 4221)()(-+-=+在21≤x 上也是单调递减函数.故0)21()(min ==f x f ,值域为),0[+∞.8.有界性例8.求函数11+-=x x e e y 的值域.【解析】函数变形为11-+=y y e x,0>x e 011>-+∴y y ,解得11<<-y , 所以函数的值域为()1,1-.9.不等式法: 例9.求函数xx y 4+=的值域; 【解析】当0>x 时,4424=⋅≥+=xx x x y (当x =2时取等号); 所以当0>x 时,函数值域为),4[+∞.当0<x 时,442)4(-=⋅-≤+-=xx x x y (当2-=x 时取等号); 所以当0<x 时,函数值域为]4,(--∞. 综上,函数的值域为),4[]4,(+∞--∞10.数形结合法函数解析式具有明显的某种几何意义,如两点间的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目. 例10. (1)求函数82++-=x x y 的值域.(2)求函数5413622++++-=x x x x y 的值域. (3)求函数5413622++-+-=x x x x y 的值域.【解析】(1)函数可以看成数轴上点P (x )到定点A (2),)8(-B 间的距离之和.由上图可知,当点P 在线段AB 上时,10min ==AB y 当点P 在线段AB 的延长线或反向延长线上时,10>=AB y 故所求函数的值域为:),10[+∞ 此题也可以画函数图象来解.(2)原函数可变形为:2222)10()2x ()20()3x (y ++++-+-=可看成x 轴上的点)0,(x P 到两定点)1,2(),2,3(--的距离之和, 由图可知当点P 为线段与x 轴的交点时,如图34)12()23(22min =+++==AB y ,故所求函数的值域为),34[+∞.(3)将函数变形为:2222)10()2()20()3(-++--+-=x x y可看成定点A ()3,2到点P )0,(x 的距离与定点B ()2,1-到点P )0,(x 的距离之差. 如图BP AP y -=由图可知:①当点P 在x 轴上且与A ,B 两点不供线时,如点'P ,则构成'ABP ∆,)2xBP根据三角形两边之差小于第三边,有26)12()23(22=-++=<'-'AB P B P A所以2626<'-'<-P B P A即2626<<-y②当点P 恰好为直线AB 与x 轴的交点时,有26=='-'AB P B P A .综上所述,函数的值域为:]26,26(-.三、 课堂训练第一部分:函数定义域1.函数()x x x y +-=1的定义域为( ){}0.≥x x A{}1.≥x x B{}{}01. ≥x x C{}10.≤≤x x D解析:由题意得()⎩⎨⎧≥≥-001x x x ⎩⎨⎧≥≤≥⇒001x x x 或即[){}0,1 +∞∈x ,故选.C 2.()xx f 1111++=的定义域为 .【解析】由分式函数分母不为0得:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≠≠+≠++001101121x x x解得⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-≠≠-≠-≠010311x x x x x 或或()1,-∞-∈⇒x ⎪⎭⎫ ⎝⎛-31,1 ⎪⎭⎫ ⎝⎛0,31 ()+∞,0 3.已知函数()x f 的定义域为[].2,2- ①求函数()x f 2的定义域;②求函数⎪⎭⎫⎝⎛-141x f 的定义域. 【解析】① 函数()x f 的定义域为[]2,2-222≤≤-∴x 即11≤≤-x故函数()x f 2的定义域为[]1,1-∈x . ② 函数()x f 的定义域为[]2,2-21412≤-≤-∴x 即124≤≤-x 故函数⎪⎭⎫⎝⎛-141x f 的定义域为[]12,4-. 4.已知函数()42-x f的定义域[]5,3∈x ,则函数()x f 的定义域是?【解析】 函数()42-x f 的定义域[]5,3∈x 21452≤-≤∴x即函数()x f 的定义域是[]21,5∈x5.如果函数()()()x x x f -+=11的图像在x 轴上方,则()x f 的定义域为( ).{}1.<x x A {}1.>x x B {}11.-≠<x x x C 且 {}11.≠->x x x D 且【解析】对于()(),011>-+x x 当0≥x 时,有()()011<-+x x 11<<-⇒x 得;10<≤x当0<x 时,有()012>+x 1-≠⇒x 得.10-≠<x x 且 综上,,11-≠<x x 且故选.C6.(1)已知1,,,,≠∈+a R z y x a ,设,,log 11log 11zya a ay ax --==用x a ,表示z .(2)设ABC ∆的三边分别为c b a ,,,且方程01lg 2)lg(2222=+--+-a b c x x 有等根,判断ABC ∆的形状. 