导数双变量问题分类整理

合集下载

2020届高三一轮复习专题:导数之双变量的问题

2020届高三一轮复习专题:导数之双变量的问题

双变量问题是导数问题中的一个难点,通常情况下,让所求的参数的式子满足另外一个已知的式子的取值范围,不仅可以解决最值得问题,还可以解决其中双变量中的参数问题。

一.双变量最值[例题1]已知函数14341ln)(-+-=xxxxf.(Ⅰ)求函数)(xf的单调区间;(Ⅱ)设42)(2-+-=bxxxg,若对任意)2,0(1∈x,[]2,12∈x,不等式)()(21xgxf≥恒成立,求实数b的取值范围二、双变量求参数问题[例题1] 设是函数的一个极值点. (1)求与的关系式(用表示),并求的单调区间;(2)设,若存在,使得成立,求的取值范围.3x =()()()23,x f x x ax b e x R -=++∈a b a b ()f x ()2250,4x a g x a e ⎛⎫>=+ ⎪⎝⎭[]12,0,4ξξ∈()()121f g ξξ-<a[例题2] .(1)若,求函数的极值; (2)若是函数的一个极值点,试求出关于的关系式(用表示),并确定的单调区间;(3)在(2)的条件下,设,函数.若存在使得成立,求的取值范围.2()()()xf x x ax b e x R =++∈2,2a b ==-()f x 1x =()f x a b a b ()f x 0a >24()(14)xg x a e +=+]4,0[,21∈λλ1|)()(|21<-λλf f a[例题3] 已知二次函数对都满足且,设函数(,).(Ⅰ)求的表达式;(Ⅱ)若,使成立,求实数的取值范围;(Ⅲ)设,,求证:对于,恒有.()g x x R ∀∈2(1)(1)21g x g x x x -+-=--(1)1g =-19()()ln 28f x g x m x =+++m R ∈0x >()g x x R +∃∈()0f x ≤m 1m e <≤()()(1)H x f x m x =-+12[1,]x x m ∀∈,12|()()|1H x H x -<[例题4]设函数. (1)讨论函数在定义域内的单调性;(2)当时,任意,恒成立,求实数的取值范围.221()(2)ln (0)ax f x a x a x+=-+<()f x (3,2)a ∈--12,[1,3]x x ∈12(ln 3)2ln 3|()()|m a f x f x +->-m。