【解析】(1),,log 11log 11zya a ay ax --==则,log 11log log ,log log log 11log 11z ay ax a za a ya a a a -===--y ax a ya a a log 11log log log 11-==-zza a log 11log 1111-=--=所以xz a a log 11log -=,故xa a z log 11-=.(2)原方程可以转化为0)(10lg 22222=-+-a b c x x又因为方程有等根,则0)(10lg 4)2(2222=---=∆ab c , 必然有1)(10lg 222=-a b c ,所以10)(10222=-ab c ,即222a b c +=. 故ABC ∆为直角三角形.第二部分:函数的值域例1.求函数111++=x y 的值域.【解析】.111,01≥++∴≥+x x ∴11110≤++<x ,∴函数的值域为(]1,0.例2.求函数[]2,1,522-∈+-=x x x y 的值域.【解析】将函数配方得:()412+-=x y []2,1-∈x由二次函数的性质可知:当1=x 时,,4m in =y 当1-=x 时,8m ax =y故函数的值域是[]8,4例3.求函数1-+=x x y 的值域.【解析】令()01≥=-t t x ,则12+=t x 故.4321122+⎪⎭⎫ ⎝⎛+=++=t t t y又,0≥t 由二次函数性质知,当0=t 时,;1min =y 当t 不断增大时,y 值趋于∞+, 故函数的值域为[)+∞,1.例4.求函数2332+-+-=x x x y 的值域. 【解析】定义域满足⎩⎨⎧≥+-≥-023032x x x 3≥⇒x . 令,31-=x y 任取,321≥>x x 由,03333212121>-+--=---x x x x x x1y ∴在[)+∞,3上单调递增.令,2322+-=x x y由,232+-=x x u 对称轴,23=x 开口向上,知2y 在[)+∞,3上也单调递增. 从而知()=x f 2332+-+-x x x 在定义域[)+∞,3上是单调递增.()∴=≥∴.23f y 值域为[)+∞,2.例5.求函数21+-=x x y 的值域 【解析】由1231232≠+-=+-+=x x x y ,可得值域{}1≠y y 例6.求13+--=x x y 的值域【解析】可化为 ⎪⎩⎪⎨⎧>-≤≤---<=3,431,221,4x x x x y 如图:观察得值域{}44≤≤-y y .例7.求函数x y -=3的值域.【解析】0≥x 33,0≤-≤-∴x x 故函数的值域是:[]3,∞-例8.求函数51042+++=x x y 的值域.【解析】配方,得().5622+++=x y ().65,6622+≥∴≥++y x∴函数的值域为).,65(+∞+例9.求函数1122+++-=x x x x y 的值域.【解析】 1122+++-=x x x x y ,R x ∈,去分母整理得()()01112=-+++-y x y x y.当1=y 时,,0=x 故y 可取1; ①当1≠y 时,方程①在R 内有解,则()()(),011412≥---+=∆y y y,031032≤+-∴y y 解得.331≤≤y ∴函数的值域为.3,31⎥⎦⎤⎢⎣⎡例10.求函数11--+=x x y 的值域.【解析】原函数可化为:112-++=x x y令,1,121-=+=x y x y 显然21,y y 在[)+∞,1上为无上界的增函数所以21,y y y =在[)+∞,1上也为无上界的增函数所以当1=x 时,21y y y +=有最小值2,原函数有最大值222= 显然,0>y 故原函数的值域为(]2,0.例11.求函数133+=x xy 的值域【解析】设t x=+13 ,则()111131113113>-=+-=+-+=t ty xx x 101101<<∴<<∴>y tt ,()01原函数的值域为∴.例12.求函数53-++=x x y 的值域.【解析】53-++=x x y ⎪⎩⎪⎨⎧≥-<<--≤+-=)5(22)53(8)3(22x x x x x由图像可知函数53-++=x x y 的值域为[)+∞,8.四、 课后作业【训练题A 类】1.函数()f x = ).A . 1[,)2+∞B . 1(,)2+∞ C. 1(,]2-∞ D. 1(,)2-∞2.函数265x x y ---=的值域是( )525.≤≤y A5.≤y B 50.≤≤y C 5.≥y D 3.函数31---=x x y 在其定义域内有( ).A 最大值2,最小值2- .B 最大值3,最小值1- .C 最大值4,最小值0 .D 最大值1,最小值3-4.已知函数31++-=x x y 的最大值为M ,最小值为m ,则Mm的值为( ) 41.A 21.B 22.C23.D 5.函数()=x f 962+-x 的值域是 ( )A 、(-∞,6)B 、]3,(-∞C 、 (0,6)D 、 (0,3) 6.()421-=x x f 的定义域为_____ 7.函数x x y 21-+=的值域是 . 8.求()4313512-++-=x x x x f 的定义域9.求2045222+-++-=x x x x y 的值域.10.求函数12-+=x x y 的值域.11.已知()x f 的值域为,94,83⎥⎦⎤⎢⎣⎡试求()()x f x f y 21-+=的值域.【参考答案】1.【答案】C【解析】由根式知21021≤⇒≥-x x 故选.C 2.【答案】A【解析】425425216022≤+⎪⎭⎫ ⎝⎛+-=--≤x x x , 25602≤--≤∴x x ,即525≤≤y3.【答案】A【解析】由题意得()()()⎪⎩⎪⎨⎧>≤<-≤-=3,231,421,2x x x x y []2,2-∈⇒y ,故选A4.【答案】C【解析】两边平方,即()()312312+-+++-=x x x x y ()41242++-+=x844max 2=+=y ,4min 2=y ,2284max min ==y y 故选C . 5.【答案】B【解析】∴≥+392x 3962≤+-x 故选.B6.【答案】()+∞,8 【解析】80421≥⇒≥-x x ,即()+∞,8 7.【答案】(],1-∞【解析】令x t 21-=则()0212≥-=t t x 即()()021212≥++-=t t t t f ()11212+--=t故1=t 时,取得最大值.即().1≤x f8.【解析】1212210431012>⇒⎪⎩⎪⎨⎧>≥⇒⎪⎩⎪⎨⎧>-≥-x x x x x ,即()+∞,129.【解析】()()1624122+-++-=x x y ()()()()2222402201-+-+++-=x x即可看成三点:()()()4,2,2,1,0,B A x P -,PB PA y +=在PAB ∆中AB PB PA >+知点()2,1-A 点()4,2B 在数轴异侧时AB 最大.PB PA y +==AB 故()()37422122=--+-=≥AB y10.【解析】显然,函数的定义域为21≥x . 当21≥x 时,函数12,21-==x y x y 都是递增的 所以在21=x 时,取得最小值.即⎪⎭⎫⎢⎣⎡+∞∈,21y . 11.【解析】()(),412191,9483≤-≤∴≤≤x f x f即有(),212131≤-≤x f 令(),21,31,21⎥⎦⎤⎢⎣⎡∈-=t x f t ()(),1212t t x f +-=()()t t t g y +-==∴2121()11212+--=t⎥⎦⎤⎢⎣⎡∉21,311 ,∴函数()t g y =在区间⎥⎦⎤⎢⎣⎡21,31上单调递增,,9731min =⎪⎭⎫ ⎝⎛=∴g y ∴=⎪⎭⎫ ⎝⎛=.8721max g y 函数的值域为⎥⎦⎤⎢⎣⎡87,97.【训练题B 类】1.求()52+=x x f 的值域2.求函数xy --=111的值域3.求函数12--=x x y 的值域.4.已知()x f 43-的定义域为[],2,1-∈x 则函数()x f 的定义域是?5.求下列函数的值域:(1);1342++=x x y (2)5438222+-+-=x x x x y6.对于每个函数x ,设()x f 是2,14+=+=x y x y 和42+-=x y 三个函数中的最小者,则()x f 的最大值是什么?7.已知⎪⎭⎫⎝⎛-x f 213的定义域为[]5,1∈x ,则函数()32+x f 的定义域是?8.求下列函数的值域:(1)[);5,1,642∈+-=x x x y (1)245x x y -+=.9.求函数13+--=x x y 的值域.10.函数232+-=kx x y 的值域为⎪⎭⎫⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,3232, ,求k 的值.11.(1)已知函数⎩⎨⎧≥<=0,0,)(2x x x x x f ,求))((x f f .(2)求函数12)(2--+=x x x f 的最小值.12.若函数432--=x x y 的定义域为[],,0m 值域为,4,425⎥⎦⎤⎢⎣⎡--求m 的取值范围.【参考答案】1.【解析】25052-≥⇒≥+x x ,即⎪⎭⎫⎝⎛+∞-,25 2.【解析】原式化为,11=--x y y ,011≥-=-∴yy x 即01<≥y y 或. 故()[)+∞∞-∈,10, y .3.【解析】函数的定义域是{}.,1R x x x ∈≥令()0,1≥=-t t x 则 ,12+=t x8154122222+⎪⎭⎫ ⎝⎛-=+-=∴t t t y ,又o t ≥,∴结合二次函数的图像知()815≥t y .故原函数的值域为⎭⎬⎫⎩⎨⎧≥815y y . 4.【解析】 ()x f 43-的定义域为[]2,1-∈x 7435≤-≤-∴x()x f ∴的定义域为[]7,5-∈x .5.【解析】(1)由1342++=x x y 可得,0342=-+-y x yx 当0=y 时,;43-=x 当0≠y 时,,R x ∈故()(),03442≥---=∆y y解得,41≤≤-y 且0≠y .当2-=x 时,;1-=y 当21=x 时,.4=y∴所求函数的值域为[].4,1-(2)由5438222+-+-=x x x x y 可得()()0352422=-+---y x y x y ,当02≠-y 时,由,R x ∈得()()()035242162≥----=∆y y y ,25≤≤-∴y .25<≤-∴y .