微专题13 导数解答题之双变量问题

微专题13 导数解答题之双变量问题

微专题13 导数解答题之双变量问题秒杀总结1.破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.例1.(广东省潮汕地区精英名校2022届高三第一次联考数学试题)已知函数()()()21e xf x x ax a =+-∈R ,()f x '为()f x 的导函数.(1)若()f x '只有一个零点,求a 的取值范围; (2)当34e a =时,存在1x ,2x 满足()()()12122,0f x f x x x x =<≠,证明:121x x >.例2.(浙江省台州市2021-2022学年高三上学期期末数学试题)已知,a k ∈R ,设函数()()ln f x x a kax =+-. (1)当1k =时,若函数()f x 在(),a -+∞上单调递增,求实数a 的取值范围; (2)若对任意实数a ,函数()f x 均有零点,求实数k 的最大值; (3)若函数()f x 有两个零点12,x x ,证明:()1212221x x a x x k a ++<.例3.(第13讲双变量问题-2022年新高考数学二轮专题突破精练)已知函数221()2ln (0)2f x ax x a x a =-+≠(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:121212()()11f x f x x x x x -<+-过关测试1.(四川省成都市树德中学2021-2022学年高三上学期入学考试文科数学试题)已知函数()2ln x x f x ax x =--,a R ∈.(1)若()f x 存在单调递增区间,求a 的取值范围;(2)若1x ,()212x x x <与为()f x 的两个不同极值点,证明:124ln ln 3x x +>.2.(浙江省宁波市2021-2022学年高三上学期11月高考模拟考试数学试题)已知函数()ln 2()f x x x x a =+∈R .(1)当2a =-时,求函数()f x 的单调区间; (2)若函数()f x 有两个不同零点1x ,212()x x x <, ①求实数a 的取值范围;②求证:22124a x x ⋅>.3.(安徽省合肥市第一中学2021-2022学年高三上学期11月月考理科数学试题)已知函数()()e cos x f x x ax a R =+-∈.(1)当1a =时,判断()f x 在区间(0,)+∞上的单调性;(2)当e a =时,若()()()121212,(0,),x x x x f x f x π∈≠=,且()f x 的极值在0x x =处取得,证明:1202x x x +<.4.(第12讲双变量不等式:剪刀模型-突破2022年新高考数学导数压轴解答题精选精练)已知函数()(1)(1)x f x x e =+-.(1)求()f x 在点(1-,(1))f -处的切线方程;(2)若1a e -…,证明:()22f x alnx ex +-…在[1x ∈,)∞+上恒成立; (3)若方程()f x b =有两个实数根1x ,2x ,且12x x <,证明:2111311b e ebx x e e ++-++--….5.(第26讲拐点偏移问题-突破2022年新高考数学导数压轴解答题精选精练)已知函数21()ln (1)2f x x ax a x =-+-,a R ∈.(1)讨论()f x 的单调性;(2)当2a =-时,正实数1x ,2x 满足1212()()0f x f x x x ++=,证明:1214x x +>.6.(第12讲双变量不等式:剪刀模型-突破2022年新高考数学导数压轴解答题精选精练)已知函数()e 1x f x ax =-+,ln3是()f x 的极值点.(1)求a 的值;(2)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线为直线l .求证:曲线()y f x =上的点都不在直线l 的上方;(3)若关于x 的方程()(0)f x m m =>有两个不等实根1x ,212()x x x <,求证:217210mx x -<-.7.(第13讲双变量问题-2022年新高考数学二轮专题突破精练)已知函数()2ln f x x x ax =+,0a ≥.(1)若曲线()y f x =在e x =处的切线在y 轴上的截距为e -,求a 的值;(2)证明:对于任意两个正数1x 、()212x x x ≠,()()121222x x f f x f x +⎛⎫<+ ⎪⎝⎭.微专题13 导数解答题之双变量问题秒杀总结1.破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.例1.(广东省潮汕地区精英名校2022届高三第一次联考数学试题)已知函数()()()21e xf x x ax a =+-∈R ,()f x '为()f x 的导函数.(1)若()f x '只有一个零点,求a 的取值范围; (2)当34e a =时,存在1x ,2x 满足()()()12122,0f x f x x x x =<≠,证明:121x x >. 【答案】(1){}34,0e ⎛⎫+∞⋃ ⎪⎝⎭;(2)证明见解析. 【解析】 【分析】(1)求出()()21e x f x x a '=+-,再二次求导,对a 分五种情况讨论得到a 的取值范围; (2)先证明100x x <<,再分120x x <<和120x x <<两种情况讨论证明不等式. (1)解:()f x 的定义域为(),-∞+∞,()()21e x f x x a '=+-,令()()()21e x g x f x x a '==+-,则()()()13e xg x x x '=++.∴当(),3x ∈-∞-时,()0g x '>,()f x '单调递增; 当()3,1x ∈--时,()0g x '<,()f x '单调递减; 当()1,x ∈-+∞时,()0g x '>,()f x '单调递增.①若0a <,则()()21e 0x f x x a '=+->,()f x '无零点,不成立;②若0a =,则()()21e x f x x '=+有且只有1x =-一个零点,符合题意; ③若340e a <<,则()10f a '-=-<,()3430e f a '-=->,()010f a '=->, ∴()3,1α∃∈--,()1,0β∈-,使()()0f f αβ''==, ∴()f x '不只有一个零点,不成立.④若34e a =,则()30f '-=,又f ′(−1)=−4e 3<0,()34010e f =->', ∴()01,0x ∃∈-,使()00f x '=,∴()f x '不只有一个零点,不成立. ⑤若34e a >,则当(),3x ∞∈--时,()()3430e f x f a ''≤-=-<, ()10f a '-=-<,()()()()ln 11ln 110f a a a '+=+++>,∴()()1,ln 1a γ∃∈-+,使()0f γ'=. ∴()f x '有且只有一个零点,符合题意.综上,a 的取值范围是{}34,0e ⎛⎫+∞⋃ ⎪⎝⎭.(2) 解:当34e a =时,()()2341e e x f x x x =+-, 由(1)知,当()0,x x ∈-∞时,()0f x '≤,()f x 单调递减; 当()0,x x ∈+∞时,()0f x '>,()f x 单调递增.又()()12f x f x =,12x x <,则()10,x x ∈-∞,()20,x x ∈+∞, ∴100x x <<. ①若120x x <<,则11221x xx x =>. ②若120x x <<,则1122x xx x =-,要证明121x x >,即证21x x <-. 又2x ,()10,x x -∈+∞,则只要证()()21f x f x <-,即证()()11f x f x <-.令()()()()1121111381e e e x x f x f x x x ---=+--. 先证明一个不等式:e e 2x x x --<,0x <.令()e e 2x xh x x -=--,则()e e 2e e 20x x x x h x --'=+-≥⋅=,∴()h x 在(),0∞-上单调递增.∴当(),0x ∈-∞时,()()00h x h <=,∴e e 2x x x --<,0x <.∴()()()()()112221111111113338881e e 21220e e e x x f x f x x x x x x x x -⎛⎫--=+--<+-=+-< ⎪⎝⎭ ∴()()11f x f x <-,∴121x x >综上,有121x x >. 【点睛】方法点睛:函数的零点问题处理常用的方法有三种:(1)方程法:直接解方程得解;(2)图象法:画出函数的图象分析图象得解;(3)方程+图象法:令()=0f x 得到()()g x h x =,再分析(),()g x h x 的图象即得解. 例2.(浙江省台州市2021-2022学年高三上学期期末数学试题)已知,a k ∈R ,设函数()()ln f x x a kax =+-. (1)当1k =时,若函数()f x 在(),a -+∞上单调递增,求实数a 的取值范围; (2)若对任意实数a ,函数()f x 均有零点,求实数k 的最大值; (3)若函数()f x 有两个零点12,x x ,证明:()1212221x x a x x k a ++<. 【答案】(1)0a ≤(2)2e (3)证明见解析 【解析】 【分析】(1)当1k =时,对函数()f x 求导,再根据0a ≤和0a >两种情况进行分类讨论函数的单调性,即可求出结果.(2)对函数()f x 求导,再根据0ka ≤和0ka >两种情况讨论函数的单调性,进而求出函数的最值; (3)由题意得,要证原命题成立,只要证212221()()x a x a a k a++<+成立;设ln()x a t +=,则11ln()x a t +=,22ln()x a t +=是函数()(e )t h t t ka a =--的两根.再根据0ka ≤和0ka >两种情况讨论函数()h t 的单调性,再记函数()h t 有图象关于直线1ln t ka=对称后是()y m t =函数的图象,再求()()m t g t -的正负情况,最后根据不等式关系,即可证明结果. (1)解:当1k =时,1().()f x a x a x a-'=>-+.. 当0a ≤时,()0f x '>,则()f x 在(,)a -+∞上单调递增. 当0a >时,若1x a a>-,()0f x '<,()f x 在(,)a -+∞上不可能单调递增.. 所以()f x 在(,)a -+∞上单调递增,则0a ≤. (2) 解:1().()f x ka x a x a=->-'+(ⅰ)当0ka ≤时,()0f x '>,()f x 在(,)a -+∞上单调递增.()f x 有零点. (ⅰ)当0ka >时,()f x 在1(,)a a ka--上单调递增,在1(,)a ka -+∞上单调递减.又当x 趋近于a -时,f (x )趋近于∞-;x 趋近于∞+时,f (x )趋近于∞-; 所以只要1()0f a ka-≥恒成立,则()f x 恒有零点. 即2ln()10ka ka --+≥恒成立.因为求k 的最大值,不妨设0k >,0a >.设2()ln()1g a ka ka =--+,则2121'()2ka g a ka a a-=-+=.所以只要min ()(02g a g k=≤. 即1ln(022k --≥,得2k e ≤.所以k 的最大值为2e .(3)解:由题意得:只要证212221()()x a x a a k a++<+. 设ln()x a t +=,e t x a =-.则11ln()x a t +=,22ln()x a t +=是函数()(e )t h t t ka a =--的两根. ()1e t h t ka '=-.当0ka ≤时,()0h t '>,与函数()h t 有两个零点矛盾. 所以0ka >.所以当'()1e 0t h t ka =-=时,1ln t ka=. 所以函数()h t 在1(,ln)ka -∞上递增,在1(ln ,)ka+∞上递减. 记函数()h t 有图象关于直线1ln t ka=对称后是()y m t =函数的图象. 有111()(2ln)2ln e t m t h t t ka ka ka-=-=--⋅. 则11()()2lne 2e t t m t g t ka t ka ka --=+⋅--⋅. 1[()()]e e 20t tm t g t ka ka-'-=⋅+⋅-≥. 所以1lnt ka≥时,()()m t g t ≥.所以1212lnt t ka -≥,即1212ln t t ka+≤. 所以121ln()ln()2ln x a x a ka +++≤.12221()()x a x a k a++≤. 所以21212222211()x x a x x a k a k a++<-<. 例3.(第13讲双变量问题-2022年新高考数学二轮专题突破精练)已知函数221()2ln (0)2f x ax x a x a =-+≠(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:121212()()11f x f x x x x x -<+-【答案】(1)答案不唯一,具体见解析 (2)证明见解析 【解析】 【分析】(1)函数()f x 求导后,分子为含参的二次三项式,结合0a ≠,我们可以从0∆…和0∆>结合开口方向和两根的大小来讨论;(2)1x ,2x 为函数()f x 的两个极值点,我们可以通过()f x '结合韦达定理,找到1x ,2x 的关系,带入到要证明的不等式中,然后通过整理,化简成一个关于12x x 的函数关系,再通过换元,构造函数,通过求解函数的值域完成证明. (1)22222()1a ax x a f x ax x x-+'=-+=,设22()2p x ax x a =-+.(0)x >,318a ∆=-,①当12a …时,0∆…,()0p x …,则()0f x '…,()f x 在(0,)+∞上单调递增, ②当102a <<时,0∆>,()p x 的零点为311182a x a -=,321182ax a-=,且120x x <<,令()0f x '>,得10x x <<,或2x x >,令()0f x '<,得12x x x <<,()f x ∴在3118(a --3118)a +-上单调递减,在3118(0,)2a a-,3118(a +-,)∞+单调递增,③当0a <时,0∆>,()p x 3118a--,()f x ∴在3118a --上单调递增,在3118(a --,)∞+上单调递减.综上所述:当12a …时,()f x 在(0,)+∞上单调递增;当102a <<时,()f x 在3118(a --3118a +-上单调递减,在3118a --,3118(a +-,)∞+单调递增;当0a <时,()f x 在3118)a --上单调递增,在3118(a --,)∞+上单调递减. (2)证明:由(1)知,当102a <<时,()f x 存在两个极值点, 不妨设120x x <<,则121x x a +=, 要证:121212()()11f x f x x x x x -<+-,只要证121212121221()()()()x x x x x xf x f x x x x x -+->=-,只需要证211212122211()[()2]2ln 2xxxx x a x x a x x x -+-+>-,即证21121222112ln ()2x x x a x x x x x -+>-,设12x t x =,(01)t <<, 设函数21()2ln g t a t t t =-+,22221()t a t g t t -+∴'=-,∴4440a ∆=-<,22210t a t ∴-+>, ()0g t ∴'<,()g t ∴在(0,1)上单调递减,则()(1)g t g >0=,又121()02x x -<, 则121()0()2g t x x >>-,则21121222112ln ()2x x x a x x x x x -+>-,从而121212()()11f x f x x x x x -<+-. 【点睛】(1)含参的二次三项式再进行分类讨论的时候,如果二次项含参数,在讨论有根无根的情况下要兼顾到开口方向以及两根大小的比较;(2)如果函数()f x 在求导完以后,是一个分子上含有二次三项式,不含指数、对数的式子,那么函数()f x 的极值点关系,可以使用韦达定理来表示.过关测试1.(四川省成都市树德中学2021-2022学年高三上学期入学考试文科数学试题)已知函数()2ln x x f x ax x =--,a R ∈.(1)若()f x 存在单调递增区间,求a 的取值范围;(2)若1x ,()212x x x <与为()f x 的两个不同极值点,证明:124ln ln 3x x +>. 【答案】(1)1,2e ⎛⎫-∞ ⎪⎝⎭;(2)证明见解析.【解析】 【分析】(1)由题意知()ln 20f x x ax '=->有解,分离a 可得ln 2x a x <有解,令()ln 2xg x x=,可得max ()a g x <,利用导数求()g x 的最大值即可求解;(2)由题意知1x ,2x 是()0f x '=的两根,将1x x =,2x x =代入()0f x '=整理可得1212ln ln 2x x a x x -=-,所证明不等式为()1212123ln4x x x x x x -<+12123141x xx x ⎛⎫- ⎪⎝⎭=+,令12x t x =,01t <<问题转化为证明3(1)()ln 0(01)41t t t t t ϕ-=-<<<+成立,利用导数证明单调性求最值即可求证. 【详解】(1)函数定义域为()0,∞+,根据题意知()ln 20f x x ax '=->有解, 即ln 2x a x <有解,令()ln 2xg x x=,()21ln 2x g x x -'=, 且当0e x <<时,()0g x '>,()g x 单调递增, 当e x >时,()0g x '<,()g x 单调递减, 所以max 1()(e)2e a g x g <==,所以1,2e a ⎛⎫∈-∞ ⎪⎝⎭;(2)由1x ,2x 是()f x 的不同极值点,知1x ,2x 是()0f x '=的两根,即1122ln 20ln 20x ax x ax -=⎧⎨-=⎩,所以1122ln 2ln 2x ax x ax =⎧⎨=⎩①, 联立可得:1212ln ln 2x x a x x -=-②,要证124ln ln 3x x +>,由①代入即证124223ax ax ⋅+>,即()12243a x x +>,由②代入可得()121212ln ln 43x x x x x x -+>-③, 因为12x x <,则③等价于()1122112122313ln 441x x x x x x x x x x ⎛⎫- ⎪-⎝⎭<=++, 令12x t x =,01t <<问题转化为证明3(1)()ln 0(01)41t t t t t ϕ-=-<<<+④成立, 而2221151671()0(01)(41)(41)t t t t t t t t ϕ-+'=-=><<++, ()t ϕ在()0,1上单调递增,当()0,1t ∈,()()10t ϕϕ<=④成立,即得证.2.(浙江省宁波市2021-2022学年高三上学期11月高考模拟考试数学试题)已知函数()ln 2()f x x x x a =+∈R .(1)当2a =-时,求函数()f x 的单调区间; (2)若函数()f x 有两个不同零点1x ,212()x x x <, ①求实数a 的取值范围;②求证:22124a x x ⋅>.【答案】(1)单调递增区间是1(0,)4,单调递减区间是1(,)4+∞(2)①2a >;②证明见解析 【解析】 【分析】(1)求出导函数()'f x ,由()0f x '>得增区间,由()0f x '<得减区间; (2)①函数()f x 有两个不同零点1212,()x x x x <,等价于方程2ln 2xa x x=有两个不同的实根1212,()x x x x <.设t x =ln 2a t t t=-有两个不同的实根()1212,t t t t <. 设ln ()(0)tg t t t t=->,由导数确定()g t 的单调性、极值、函数值的变化趋势后可得; ②由①11t x =22t x =要证22124a x x ⋅>,只需证2122a t t ⋅>.由①知,1201t t <<<,故有2222ln 2t a t t t =-<,即22at >.下面证明:121t t ⋅>即可.引入函数()()2221()h t g t g t =-,由导数证明()221()0g t g t ->,利用单调性即可得结论. (1)对函数()f x 求导,得142'()22a x a x f x x x -++=+= 当2a =-时,422(1)(21)'()x x x x f x --+-+-==, 因为函数()f x 的定义域(0,)+∞, 由'()0f x >,得104x <<, 由'()0f x <,得14x >, 所以函数()f x 的单调递增区间是1(0,)4,单调递减区间是1(,)4+∞.(2)由()0f x =,得ln 20x a x x +=, ①函数()f x 有两个不同零点1212,()x x x x <, 等价于方程2ln 2xa x x=有两个不同的实根1212,()x x x x <. 设t x =ln 2a t t t=-有两个不同的实根()1212,t t t t <. 设ln ()(0)tg t t t t=->, 2221ln ln 1'()1t t t g t t t-+-=-=, 再设2()ln 1u t t t =+-,1'()20u t t t =+>所以函数()u t 在(0,)t ∈+∞上单调递增, 注意到2(1)1ln110u =+-=,所以当01t <<时,()0u t <,当1t >时,()0u t >. 所以()g t 在(0,1)上单调递减,在(1,)+∞上单调递增. 当0t +→时,()g t →+∞, 当t →+∞时,()g t →+∞, 当1t =时,()1g t =, 只需12a>, 即所求2a >.②注意到11t x =22t x =22124a x x ⋅>,只需证2122a t t ⋅>.由①知,1201t t <<<,故有2222ln 2t a t t t =-<,即22a t >. 下面证明:121t t ⋅>.设()()222222222222221lnln 1111()()()()ln 1t t h t g t g t t t t t t t t t t =-=---=--+, 有()22222222222211111'1(1)ln ()(1)ln 0h t t t t t t t t t =+---+⋅=--<, 所以函数()2h t 在(1,)+∞上单调递增, 所以()2(1)0h t h >=,所以()221()0g t g t ->,故有()()2121()g g t g t t <=.又2101t <<,101t <<,且()g t 在(0,1)t ∈上单调递减,所以121t t >,即得121t t ⋅>.因此2122at t ⋅>,结论得证. 3.(安徽省合肥市第一中学2021-2022学年高三上学期11月月考理科数学试题)已知函数()()e cos x f x x ax a R =+-∈.(1)当1a =时,判断()f x 在区间(0,)+∞上的单调性;(2)当e a =时,若()()()121212,(0,),x x x x f x f x π∈≠=,且()f x 的极值在0x x =处取得,证明:1202x x x +<. 【答案】(1)()f x 在(0,)+∞上是增函数. (2)证明见解析. 【解析】 【分析】(1)求出导函数()'f x ,设()()g x f x '=,再求导()g x ',由()0g x '>恒成立得()'f x 单调递增,得()(0)0f x f ''>=,从而得()f x 的单调性;(2)利用导数得出()f x 的极小值点0x ,注意0()0f x '=,题设中12()()f x f x =,满足1020x x x π<<<<,考虑到0102x x x ->,引入新函数0()()(2)h x f x f x x =--,00x x <<,利用导数确定()h x 是单调增函数,得0()()0h x h x <=,即得101()(2)f x f x x <-,再利用12,x x 的关系,及函数()f x 的单调性可证得结论成立.(1),()0x ∈+∞,1a =时,()cos e x f x x x =+-,()sin 1e x f x x '=--,设()sin e 1x g x x =--,则()cos 0e x g x x '=+>,0x >时,()0g x '>恒成立,所以()g x ,即()'f x 在(0,)+∞上单调递增,又(0)0f '=,所以0x >时,(0)0f '>恒成立, 所以()f x 在(0,)+∞上是增函数. (2)e a =,()cos e e xf x x x =+-,s e ()in e x f x x '=--,由(1)知()'f x 在(0,)+∞上是增函数,(1)sin10f '=-<,e e ()0f ππ'=->,所以()'f x 在(1,)π,即在(0,)π上存在唯一零点0x ,000()s n e e i 0xf x x '=--=,00x x <<时,()0f x '<,()f x 递减,0x x π<<时,()0f x '>,()f x 递增.0x 是函数()f x 的唯一极小值点.若()()()121212,(0,),x x x x f x f x π∈≠=,则1020x x x π<<<<, 设0()()(2)h x f x f x x =--,00x x <<,02000e ()()(2)cos cos(2)e e (2)e x x x h x f x f x x x x x x x x -=--=+------ 0200cos cos e (2e e 2)x x x x x x x -=-+---,020e e sin sin(2)()x x x x x h x x -+-+-'=00200sin s e e e sin sin in(2)2(2)x x x x x x x x x x -≥+---=⋅+由000()s n e e i 0xf x x '=--=得00si e e n x x =+,所以00e 2sin sin sin(2()2)x x x x h x +-+-'≥,由00x x π<<<,得00sin 1x <≤,0sin 1x <≤,又01sin(2)1x x -≤-≤, 所以e+0()21(1)0h x '>-+->,所以()h x 是增函数, 当100x x <<时,10()()0h x h x <=,所以101()(2)0f x f x x --<,101()(2)f x f x x <-,又2101()()(2)f x f x f x x =<-,1020x x x <<<,所以0102x x x ->,又20x x >,()f x 在0(,)x +∞上单调递增,所以2012x x x <-,所以1202x x x +<. 【点睛】本题考查用导数研究函数的单调性,证明与极值点,方程根有关的不等式,关于不等式的证明,题中涉及到两个未知数,因此解题中需要进行变形,一是利用函数的单调性,一是利用变量的关系,可以对待证不等式进行等价转化,结合函数单调性得出证明方法.如本题要证1202x x x +<2012x x x ⇔<-,不妨设1020x x x <<<后,由()f x 在2(,)x +∞上递增,等价于证明201()(2)f x f x x <-,从而等价于101()(2)f x f x x <-,这里只有一个未知数1x 了,然后引入新函数0()()(2)h x f x f x x =--,00x x <<,再求得单调性达到证明目的.4.(第12讲双变量不等式:剪刀模型-突破2022年新高考数学导数压轴解答题精选精练)已知函数()(1)(1)x f x x e =+-.