经检验2=x 时,5-=y ,而2≠y .∴原函数的值域为[]2,5-.6.【解析】在同一直角坐标系中作出三个函数的图像,由图像可知,()x f 的最大值是2+=x y 和42+-=x y 交点的纵坐标,易得()38max =x f . 7.【解析】 ⎪⎭⎫⎝⎛-x f 213的定义域为[]5,1∈x 2521321≤-≤∴x 即253221≤+≤x4145-≤≤-∴x 故函数()32+x f 的定义域是⎥⎦⎤⎢⎣⎡--∈41,45x 8.【解析】(1)配方,得().222+-=x y [),5,1∈x ∴函数的值域为{}.112<≤y y(2)对根号里配方得:()30922≤≤⇒+--=y x y 即[]3,0∈∴y .9.【解析】原式可变为()[)[)⎪⎩⎪⎨⎧+∞∈--∈+--∞-∈=,3,43,1,221,,4x x x x y 44≤≤-⇒y 即[]4,4-∈y10.【解析】232+-=kx x y 的反函数为kx x y -+=232,其定义域为⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,22,k k ,故.3322-=⇒-=k k 11.【解析】(1)当0≥x 时,0)(2≥=x x f ,则42)())((x x f x f f ==;当0<x 时,,0)(<=x x f 则x x f x f f ==)())(( 所以⎩⎨⎧≥<=0,0,))((2x x x x x f f(2)⎪⎩⎪⎨⎧<++-≥-+=2,12,3)(22x x x x x x x f由)(x f 在),2[+∞上的最小值为3)2(=f , 在)2,(-∞上的最小值为43)21(=f 故函数)(x f 在R 上的最小值为43. 12.【解析】,425232-⎪⎭⎫ ⎝⎛-=x y 因为,4,425⎥⎦⎤⎢⎣⎡--∈y 又,4)0(-=f ,42523-=⎪⎭⎫ ⎝⎛f ()43-=f ,故⎥⎦⎤⎢⎣⎡∈⇒≤≤3,23323m m . 【训练题C 类】1.函数()()R x xx f ∈+=211的值域是( ) []1,0.A [)1,0.B (]1,0.C ()1,0.D2.函数()155+=x xx f 的值域是( ) ()()+∞-∞-,51,. A ()5,1.B()()+∞∞-,11,. C ⎪⎭⎫⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,5151,. D3.下列函数中,值域是()+∞,0的是( )12.2+-=x x y A ()()+∞∈++=,012.x x x y B ()Nx x x y C ∈++=121.211.+=x y D 4.求函数x x y 431-+-=的值域.5.求x x y ++-=12的值域.6.函数()112->++=x x x y 的值域是.7.已知函数()x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有()()()x f x x xf +=+11,则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛25f f 的值是多少?8.求函数)2(x x x y -+=的值域.9.已知函数⎪⎩⎪⎨⎧+∞∈+-∞∈-=),0[,1)0,(,11)(2x x x x x f ,求)1(+x f .10.已知函数()x f 的定义域为()b a ,且,2>-a b 则()()()1313+--=x f x f x F 的定义域为()13,13.-+b a A ⎪⎭⎫ ⎝⎛-+31,31.b a B ⎪⎭⎫ ⎝⎛--31,31.b a C ⎪⎭⎫⎝⎛++31,31.b a D11.若函数()x f y =的定义域为[],1,1-求函数⎪⎭⎫⎝⎛-∙⎪⎭⎫ ⎝⎛+=4141x f x f y 的定义域.【参考答案】1.【答案】C【解析】.1110,11,0,222≤+<∴≥+∴≥∴∈x x x R x∴函数()()R x xx f ∈+=211的值域为(].1,0 2.【答案】C 【解析】15115155+-+=+=x x x x y 1511+-=x 11511015≠+-∴≠+x x 即1≠y 知()()+∞∞-∈,11, y 故选.C3.【答案】D 【解析】A 中()012≥-x [)+∞∈∴,0yB 中11112++=++x x x ()+∞∈,0x 21<<∴y 即()2,1∈y C 中()2211121+=++=x x x y N x ∈ ()1,0∈∴y D 中由题意知01>+x ()+∞∈+∴,011x 故选D 4.【解析】令()01≥=-t t x 则()012≥+=t t x则142-+-=t t y ()o t t ≥⎪⎭⎫⎝⎛--=2214则0≤y .5.【解析】两边平方:6649212322≤⇒≤+⎪⎭⎫ ⎝⎛--+=y x y6.【解析】()12111211111112->=+⋅+≥+++=+++=++=x x x x x x x x x y当且仅当111+=+x x 即0=x 时成立,故2≥y 7.