(1)求()f x 在点(1-,(1))f -处的切线方程;(2)若1a e -…,证明:()22f x alnx ex +-…在[1x ∈,)∞+上恒成立; (3)若方程()f x b =有两个实数根1x ,2x ,且12x x <,证明:2111311b e ebx x e e ++-++--…. 【答案】(1)1(1)ey x e-=+ (2)证明见解析 (3)证明见解析 【解析】 【分析】(1)根据导数的几何意义求解即可;(2)根据题意只需证()(1)22f x e lnx ex -+-…,构造函数()(1)(1)(1)22x g x x e e lnx ex =+----+,求导分析函数的单调性根据单调性分析可得()g x 只能在1x =处取得最小值,进而求解即可; (3)根据题意,构造1()()(1)eF x f x x e-=-+和()()()G x f x t x =-,利用二次求导讨论()F x 和()G x 的单调性和最小值,可得1()(1)ef x x e-+…、()(31)1f x e x e ---…,设方程1()(1)e s x x b e -=+=的根1x '和()(31)1t x e x e b =---=的根2x ',再根据不等式的性质证明即可. (1)函数()(1)(1)x f x x e =+-,由()(2)1x f x x e '=+-, 由1(1)1f e'-=-,(1)0f -=,所以切线方程为1(1)ey x e-=+, (2)当[1x ∈,)∞+时,0lnx …,所以22(1)22alnx ex e lnx ex +--+-…. 故只需证()(1)22f x e lnx ex -+-…, 构造()(1)(1)(1)22x g x x e e lnx ex =+----+,1()(2)12x e g x x e e x-'=+---, 又()g x '在[1x ∈,)∞+上单调递增,且g '(1)0=, 知()g x 在[1x ∈,)∞+上单调递增, 故()g x g …(1)22220e e =--+=. 因此(1)(1)(1)2222x x e e lnx ex alnx ex +--+-+-厖,得证. (3)由(1)知()f x 在点(1-,(1))f -处的切线方程为1(1)ey x e-=+.构造11()()(1)(1)()x e F x f x x x e e e -=-+=+-,1()(2)x F x x e e'=+-,()(3)x F x x e ''=+. 当3x <-时,()0F x ''<;当3x >-时,()0F x ''>; 所以()F x '在(,3)-∞-上单调递减,在(3,)-+∞上单调递增. 又311(3)0F e e'-=--<,1lim ()x F x e →-∞'=-,(1)0F '-=,所以()F x 在(,1)-∞-上单调递减,在(1,)-+∞上单调递增.所以1()(1)0()(1)eF x F f x x e--=⇒+厖. 设方程1()(1)es x x b e -=+=的根111eb x e'=--.又111()()()b s x f x s x '==…,由()s x 在R 上单调递减,所以11x x '…. 另一方面,()f x 在点(1,22)e -处的切线方程为()(31)1t x e x e =---. 构造()()()(1)(1)(31)1(1)3x x G x f x t x x e e x e x e ex e =-=+---++=+-+. ()(2)3x G x x e e '=+-,()(3)x G x x e ''=+.当3x <-时,()0G x ''<;当3x >-时,()0G x ''>;所以()G x '在(,3)-∞-上单调递减,在(3,)-+∞上单调递增. 又31(3)30G e e'-=--<,lim ()3x G x e →-∞'=-,G '(1)0=, 所()G x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.所以()G x G …(1)0()()(31)1f x t x e x e =⇒=---…. 设方程()(31)1t x e x e b =---=的根2131e bx e ++'=-. 又222()()()b t x f x t x '==…,由()t x 在R 上单调递增, 所以22x x '…. 11x x '…,22x x '…, 11x x '∴--…, 所以212111311b e ebx x x x e e ++''--++--剟,得证. 【点睛】破解含双参不等式证明题的3个关键点(1)转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式. (2)巧构造函数,再借用导数,判断函数的单调性,从而求其最值.(3)回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. 5.(第26讲拐点偏移问题-突破2022年新高考数学导数压轴解答题精选精练)已知函数21()ln (1)2f x x ax a x =-+-,a R ∈.(1)讨论()f x 的单调性;(2)当2a =-时,正实数1x ,2x 满足1212()()0f x f x x x ++=,证明:1214x x +>. 【答案】(1)答案见解析 (2)证明见解析 【解析】 【分析】(1)求导,然后分0a …和0a >讨论导函数的正负值即可;(2)代入12,x x 可得2211122212ln 3ln 30x x x x x x x x ++++++=,变形可得212121212()3()ln()x x x x x x x x +++=-,令12t x x =,利用导数求出()ln g t t t =-的最值,然后解不等式,比较大小即可. (1)21()ln (1)2f x x ax a x =-+-,a R ∈,21(1)1()(1)ax a x f x ax a x x-+-+∴'=-+-=, 当0a …时,0x >,()0f x ∴'>.()f x ∴在(0,)+∞上是递增函数, 即()f x 的单调递增区间为(0,)+∞,无递减区间.当0a >时,1()(1)()a x x af x x-+'=-,令()0f x '=,得1x a =. ∴当1(0,)x a ∈时,()0f x '>;当1(x a ∈,)∞+时,()0f x '<.()f x ∴的单调递增区间为1(0,)a ,单调递减区间为1(a ,)∞+.综上,当0a …时,()f x 的单调递增区间为(0,)+∞,无递减区间;当0a >时,()f x 的单调递增区间为1(0,)a ,单调递减区间为1(a ,)∞+.(2)当2a =-时,2()ln 3f x x x x =++,(0)x > 正实数1x ,2x 满足1212()()0f x f x x x ++=,2211122212ln 3ln 30x x x x x x x x ⇒++++++=,212121212()3()ln()x x x x x x x x ⇒+++=-,令12t x x =,则函数()ln g t t t =-,(0)t >,11()1t g t t t-∴'=-=,当(0,1)t ∈时,()0g t '<,当(1,)t ∈+∞时,()0g t '>,()g t g ∴…(1)1=,212121212()3()ln()1x x x x x x x x ∴+++=-….则12133x x -+…12133x x --+…舍去). 12133x x -∴+…1331213752494----, 1214x x ∴+>【点睛】关键点点睛:对于双变量问题,我们要通过变形和换元转化为单变量问题,然后构造函数解决. 6.(第12讲双变量不等式:剪刀模型-突破2022年新高考数学导数压轴解答题精选精练)已知函数()e 1x f x ax =-+,ln3是()f x 的极值点.(1)求a 的值;(2)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线为直线l .求证:曲线()y f x =上的点都不在直线l 的上方;(3)若关于x 的方程()(0)f x m m =>有两个不等实根1x ,212()x x x <,求证:217210mx x -<-. 【答案】(1)3 (2)证明见解析 (3)证明见解析 【解析】 【分析】(1)利用导数的几何意义即可求解;(2)由(1)可得曲线()y f x =在点P 处的切线l :()()003e x y x x =--. 令()()()003e xg x x x =--,()()()F x f x g x =-,则()()()0000F x f x g x =-=,由()F x 的单调性可得()()00F x F x ≤=,从而可得结论成立;(3)设方程()g x m =的解为2x ',构造新函数()2()e 1x r x x f x x =-=--,(0)x >,利用导数研究函数的单调性,进而可得()(0)0r x r >=,结合2y x =与y m =交点的横坐标12mx '=,求出21x x -即可. (1)()e x f x a '=-;由题意知,ln3(ln3)e 0f a '=-=,3a ∴=;(2)证明:设曲线()y f x =在0(P x ,0)处切线为直线00:(3e )()x l y x x =--;令00()(3e )()x g x x x =--;00()()()3e 1(3e )()x x F x f x g x x x x =-=-+---;∴0()3e (3e )e e x x x x F x '=---=-;()F x ∴在0(,)x -∞上单调递增,在0(x ,)∞+上单调递减;000()()()()0max F x F x f x g x ∴==-=;()()()0F x f x g x ∴=-…,即()()f x g x …,即()y f x =上的点都不在直线l 的上方;(3)由(2)设方程()g x m =的解为2x '; 则有020(3e )()x x x m -'-=,解得0203e x mx x '=+-; 由题意知,22ln 3x x <<';令()2()e 1x r x x f x x =-=--,(0)x >;()e 10x r x '=->;()r x ∴在(0)+∞,上单调递增; ()(0)0r x r ∴>=;2y x ∴=的图象不在()f x 的下方;2y x =与y m =交点的横坐标为12mx '=; 则有1103x x ln <'<<,即11220ln3x x x x <'<<<<';2121023ex m mx x x x x ∴-<'-'=+--; 关于0x 的函数023e x m my x =+--在(32)ln ,上单调递增; 21272223e 227210m m m m mx x ∴-<+-<+-=---. 【点睛】利用导数解决函数综合问题的过程中,难度较大,解决问题的基础是函数的单调性,通过函数的单调性得到函数的极值、最值,然后再结合所求问题逐步求解.证明两函数图象间的位置关系时,可通过构造函数,通过判断出函数的单调性,进而转化为函数最值的问题处理.7.(第13讲双变量问题-2022年新高考数学二轮专题突破精练)已知函数()2ln f x x x ax =+,0a ≥.(1)若曲线()y f x =在e x =处的切线在y 轴上的截距为e -,求a 的值;(2)证明:对于任意两个正数1x 、()212x x x ≠,()()121222x x f f x f x +⎛⎫<+ ⎪⎝⎭.【答案】(1)0a =; (2)证明见解析. 【解析】 【分析】(1)求出曲线()y f x =在e x =处的切线方程,由已知条件可得出关于a 的等式,即可求得实数a 的值;(2)利用分析法可知所证不等式等价于()222121212112212ln 2ln ln 22x x x x x x a x x x x ax ax ++⎛⎫++<+++ ⎪⎝⎭,利用作差法可证得222121222x x a ax ax +⎛⎫≤+ ⎪⎝⎭,构造函数()()1111ln ln ln 2x x g x x x x x x x +=+--,利用导数分析函数()g x 的单调性,可证得()12121122lnln ln 2x x x x x x x x ++<+,再利用不等式的基本性质可证得结论成立. (1)解:由()2ln f x x x ax =+,得()2ln 1f x ax x '=++,则()e 2e 2f a '=+,又()2e e e f a =+,∴曲线()y f x =在e x =处的切线的方程为()()22e 2e e e y a x a =+-++,即()22e 2e e y a x a =+--,由题意得2e e e a --=-,解得0a =.(2)证明:要证明()()121222x x f f x f x +⎛⎫<+ ⎪⎝⎭成立,即证明()222121212112212ln 2ln ln 22x x x x x x a x x x x ax ax ++⎛⎫++<+++ ⎪⎝⎭,一方面,()()222121222221212122222x x a x x x x a ax ax a x x ⎡⎤+-+⎛⎫--=--=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 0a ≥,则()21202a x x --≤,即222121222x x a ax ax +⎛⎫≤+ ⎪⎝⎭,①另一方面,不妨设12x x <,再设()()1111ln ln ln 2x xg x x x x x x x +=+--, 则()11lnln ln 22x x x xg x x x++'=-=,可得()10g x '=, 当1x x >时,()0g x '<,此时()g x 单调递减, ()()210g x g x ∴<=,即()12121122lnln ln 2x x x x x x x x ++<+,② 综合①②可得,()()121222x x f f x f x +⎛⎫<+ ⎪⎝⎭.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.。

导数压轴题双变量问题题型归纳总结

导数压轴题双变量问题题型归纳总结

导数压轴题双变量问题题型归纳总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KH导数应用之双变量问题(一)构造齐次式,换元【例】已知函数/(” = /+6+01nx,曲线y = 〃x )在点(1J ⑴)处的切线方程为y = 2x(1)求实数。

〃的值:(2)设尸(N ) = /(X )-炉+〃江(〃?£夫)不,4(0<为 <七)分别是函数尸(x )的两个零点,求证:尸(屈7)<0.【解析】(1) 〃 = 1力=-1;(2) /(x) = x 2+x-lnx t F(x) = (l + /??)x-lnx , F r (.v) = ;??+1- -, X尸(而"2一点="工点,要证财(斤)<。

,只需证号等〈卷令/= J±G (0,1),即证 21IWT + ;>0.令力(/) = 21n/-i + ;(0<r < 1),则所以函数力。

)在(0』)上单调递减,3)>力(1)=0,即证2hWT + ;>0.由上述分析可知/m )<0.【规律总结】这是极值点偏移问题,此类问题往往利用换元把冷工转化刈的函数,常把公&的关系变形为齐次式,设,= ±J = ln 土J = = 等,构造函数来解决,可称之为构造比较函数.12A 2法. 思路二:因为。

<演<x],只需证皿用一也占一上手〉。

,] 7^一(、八)2* _ 1 _ x + x 2 _ 287-x-占 _("7-《)X lyjx^Xyfx 2yfx^Xyfx所以函数。

(X )在(0/2)上单调递减,eW >eU ) = 0,即证lnxTn.q > 濠 由上述分析可知【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于X (或4)的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主 元法.因为再,心分别是函数F (x )的两个零点,所以 (l + w)^ = In%, । , i In* - Inx.也哈…眸,两式相减,得仙=^^思路一:因为。

导数处理双变量问题和双变量不等式(解析版)

导数处理双变量问题和双变量不等式(解析版)