【解析】由()()()x f x x xf +=+11可得:23=x 时,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛23252523f f ,21=x 时,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛21232321f f , 21-=x 时,⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-21212121f f .又.025,023021=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛f f f又()()()(),111111--=+--f f ()().0100=-=-∴f f()().0025,00==⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∴=∴f f f f8.【解析】由0)2(≥-x x 解得定义域为20≤≤x两边平方整理得:0)1(2222=++-y x y x (1)因为0)1(2222=++-y x y x 一定有根,所以08)1(42≥-+=∆y y 解得:2121+≤≤-y由0≥∆仅保证关于x 的方程:0)1(2222=++-y x y x 在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根, 也就是说0≥∆求出的范围可能比y 的实际范围大, 故需要进一步确定此函数的值域. 采取如下方法进一步确定函数的值域. ∵20≤≤x 0)2(≥-+=∴x x x y ,把0min =y ,21+=y 带入方程(1)解得:]2,0[2222241∈-+=x即当时,2222241-+=x 时原函数的值域为:]21,0[+9.【解析】由复合函数的定义域知)1(+x f 的定义为),1[)1`,(+∞-⋃--∞当)1`,(--∞∈x 时 11)2(+=-x x f ,当),1[+∞-∈x 时22)1(2++=+x x x f 所以⎪⎩⎪⎨⎧+∞-∈++--∞∈+=+),1[,22)1,(,11)1(2x x x x x x f10.【答案】B【解析】由题意得⎩⎨⎧<+<<-<b x a b x a 1313,即⎪⎪⎩⎪⎪⎨⎧-<<-+<<+31313131b x a b x a 显然,3131->+b b ,3131->+a a 又,2>-a b 从而.3131+>-a b()x F ∴的定义域为⎪⎭⎫⎝⎛-+31,31b a ,故选.B11.【解析】 函数()x f y =的定义域为[]1,1-∴有⎪⎪⎩⎪⎪⎨⎧≤-≤-≤+≤-14111411x x 即⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤-45434345x x 得4343≤≤-x 故函数⎪⎭⎫ ⎝⎛-∙⎪⎭⎫ ⎝⎛+=4141x f x f y 的定义域是⎥⎦⎤⎢⎣⎡-∈43,43x .。
函数的定义域和值域

1 函数的定义域和值域要点梳理1.常见基本初等函数的定义域(1)函数y =a x (a >0且a ≠1)、y =sin x 、y =cos x 的定义域是R(2) y =log a x 的定义域是{x |x >0}或(0,+∞),y =tan x 的定义域是{x |x ≠kπ+π2,k ∈Z }. 求定义域方法:①分式中的分母不为0;②偶次根式的被开方数非负;③y =x 0要求x ≠0;④对数式中的真数大于0,底数大于0且不等于1.2.基本初等函数的值域(1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎭⎬⎫yy ≥4ac -b 24a ;当a <0时,值域为⎩⎨⎧⎭⎬⎫yy ≤4ac -b 24a .(3)y =k x (k ≠0)的值域是{y |y ≠0}.(4)y =a x (a >0且a ≠1)的值域是{y |y >0}.(5)y =log a x (a >0且a ≠1)的值域是R .(6)y =sin x ,y =cos x 的值域是[-1,1].(7)y =tan x 的值域是R .求值域方法:(1)观察法:一些简单函数,通过观察法求值域.(2)配方法:“二次函数类”用配方法求值域.(3)换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且a ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数用三角函数代换求值域.(4)分离常数法:形如y =cx +d ax +b(a ≠0)的函数可用此法求值域.(5)单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.(6)数形结合法,(7)导数法,(8)利用基本不等式典型例题求函数的定义域例1、函数f (x )=1-2x +1x +3的定义域为________. 例2、函数f (x )=x 22-x-lg(x -1)的定义域是________. 例3、函数f (x )=2x +12x 2-x -1的定义域是________. 求函数的值域例4、求下列函数的值域.(1)y =x 2+2x (x ∈[0,3]); (2)y =1-x 21+x 2; (3)y =x +4x(x <0);(4)f (x )=x -1-2x (5)y =log 3x +log x 3-1(x >1).例5、若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围。