导数处理双变量问题和双变量不等式一、重点题型目录【题型一】双变量不等式转化为单变量问题【题型二】双变量不等式中点型【题型三】双变量不等式极值和差商积问题【题型四】双变量不等式主元法【题型五】同构函数法与双变量不等式二、题型讲解总结【题型一】双变量不等式转化为单变量问题例1.(2022·全国·高三专题练习)若e x 1=ln x 2,令t =x 2-x 1,则t 的最小值属于( )A.1,32B.32,2C.2,52D.52,3【答案】C【分析】设a =e x 1=ln x 2,把参数t 表示成a 的函数即t =x 2-x 1=e a -ln a ,构造函数,通过导数研究函数最小值及最小值的取值范围.【详解】设a =e x 1=ln x 2,则x 1=ln a ,x 2=e a ,t =x 2-x 1=e a -ln a ,令h (x )=e x -ln x ,h (x )=e x -1x,易知h (x )单增,且h 12=e -2<0,h (1)=e -1>0,则存在x 0∈12,1 ,使h (x 0)=e x 0-1x 0=0,即x ∈(0,x 0),h (x )<0,h (x )单减;x ∈(x 0,+∞),h (x )>0,h (x )单增;又h (x 0)=e x 0-1x 0=0⇒e x 0=1x 0,ln x 0=-x 0,则h (x )≥h (x 0)=e x 0-ln x 0=x 0+1x 0,x 0∈12,1 易知h (x 0)=x 0+1x 0在x 0∈12,1 单减,即h (1)=2<h (x 0)<h 12 =52故选:C【点睛】方法点睛:把双变量转化为单变量,构造新函数,通过导数研究最值情况及参数取值范围.例2.(2022·山东潍坊·高三阶段练习)已知函数f x =e x +x -2和g x =ln x +x -2,若f x 1 =g x 2=0,则( )A.x 1+x 2=2 B.0<x 1<12C.x 1⋅x 2>eD.ln x 1x 1<-x 2ln x 2【答案】ABD【分析】A 选项,根据反函数求解出y =-x +2与y =x 交点坐标,从而得到x 1+x 2=2;B 选项,由零点存在性定理得到0<x 1<12,1<x 2<e ;C 选项,化简整理得到x 1x 2=2-x 2 x 2=x 2ln x 2,求出y =x ln x 在1,e 上的单调性,求出取值范围;D 选项,构造函数h x =ln xx ,根据x 1x 2<x 1+x 22 2=1得到0<x 1<1x 2<1,根据h x 在0,1 上单调递增,所以h x 1 <h 1x 2 ,即ln x 1x 1<ln 1x 21x 2,整理得ln x 1x 1<-x 2ln x 2,D 正确.【详解】由于y =e x 和y =ln x 互为反函数,则y =e x 和y =ln x 的图象关于直线y =x 对称,将y =-x +2与y =x 联立求得交点为1,1 ,则x 1+x 22=1,即x 1+x 2=2,A 正确.易知f x 为单调递增函数,因为f 0 =-1<0,f 12 =e -32>0,由零点存在性定理可知0<x 1<12,B 正确.易知g x 为单调递减函数,g 1 =-1<0,g e =e -32>0,由零点存在性定理可知1<x 2<e .因为x 1x 2=2-x 2 x 2=x 2ln x 2,令y =x ln x ,则y =1+ln x >0在1,e 上恒成立,所以y =x ln x 在1,e 上单调递增,所以x 1x 2=x 2ln x 2<e2,C 错误.因为x 1>0,x 2>0,所以x 1x 2<x 1+x 222=1,所以0<x 1<1x 2<1.令h x =ln xx,则h 'x =1-ln x x 2,当0<x <1时,hx >0,h x 在0,1 上单调递增,所以h x 1 <h 1x 2 ,即ln x 1x 1<ln 1x 21x 2,整理得ln x 1x 1<-x 2ln x 2,D 正确.故选:ABD【点睛】结论点睛:对于双变量问题,要结合两个变量的关系,将双变量问题转化为单变量问题再进行求解,也可通过研究函数的单调性及两个变量的不等关系进行求解例3.(2022·北京十四中高三阶段练习)关于函数f (x )=2x+ln x ,给出如下四个命题:①x =2是f (x )的极大值点;②函数y =f (x )-x 有且只有1个零点;③存在正实数k ,使得f (x )>kx 恒成立;④对任意两个正实数x 1,x 2,且x 1>x 2,若f (x 1)=f (x 2),则x 1+x 2>4;其中的真命题有___________.【答案】②④【分析】①求f (x )导数,讨论f (x )单调性即可判断其极值情况;②作出y =f (x )与y =x 图象,根据两图象交点个数即可判断y =f (x )-x 的零点个数;③问题转化为f x 是否存在过原点且斜率为正的切线;④根据y =f (x )图象求出x 1,x 2范围,再结合f (x 1)=f (x 2)和f (x )的单调性,将双变量化为单变量,构造函数即可进行证明.【详解】f x =x -2x2,当0<x <2时,f x <0;当x >2时,f x >0.∴f x 在0,2 上单调递减,在2,+∞ 上单调递增,x =2是f x 的极小值点,故①错误;根据函数f x 的单调性及极值点,作出函数f x 的大致图象,如图所示,再作出直线y =x ,易知直线y =x 与f x 的图象有且只有1个交点,即函数y =f x -x 有且只有1个零点,故②正确.根据f x 的图象可知,若要存在正实数k 使得f x >kx 恒成立,则f x 要存在过原点且斜率为正的切线,假设f x 存在过原点且斜率为正的切线,切点为x 0,2x 0+ln x 0 ,则切线斜率为x 0-2x 20,则切线方程为y -2x 0-ln x 0=x 0-2x 20x -x 0 ,∵切线过原点,故-2x 0-ln x 0=-x 0-2x 0,整理得x 0-x 0ln x 0-4=0,令F x =x -x ln x -4,则F x =-ln x ,∴在0,1 上,F x >0,F x 单调递增,在1,+∞ 上,F x <0,F x 单调递减,∴F x ≤F 1 <0,∴F x <0恒成立,即方程x 0-x 0ln x 0-4=0无解,即f x 不存在过原点且斜率为正的切线,故不存在正实数k 使得f x >kx 恒成立,故③错误;由x 1>x 2,f x 1 =f x 2 可知x 1>2,0<x 2<2,要证x 1+x 2>4,即证x 1>4-x 2,且x 1>4-x 2>2,f x 在2,+∞ 上单调递增,即证f x 1 >f 4-x 2 ,又f x 1 =f x 2 ,∴证f x 2 >f 4-x 2 ,即证f x >f 4-x ,x ∈0,2 .令h x =f x -f 4-x =ln x -ln 4-x +2x -24-x,x ∈0,2 ,则hx =-8(x -2)2x 2(4-x )2<0,∴h x 在0,2 上单调递减,∴h x >h 2 =0,∴x 1+x 2>4,故④正确.故答案为:②④.【点睛】本题②③均考察数形结合研究函数问题,需利用导数研究函数的性质,作出函数的简图,根据图象将问题进行简化;本题④需将双变量转化为单变量,需要熟练转化的方法.例4.(2022·北京十四中高三阶段练习)关于函数f (x )=2x+ln x ,给出如下四个命题:①x =2是f (x )的极大值点;②函数y =f (x )-x 有且只有1个零点;③存在正实数k ,使得f (x )>kx 恒成立;④对任意两个正实数x 1,x 2,且x 1>x 2,若f (x 1)=f (x 2),则x 1+x 2>4;其中的真命题有___________.【答案】②④【分析】①求f (x )导数,讨论f (x )单调性即可判断其极值情况;②作出y =f (x )与y =x 图象,根据两图象交点个数即可判断y =f (x )-x 的零点个数;③问题转化为f x 是否存在过原点且斜率为正的切线;④根据y =f (x )图象求出x 1,x 2范围,再结合f (x 1)=f (x 2)和f (x )的单调性,将双变量化为单变量,构造函数即可进行证明.【详解】f x =x -2x2,当0<x <2时,f x <0;当x >2时,f x >0.∴f x 在0,2 上单调递减,在2,+∞ 上单调递增,x =2是f x 的极小值点,故①错误;根据函数f x 的单调性及极值点,作出函数f x 的大致图象,如图所示,再作出直线y =x ,易知直线y =x 与f x 的图象有且只有1个交点,即函数y =f x -x 有且只有1个零点,故②正确.根据f x 的图象可知,若要存在正实数k 使得f x >kx 恒成立,则f x 要存在过原点且斜率为正的切线,假设f x 存在过原点且斜率为正的切线,切点为x 0,2x 0+ln x 0 ,则切线斜率为x 0-2x 20,则切线方程为y -2x 0-ln x 0=x 0-2x 20x -x 0 ,∵切线过原点,故-2x 0-ln x 0=-x 0-2x 0,整理得x 0-x 0ln x 0-4=0,令F x =x -x ln x -4,则F x =-ln x ,∴在0,1 上,F x >0,F x 单调递增,在1,+∞ 上,F x <0,F x 单调递减,∴F x ≤F 1 <0,∴F x <0恒成立,即方程x 0-x 0ln x 0-4=0无解,即f x 不存在过原点且斜率为正的切线,故不存在正实数k 使得f x >kx 恒成立,故③错误;由x 1>x 2,f x 1 =f x 2 可知x 1>2,0<x 2<2,要证x 1+x 2>4,即证x 1>4-x 2,且x 1>4-x 2>2,f x 在2,+∞ 上单调递增,即证f x 1 >f 4-x 2 ,又f x 1 =f x 2 ,∴证f x 2 >f 4-x 2 ,即证f x >f 4-x ,x ∈0,2 .令h x =f x -f 4-x =ln x -ln 4-x +2x -24-x,x ∈0,2 ,则hx =-8(x -2)2x 2(4-x )2<0,∴h x 在0,2 上单调递减,∴h x >h 2 =0,∴x 1+x 2>4,故④正确.故答案为:②④.【点睛】本题②③均考察数形结合研究函数问题,需利用导数研究函数的性质,作出函数的简图,根据图象将问题进行简化;本题④需将双变量转化为单变量,需要熟练转化的方法.例5.(2022·上海·上外附中高三阶段练习)已知函数f x =x -ln x ,x >0x +4e,x ≤0,若存在x 1≤0,x 2>0,使得f x 1 =f x 2 ,则x 1f x 2 的最小值为__________.【答案】-4e 2【分析】根据分段函数解析式画出函数f (x )的简图,设f (x 1)=f (x 2)=t ,根据图像确定t 的取值范围,将x 1f x 2 化成只含有一个变量t 的二次函数,由定区间内二次函数的性质,从而确定x 1f x 2 的最小值.【详解】当x >0时,f (x )=x -ln x ,f (x )=1-1x =x -1x,当x >1时,f (x )>0,当0<x <1时,f (x )<0,即当x =1时,f (x )取得极小值为f (1)=1.当x ≤0时,f (x )=x +4e 为增函数,且f (x )≤4e ,函数f (x )的图像如图:设f (x 1)=f (x 2)=t ,由题可知1≤t ≤4e ,由f (x 1)=t 得x 1+4e =t ,则x 1=t -4e ,则x 1f (x 2)=t (t -4e )=(t -2e )2-4e 2,∵1≤t ≤4e ,所以当t =2e 时,x 1f x 2 取得最小值为-4e 2.故答案为:-4e 2.【点睛】本题重点是根据函数解析式做出函数图像,然后根据换元的思想,把双变量问题转化为单变量问题,然后就可以轻松求解.【题型二】双变量不等式中点型例6.(2021秋•山西期末)已知函数f (x )=2x +(1-2a )ln x +a x.(1)讨论f (x )的单调性;(2)如果方程f (x )=m 有两个不相等的解x 1,x 2,且x 1<x 2,证明:f x 1+x 22>0.