定义域和值域的概念

定义域和值域的概念定义域和值域是数学中重要的概念,它们与函数的性质以及数学上的映射关系密切相关。
在本文中,我们将探讨定义域和值域的含义、性质以及它们在数学领域中的应用。
1. 定义域的概念定义域是指函数能够接受的输入值的集合。
简单来说,它是由所有使函数有意义且可计算的输入值构成的。
对于某个特定的函数 f(x),其定义域可以用符号表示为 D(f)。
例如,对于函数f(x) = √x,定义域可以表示为D(f) = [0, +∞),表示所有非负实数。
在确定定义域时,需要考虑到函数中可能存在的限制条件。
例如,如果函数中包含分母,则需要排除分母为零的情况,以避免出现无意义的结果。
此外,定义域还需要考虑到函数的实际应用背景和限制条件。
2. 值域的概念值域是指函数在定义域上所有可能的输出值的集合。
简单来说,它是由函数对于不同输入值所得到的所有可能的输出值构成的。
对于某个特定的函数 f(x),其值域可以用符号表示为 R(f)。
例如,对于函数f(x) = x^2,值域可以表示为R(f) = [0, +∞),表示所有非负实数。
确定值域时,需要考虑函数的性质和图像。
有些函数的值域可以通过直观观察函数的图像来确定,例如二次函数的图像是一个开口朝上或朝下的抛物线,它的值域就是抛物线所覆盖的部分。
3. 定义域和值域的关系定义域和值域是函数的重要属性,它们之间存在一定的关系。
一般来说,一个函数的定义域决定了其值域的范围。
例如,对于函数 f(x) = √x,在定义域D(f) = [0, +∞)内,它的值域为R(f) = [0, +∞)。
这意味着函数 f(x) 的输出值始终大于等于零。
然而,并非所有函数的值域和定义域存在简单的关系。
有些函数的值域可以通过图像观察来确定,而无法通过简单的定义域推导出来。
这需要对函数的性质和图像进行深入的研究和分析。
4. 定义域和值域的应用在数学中,定义域和值域的概念广泛应用于函数的研究和分析。
它们可以帮助我们了解函数的特性、性质以及函数之间的关系。
函数值域定义域方法总结

函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)y=tanx 中x ≠k π+π/2; ( 5 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法)(7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。
三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
例6已知已知f(x)的定义域为[-1,1],求f(x 2)的定义域。
2、求值域问题利用常见函数的值域来求(直接法)一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}. 例1 求下列函数的值域① y=3x+2(-1≤x ≤1) ②)(3x 1x32)(≤≤-=x f ③ xx y 1+=(记住图像) 二次函数在区间上的值域(最值):例2 求下列函数的最大值、最小值与值域:①142+-=x x y ; ②;]4,3[,142∈+-=x x x y ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;练习:1、求函数[]5,0,522∈+-=x x x y 的值域 法二:换元法(下题讲)例4 求函数x x y -+=12 的值域例7 求13+--=x x y 的值域例8 求函数[])1,0(239∈+-=x y x x 的值域例9求函数xx y 2231+-⎪⎭⎫⎝⎛= 的值域例10 求函数 )0(2≤=x y x 的值域 例11 求函数21+-=x x y 的值域小结:已知分式函数)0(≠++=c dcx bax y ,如果在其自然定义域(代数式自身对变量的要求)内,值域为⎭⎬⎫⎩⎨⎧≠c a y y ; 例12 求函数133+=x xy 的值域例14 求函数34252+-=x x y 的值域 例15 函数11++=xx y 的值域复合函数单调性一、 函数的单调区间1.一次函数y=kx+b(k ≠0).2.反比例函数y=x k(k ≠0). 3.二次函数y=ax 2+bx+c(a ≠0). 4.指数函数y=ax(a >0,a ≠1). 5.对数函数y=log a x(a >0,a ≠1). 三、复合函数单调性相关定理规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的定义域、值域函数定义域、值域对于正实数,记M 为满足下述条件的函数f(x )构成的集合:且>,有-(-)<f ()-f ()<(-).下列结论正确的是(A )若(B )(C )(D )>【解析】对于,即有,令,有,不妨设,,即有,因此有,因此有.设函数在内有定义.对于给定的正数K ,定义函数取函数。
若对任意的,恒有,则【 D 】A .K的最大值为2B .K 的最小值为2212121()()()()x x f x f x x x αα--<-<-2121()()f x f x x x αα--<<-2121()()f x f x k x x-=-k αα-<<1()f x M α∈2()g x M α∈11,f k αα-<<22g k αα-<<1212f g k k αααα--<+<+12()()f x g x Mαα++∈()y f x =(,)-∞+∞(),(),(),().K f x f x K f x K f x K ≤⎧=⎨>⎩()f x =2xx e ---(,)x ∈-∞+∞()K f x =()f x ααRxx ∈∀21,2x 1x α2x 1x 2x 1x α2x 1x 2121)()(,)(,)(αααα⋅∈⋅∈∈M x g x fM x g M x f 则2121)()(,0)()(,(ααααM x g x f x g M x g M x f ∈≠∈∈则且)若2121)()(,)(,)(αααα+∈+∈∈M x g x f M x g Mx f 则若121,)(,)(ααα且若M x g M x f ∈∈212)()(ααα-∈-Mx g x f ,则C .K 的最大值为 1D .K 的最小值为1解: 由恒成立知,故K 有最小值,可排除A,C,又由直觉思维得在时,,排除B,因此选D.12.设函数的定义域为,若所有点构成一个正方形区域,则的值为A . B . C . D .不能确定(12)用min{a,b,c}表示a,b,c 三个数中的最小值设f (x )=min{, x+2,10-x} (x 0),则f (x )的最大值为(A )4 (B )5 (C )6 (D )7【解析】画出y =2x ,y =x +2,y =10-x 的图象,如右图,观察图象可知,当0≤x ≤2时,f (x )=2x ,当2≤x ≤3时,f (x )=x +2,当x >4时,f (x )=10-x ,f (x )的最大值在x =4时取得为6,故选C 。
.下列集合到集合的对应是映射的是()()K f x ≥min()K f x ≥0x =()22011xf x x e-=--=--=2()0)f x ax bx c a =++<D (,())(,)s f t s t D ∈a 2-4-8-2x≥A B f(A ):中的数平方;(B ):中的数开方;(C ):中的数取倒数; (D ):中的数取绝对值;已知函数的定义域是R,则实数a的取值范围是( ).A .B . C. D. 设,函数的图像可能是函数y =的值域为( )(A )(B )(C)(D )设,是二次函数,若的值域是,则的值域是( )A. B.C.D. C.设,则的定义域为 (B )bAaoyxbBaoyxbCaoyxbDa oyx{}{}1,0,1,1,0,1,A B f =-=-A {}{}f B A ,1,0,1,1,0-==A ,,A Z B Q f ==A ,,A R B R f+==A 24)(23++-=ax axax x f ]2,21[)2,0(],2[+∞21,0[b a <)()(2b x a x y --=11--+x x (2,∞-(]2,0[)+∞,2[)+∞,0()⎩⎨⎧<≥=1,1,2x x x x x f ()x g ()[]x g f [)+∞,0()x g (][)+∞-∞-,11, (][)+∞-∞-,01, [)+∞,0[)+∞,1()xx x f -+=22lg⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛x f x f 22A. B.C.D.函数y =f ( x )的图象与直线x =1的公共点数目是 ()(A)1(B )0(C )或1(D )1或2已知二次函数的值是 ( )A .正数B .负数C .零D .符号与有关设函数表示不超过实数的最大整数,则函数的值域为______________.已知:为常数,函数在区间上的最大值为,则实数_____.定义在上的函数满足,当时,,则当时,函数的最小值为()()4,00,4 -()()4,11,4 --()()2,11,2 --()()4,22,4 --())1(0)(0)(2+<>++=m f m f a a x x x f ,则若a ()(0,1),[]1xxa f x a a m a =>≠+m 11()[()][()]22g x f x f x =-+--t 2|2|y xx t =-+[0,3]3t =R )(x f )(2)2(x f x f =+]2,0[∈x xx x f 2)(2-=]2,4[--∈x )(x f_______________.