【解答】解:(1)f ′(x )=2+1-2a x -ax 2=2x 2+(1-2a )x -a x 2=(x -a )(2x +1)x 2(x >0),①当a ≤0时,x ∈(0,+∞),f ′(x )>0,f (x )单调递增;②当a >0时,x ∈(0,a ),f ′(x )<0,f (x )单调递减;x ∈(a ,+∞),f ′(x )>0,f (x )单调递增,综上,当a ≤0时,f (x )在(0,+∞)单调递增;当a >0时,f (x )在(0,a )单调递减,在(a ,+∞)单调递增.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)单调递增,f (x )=m 至多一个根,不符合题意;当a >0时,f (x )在(0,a )单调递减,在(a ,+∞)单调递增,则f ′(a )=0.不妨设0<x 1<a <x 2,要证f ′x 1+x 22>0,即证x 1+x 22>a ,即证x 2+x 1>2,即证x 2>2a -x 1.因为f (x )在(a ,+∞)单调递增,即证f (x 2)>f (2a -x 1),因为f (x 2)=f (x 1),所以即证f (x 1)>f (2a -x 1),即证f (a +x )<f (a -x ),令g (x )=f (a +x )-f (a -x )=2(a +x )+(1-2a )ln (a +x )+a a +x-2(a -x )+(1-2a )ln (a -x )+a a -x=4x +(1-2a )ln (a +x )-(1-2a )ln (a -x )+a a +x -aa -x.g ′(x )=4+1-2a a +x +1-2a a -x -a (a +x )2-a(a -x )2=4+2a (1-2a )a 2-x 2-2a (a 2+x 2)(a +x )2(a -x )2=4x 2(x 2-a 2-a )(a +x )2(a -x )2.当x ∈(0,a ),时,g ′(x )<0,g (x )单调递减,又g (0)=f (a +0)-f (a -0)=0,所以x ∈(0,a ),时,g (x )<g (0)=0,即f (a +x )<f (a -x ),即f (x )>f (2a -x ),又x 1∈(0,a ),所以f (x 1)>f (2a -x 1),所以f x 1+x 22>0.例7.(2021•沙坪坝区校级开学)已知函数f (x )=x 2-2ax +2ln x (a >0).(1)讨论函数f (x )的单调性;(2)设g (x )=ln x -bx -cx 2,若函数f (x )的两个极值点x 1,x 2(x 1<x 2)恰为函数g (x )的两个零点,且y =(x 1-x 2)g ′x 1+x 22的取值范围是[ln3-1,+∞),求实数a 的取值范围.【解答】解:(1)函数f (x )=x 2-2ax +2ln x (a >0)的定义域为(0,+∞),又f(x )=2x -2a +2x =2⋅x 2-ax +1x(a >0,x >0),对于方程x 2-ax +1=0,△=a 2-4(a >0),①若△=a 2-4≤0,即0<a ≤2时,则f (x )≥0恒成立,所以f (x )在(0,+∞)上单调递增;②若△=a 2-4>0,即a >2时,令f(x )=0,解得x =a -a 2-42,或x =a +a 2-42,当x ∈0,a -a 2-42 和a +a 2-42,+∞时,f (x )>0,当x ∈a -a 2-42,a +a 2-42时,f (x )<0,所以f (x )在0,a -a 2-42和a +a 2-42,+∞上单调递增,在a -a 2-42,a +a 2-42上单调递减.综上所述,当0<a ≤2时,f (x )的单调递增区间为(0,+∞),无单调递减区间;当a >2时,f (x )的单调递增区间为0,a -a 2-42 和a +a 2-42,+∞,单调递减区间为a -a 2-42,a +a 2-42;(2)由(1)可知,当a >2时,x 1+x 2=a ,x 1x 2=1(x 1<x 2),又g (x )=1x -b -2cx (x >0),故g x 1+x 22 =2x 1+x 2-b -c (x 1+x 2),由g (x 1)=g (x 2)=0,可得ln x 1-bx 1-cx 12=0ln x 2-bx 2-cx 22=0 ,两式相减,可得lnx 1x 2=b (x 1-x 2)+c (x 21-x 22),所以y =(x 1-x 2)g x 1+x 22 =2(x 1-x 2)x 1+x 2-b (x 1-x 2)-c (x 21-x 22)=2(x 1-x 2)x 1+x 2-ln x 1x 2=2x 1x 2-1x 1x 2+1-ln x1x 2,令x 1x 2=t ∈(0,1),所以y =2(t -1)t +1-ln t ,则y=-(t -1)2t (t +1)2<0,所以y =2(t -1)t +1-ln t 在(0,1)上单调递减,由y 的取值范围为[ln3-1,+∞),可得t 的取值范围为0,13,所以a 2=(x 1+x 2)2=x 1x 2+x 2x 1+2=t +1t+2∈163,+∞ ,又因为a >2,故实数a 的取值范围是433,+∞.例8.(2021秋•巴南区校级月考)已知函数f (x )=ln x -ax (a 为常数).(1)当a >1时,求函数f (x )的单调区间;(2)当a ≥322时,设函数g (x )=2f (x )+x 2的两个极值点x 1,x 2(x 1<x 2)满足t =ln x 1-ln x 2x 1-x 2,求y =(x 1-x 2)2x 1+x 2-t+23的最小值.【解答】解:(1)依题意,得f (x )=1x -a =1-axx (x >0),∵a >1,由1-ax >0,解得x <1a ,即当0<x <1a时,f (x )>0,f (x )单调递增,由1-ax <0,解得x >1a ,即当x >1a时,f (x )<0,f (x )单调递减,∴当a >1时,f (x )的单调递增区间为0,1a ,f (x )的单调递减区间为1a ,+∞ .(2)∵g (x )=2f (x )+x 2=2ln x -2ax +x 2,∴g(x )=2(x 2-ax +1)x=0的两根为x 1,x 2,即方程x 2-ax +1=0的两根为x 1,x 2,∵a ≥322,∴△=a 2-4>0,∴x 1+x 2=a ,x 1x 2=1,∵t =ln x 1-ln x 2x 1-x 2,∴y =(x 1-x 2)2x 1+x 2-ln x 1-ln x 2x 1-x 2 +23=2(x 1-x 2)x 1+x 2-ln x 1x 2+23=2⋅x 1x 2-1x 1x 2+1-ln x 1x 2+23,令m =x 1x 2(0<m <1),由韦达定理,得(x 1+x 2)2=x 12+2x 1x 2+x 22=a 2,∴x 12+2x 1x 2+x 22x 1x 2=m +1m+2=a 2,∵a ≥322,∴m +1m =a 2-2≥52,∴m ≤12或m ≥2,∴0<m ≤12,令h (m )=2⋅m -1m +1-ln m +23,∴h(m )=-(m -1)2m (m +1)2<0,∴h (m )在0<m ≤12上递减,∴y min =h (m )min =h 12 =ln2,【题型三】双变量不等式极值和差商积问题例9.(2022·全国·高三专题练习)若直线y =ax 与曲线C :y =ln x 相交于不同的两点A (x 1,y 1),B (x 1,y 1),曲线C :y =ln x 在点A ,B 处的切线相交于点P (x 0,y 0),则( )A.a ≤1eB.ex 1x 2=x 0C.k AP +k BP >2aD.k AP +k BP ≤2a【答案】C【分析】A 选项根据图像可以得出结论;B 选项:设A ,B ,写出A ,B 点处的切线程联立并化简得x 2-x 1 ax 1x 2-x =0,从而得出结论;C 选项:要证明k AP +k BP >2a 即1x 1+1x 2>2ln x 2-ln x 1x 2-x 1,化简得x 2x 12-2×x 2x 1⋅ln x 2x 1 -1>0,设t =x2x 1>1,可得t 2-2×t ⋅ln t -1>0令h (t )=t 2-2×t ⋅ln t -1,通过求导判断h (t )的单调性,进一步得到h (t )>0,从而得证;D 选项,根据C 选项的结论得出结论.【详解】A 选项:当a ≤0时,直线y =ax 与曲线C :y =ln x 只有一个交点,故A 错误;B 选项:设A (x 1,y 1),B =(x 2,y 2),且1<x 1<x 2,可得ax 1=ln x 1,ax 2=ln x 2, y =ln x 在A ,B 点处的切线程为y -ln x 1=1x 1(x -x 1)①,y -ln x 2=1x 2(x -x 2)②,①-②得ln x 2-ln x 1=x x 1-x x 2,将ax 1=ln x 1,ax 2=ln x 2代入得ax 2-ax 1=x x 1-x x 2化简x 2-x 1 ax 1x 2-x =0,∵x 2≠x 1∴ax 1x 2=x 故ax 1x 2=x 0,故B 错误;C 选项:要证明k AP +k BP >2a 即1x 1+1x 2>2ln x 2-ln x 1x 2-x 1, 化简得x 2x 1 2-2×x 2x 1⋅ln x2x 1 -1>0,设t =x 2x 1>1,可得t 2-2t ⋅ln t -1>0令h (t )=t 2-2t ⋅ln t -1h (t)=2t-2ln t-2i(t)=h (t)=2t-2ln t-2 i (t)=2-2t=2t-1t,当t>1,i (t)=2t-1t>0,i(t)在t>1上单调递增,所以i(t)>i(1)=0,所以h (t)>0,h(t)在t>1上单调递增,所以h(t)>h(1)=0,所以x2x12-2×x2x1⋅lnx2x1-1>0,即k AP+k BP>2a,故C正确;D选项,根据C选项可得D选项错误.故选:C.【点睛】导数中双变量问题,此时处理的方式是通过变形,把x2x1看作一个未知数,从而把两个自变量转化为一个未知量,这是一种比较常见的解题方法.例10.(2022·云南·昆明一中高三阶段练习)已知函数f(x)=ln x-12ax-1.(1)讨论f(x)的单调性;(2)设函数g(x)=xf(x),若g(x)有两个极值点x1,x2,证明:x1x2>e2.【答案】(1)见详解(2)见详解【分析】(1)求出导数后,将参数分为a≤0和a>0两种情况讨论导数取值即可.(2)求出g(x)导数,根据函数极值点就是导数零点列式将参数消去,同时将证明问题进行转换,最后利用抓商构造x1x2=t型函数作最终证明.(1)由f(x)=ln x-12ax-1可知f (x)=1x-12a=2-ax2x,其中x∈(0,+∞)当a≤0时,2-ax>0在(0,+∞)恒成立,即f (x)>0,故当a≤0时,f(x)在(0,+∞)单调递增;当a>0时,令2-ax>0,得x<2a,即在0,2a,f (x)>0;在2a,+∞,f (x)<0故当a>0时,f(x)在0,2 a在单调递增,f(x)在2a,+∞在单调递减.(2)由g(x)=x ln x-12ax2-x可知g (x)=ln x-ax,其中x∈(0,+∞).若g(x)有两个极值点x1,x2,则g (x1)=ln x1-ax1=0,g (x2)=ln x2-ax2=0故ln x1+ln x2=a(x1+x2);ln x1-ln x2=a(x1-x2),其中a=ln x1-ln x2 (x1-x2)欲证x1x2>e2,只需证ln x1+ln x2>2,即证ln x1x2(x1+x2)x1-x2>2 ①不妨假设0<x 1<x 2,则0<x 1x 2<1,令x1x 2=t ,代入①可得ln t (t +1)t -1>2化简,最终只需证明ln t -2(t -1)t +1<0即可,令h (t )=ln t -2(t -1)t +1其中t ∈(0,1)得h(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0所以h (t )在(0,1)单调递增所以h (t )<h (1)=0,故ln t -2(t -1)t +1<0,因此x 1x 2>e 2证毕.