答案:函数的最大值为___________.若一系列函数的解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为,值域为的“孪生函数”共有 个. 答案:9已知函数,则实数m的取值范围是 答案:已知函数,分别计算和的值,并概括出涉及函数和的对所有不等于零的实数x 都成立的一个等式:___________________________________________.答案:对于函数(),若存在闭区间,使得对任意,恒有=(为实常数),则实数的值依次2(3)1y mx m x =+-+[0,)+∞(0,1][9,)+∞ 41-()f x =122+=x y {}3,195)(,5)(31313131--+=-=x x x g x xx f (4)5(2)(2)f f g -(9)5(3)(3)f f g -)(x f )(x g 2()5()()0f x f xg x -=n x x mx x f ++-=2)(2),2[+∞-∈x ],[b a ),2[+∞-)(b a <],[b a x ∈)(x f c c nm ,≠⊂为 .答案:和1在△ABC 中,BC =2,AB +AC =3,中线AD 的长为y ,AB 的长为x ,建立y 与x 的函数关系式,并指出其定义域.解:设∠ADC =θ,则∠ADB =π-θ.根据余弦定理得12+y 2-2y cos θ=(3-x )2,①12+y 2-2y cos (π-θ)=x 2.②由①+②整理得y =.其中解得<x <.∴函数的定义域为(,).已知函数的定义域为[m ,n],它的值域为[2m ,2n],求实数m ,n 的值。
(07重庆)若函数的定义域为R ,则实数的取值范围 。
关于的方程,给出下列四个命题:1±113-AB CD x y xq 2732+-x x ⎪⎩⎪⎨⎧>+-->+>,2)3(,32,0x x x x x 21252125xx y +-=221()1222-=--aax xx f a [],1-x ()11222=+---k x x①存在实数,使得方程恰有2个不同的实根; ②存在实数,使得方程恰有4个不同的实根; ③存在实数,使得方程恰有5个不同的实根;④存在实数,使得方程恰有8个不同的实根.其中假命题的个数是 (B )A. 0B. 1C. 2D. 318.解选B 。
本题考查换元法及方程根的讨论,要求考生具有较强的分析问题和解决问题的能力;据题意可令①,则方程化为②,作出函数的图象,结合函数的图象可知:(1)当t=0或t>1时方程①有2个不等的根;(2)当0<t<1时方程①有4个根;(3)当t=1时,方程①有3个根。
故当t=0时,代入方程②,解得k=0此时方程②有两个不等根t=0或t=1,故此时原方程有5个根;当方程②有两个不等正根时,即此时方程②有两根且均小于1大于0,故相应的满足方程的解有8个,即原方程的解有8个;当时,方程②有两个相等正根t =,相应的原方程的解有4个;故选B 。
设a 为实数,记函数的最大值为g (a )。
(Ⅰ)设t =,求t 的取值范围,并把f (x )表示为t 的函数m (t )(Ⅱ)求g (a )k k k k 21x t -=(0)t ≥20t t k -+=21y x =-104k <<21x t -=14k =12x x x a x f -+++-=111)(2x x -++11(Ⅲ)试求满足的所有实数a 解:(I )∵,∴要使有意义,必须且,即∵,且……① ∴的取值范围是。
由①得:,∴,。
(II )由题意知即为函数,的最大值,∵直线是抛物线的对称轴,∴可分以下几种情况进行讨论:(1)当时,函数,的图象是开口向上的抛物线的一段,由知在上单调递增,故;(2)当时,,,有=2;(3)当时,,函数,的图象是开口向下的抛物线的一段,若即时,,若即时,,若即时,。
综上所述,有=。
1()(ag a g =x x t -++=11t 01≥+x 01≥-x 11≤≤-x ]4,2[12222∈-+=x t 0≥t t ]2,2[121122-=-t x t t a t m +-=)121()(2a t at -+=221]2,2[∈t )(a g )(t m at at -+=221]2,2[∈t a t 1-=)(t m at at-+=2210>a )(t m y =]2,2[∈t 01<-=a t )(t m ]2,2[∈t )(a g )2(m =2+=a 0=a t t m =)(]2,2[∈t )(a g 0<a )(t m y =]2,2[∈t at 1-=]2,0(∈22-≤a )(a g 2)2(==m at 1-=]2,2(∈]21,22(--∈a )(a g aa a m 21)1(--=-=a t 1-=),2(+∞∈)0,21(-∈a )(a g )2(m =2+=a )(a g ⎪⎪⎪⎩⎪⎪⎪⎨⎧-≤-≤<---->+)22(22122(,21)21(2a a a a a a(III )当时,;当时,,,∴,,故当时,;当时,,由知:,故;当时,,故或,从而有或,要使,必须有,,即,此时,。
综上所述,满足的所有实数a 为:或。