【点睛】方法点睛(1)联立消参:利用方程g (x 1)=g (x 2)消除解析式中的参数a (2)抓商构元:令x 1x 2=t ,消除变量x 1,x 2,构造关于t 得函数h (t )(3)用导求解:利用导数求解函数h (t )得最大值或者最小值,从而可证得结论.【题型四】双变量不等式主元法例11.(2022·黑龙江·牡丹江市第二高级中学高三阶段练习)若实数x ,y 满足4ln x +2ln 2y ≥x 2+8y -4,则( )A.xy =24B.x +y =2C.x +2y =1+2D.x 2y =1【答案】A【分析】根据题意将原不等式化简为ln 12x 2⋅4y ≥12x 2+4y -2,令a =12x 2,b =4y a >0,b >0 ,可知原不等式等价于ln a -a +1 +ln b -b +1 ≥0,再令g x =ln x -x +1,则原不等式等价于g a +g b ≥0;再利用导数求出函数g x 单调性,进而可得g x ≤0,由此可知只有当a =b =1时,即g a =g b =0时才满足g a +g b ≥0,据此即可求出x ,y 的值,进而求出结果.【详解】∵4ln x +2ln 2y ≥x 2+8y -4x >0,y >0 ∴2ln (x 2)+ln 2y ≥x 2+8y -4 ,即ln x 2 +ln 2y ≥12x 2+4y -2 ∴ln 12x 2 ⋅4y ≥12x 2+4y -2,设a =12x 2,b =4y a >0,b >0 ,则有ln ab ≥a +b -2,即ln a +ln b ≥a +b -2,∴ln a -a +1 +ln b -b +1 ≥0,令g x =ln x -x +1,则g x =1x -1=1-x x,∴当x ∈0,1 时,g x >0,g x 单调递增;当x ∈(1,+∞)时,g x <0,g x 单调递减;∴g x max =g 1 =0,即g x ≤0,要使ln a -a +1 +ln b -b +1 ≥0成立等价于g a +g b ≥0成立,只有当a =b =1时,即g a =g b =0时才满足,∴a =12x 2=1,b =4y =1∴x =2,y =14,∴xy =24.故选:A .【点睛】关键点点睛:本题解答的关键是对原不等式的变形,将其变形成ln 12x 2 ⋅4y ≥12x 2+4y -2,再进行换元、构造辅助函数,借助函数的最值和唯一性求解.例12.(2023·全国·高三专题练习)若存在两个正实数x ,y ,使得等式2x +a (y -2ex )(ln y -ln x )=0成立,则实数a 的取值范围为( )A.-12,1eB.0,2eC.-∞,0 ∪2e ,+∞D.-∞,-12 ∪1e,+∞【答案】C【分析】根据函数与方程的关系将方程进行转化,利用换元法转化为方程有解,构造函数求函数的导数,利用函数极值和单调性的关系进行求解即可.【详解】由2x +a (y -2ex )(ln y -ln x )=0得2x +a (y -2ex )ln yx=0,即2+a y x -2e ln yx =0,即设t =y x,则t >0,则条件等价为2+a (t -2e )ln t =0,即(t -2e )ln t =-2a有解,设g (t )=(t -2e )ln t ,g ′(t )=ln t +1-2et 为增函数,∵g ′(e )=ln e +1-2ee =1+1-2=0,∴当t >e 时,g ′(t )>0,当0<t <e 时,g ′(t )<0,即当t =e 时,函数g (t )取得极小值,为g (e )=(e -2e )ln e =-e ,即g (t )≥g (e )=-e ,若(t -2e )ln t =-2a有解,则-2a ≥-e ,即2a≤e ,则a <0或a ≥2e ,故选:C .例13.(2022·全国·高三专题练习)已知大于1的正数a ,b 满足ln 2b e2a <b a n ,则正整数n 的最大值为( )A.7 B.8 C.9 D.11【答案】C【解析】ln 2b e 2a <b n a n 等价于ln 2b b n <e 2a a n ,令f x =ln 2x x n ,g x =e 2xxn ,分别求f x ,g x 的导数,判断函数的单调性,可求得f x 有最大值f e 2n =2n 2e 2,g x 有最小值g n 2 =e n n 2n ,根据题意,即求f x max ≤g x min ,代入为2n 2e2≤e n n 2 n ,等价于n +2n -2≥ln n 2,令φx =x +2x -2-ln x2,即求φx >0的最大的正整数.对φx 求导求单调性,可知φx 单调递减,代入数值计算即可求出结果.【详解】解:由题干条件可知:ln 2b e 2a <b n a n 等价于ln 2b b n <e 2a an ,令f x =ln 2xx n ,x >1 ,则f 'x =x n -1⋅ln x (2-n ln x )x 2n =ln x (2-n ln x )x n +1f 'x =0,x =e 2n ,当f 'x >0时,x ∈1,e 2n ,当f 'x <0时,x ∈e 2n ,+∞所以f x 在1,e 2n 上单调递增,在e 2n ,+∞ 上单调递减,则f x 有最大值f e 2n =2n 2e 2.令g x =e 2xxn ,x >1 ,则g 'x =e 2x2x -nx 2n,当n 2≤1时,此题无解,所以n2>1,则g 'x =0,x =n2,当g 'x >0,x >n 2,当g 'x <0,1<x <n 2,所以g x 在1,n 2 上单调递减,在n 2,+∞ 上单调递增,则g x 有最小值g n2 =e nn 2n .若ln 2b b n <e 2a a n 成立,只需f e 2n ≤g n2 ,即2n 2e 2≤e n n 2n,即e n +2≥n 2 n -2,两边取对数可得:n +2≥(n -2)ln n 2.n =2时,等式成立,当n ≥3时,有n +2n -2≥ln n2,令φx =x +2x -2-ln x2,本题即求φx >0的最大的正整数.φ'x =-4(x -2)2-1x <0恒成立,则φx 在3,+∞ 上单调递减,φ8 =53-ln4>0,φ9 =117-ln 92≈1.5714-1.51>0,φ10 =32-ln5<0,所以φx >0的最大正整数为9.故选:C .【点睛】本题考查构造函数法解决恒成立问题.方法点睛:双变元的恒成立问题,经常采用构造成两个函数,转化为f x 1 <g x 2 ,若f x 1 max <g x 2 min ,则复合恒成立的情况.例14.(2022·四川省成都市新都一中高三阶段练习(理))已知函数f (x )=ln xx,g (x )=xe -x ,若存在x 1∈(0,+∞),x 2∈R ,使得f x 1 =g x 2 =k 成立,则下列命题正确的有___________.①当k >0时,x 1+x 2>1 ②当k >0时,2<x 1+e x 2<2e③当k <0时,x 1+x 2<1 ④当k <0时,x 2x 1⋅e k 的最小值为-1e 【答案】①③④【分析】根据f (x )可求得f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,则可画出f (x )的图像;利用同构可知f (x 1)=g (x 2)=k 等价于ln x 1x 1=ln e x2ex 2=k ,结合图像则可判断① ②③;当k <0时,可得x 1=e x 2,x 1∈(0,1),构造函数可判断④.【详解】解:①f (x )=1-ln xx 2(x >0),令f (x )>0得0<x <e ,f (x )在(0,e )上递增,且值域-∞,1e;令f (x )<0得x >e ,f (x )在(e ,+∞)上递减,且值域0,1e;作图如下:当k >0时,由f (1)=0知:若∃x 1∈(0,+∞),使得f (x 1)=k ,则x 1>1,当k <0时,若∃x 1∈(0,+∞),使得f (x 1)=k ,则0<x 1<1,由g (x )=xe -x 得:g (x )=1-xe x,令g (x )>0得x <1,g (x )在(-∞,1)上递增,且值域-∞,1e;令g (x )<0得x >1,g (x )在(1,+∞)上递减,且值域0,1e;作出g (x )图象如下:当k >0时,由g (0)=0知:若∃x 2∈R 使得g (x 2)=k ,则x 2>0,当k <0时, 若∃x 2∈R 使得g (x 2)=k ,则x 2<0,∴当k >0时,x 1+x 2>1.故①正确.②当k >0时,由f x 1 =g x 2 =k 得:ln x 1x 1=x 2e -x 2,即ln x 1x 1=ln e x 2ex 2,∴x 1,e x 2可看成ln xx=k 的两零点,作出y =ln xx的图象如下:由图象易知:x 1或e x 2均可趋向于+∞,故②错误;③当k <0时,由①的讨论知:x 2<0,0<x 1<1,∴x 1+x 2<1.故③正确;④当k <0时,此时x 1∈(0,1),由②知:x 1=e x 2,∴x 2=ln x 1,则x 2x 1=ln x 1x 1=k ,∴要求x 2x 1⋅e k的最小值即求ke k 的最小值即可,令h (k )=ke k (k <0),则h (k )=e k +ke k =(1+k )e k ,令e k +ke k =0,解得:k =-1,易知k =-1为极小值点,故h (k )的最小值为h (-1)=-1e .故④正确.故答案为:①③④.【点睛】关键点点睛:同构找到x 1=e x 2,通过f (x )与g (x )的图象及性质判断求解,在处理④时,要注意消元思想的运用.【题型五】同构函数法与双变量不等式例15.(2022·福建省福州格致中学模拟预测)已知f (x )=ln x +x -a ,g (x )=x +e x +a ,f x 1 =g x 2 ,若x 1x 2≥1,则a 的取值范围为( )A.[-1,+∞) B.(-∞,e ] C.(-∞,1] D.[e ,+∞)【答案】A【分析】利用同构构造h x =x +e x ,得到h ln x 1 =h x 2+a ,结合h x =x +e x 的单调性,得到a =ln x 1-x 2≥ln x 2-x 2,构造φx =ln x -x ,求出其最大值,得到a 的取值范围.【详解】由题意得:x 1>0,又因为x 1x 2≥1,所以x 2>0,ln x 1+x 1-a =x 2+e x 2+a ,即ln x 1+x 1=x 2+a +e x 2+a ,所以ln x 1+e ln x 1=x 2+a +e x 2+a ,设h x =x +e x ,则h ln x 1 =h x 2+a ,h x =1+e x >0,所以h x =x +e x 单调递增,所以ln x 1=x 2+a ,因为x 1x 2≥1,所以a =ln x 1-x 2≥ln x 2-x 2,令φx =ln x -x ,x >0,则φ x =1x -1=1-xx,当x ∈0,1 时,φ x >0,当x ∈1,+∞ 时,φ x <0,故φx =ln x -x 在x =1处取得极大值,也是最大值,φx ≤φ1 =ln1-1=-1,故a ∈[-1,+∞).故选:A【点睛】同构构造函数,求解参数取值范围问题,通常适用于方程或不等式同时出现了指数函数与对数函数,此时利用同构构造函数,往往会是解题的突破口.例16.(2022·江苏南京·高三开学考试)若函数f x =e x -1x ,g x =x1+ln x,存在x 1、x 2使得f x 1 =g x 2 ,则下列说法不正确的是( )A.若x 1>x 2,则x 2<1B.若x 1<x 2,则x 1<1C.存在x 1=x 2D.存在x 0,使得当x 1>x 0,x 2>x 0时,x 2-x 1 的值随着x 1、x 2的增大而增大【答案】B【分析】利用导数分析函数f x 的单调性,证明出x ≥ln x +1(当且仅当x =1时,等号成立),由已知可得f x 1 =f 1+ln x 2 ,分1+ln x 2<0、0<1+ln x 2<1、1+ln x 2=1、1+ln x 2>1四种情况讨论,讨论x 1、x 2的大小,可判断ABC 选项的正误;取x 0=1,可得出x 2-x 1=x 2-ln x 2-1>0,利用导数分析函数φx =x -ln x -1在1,+∞ 上的单调性,可判断D 选项.【详解】函数f x 的定义域为x x ≠0 ,fx =e x -1x -1x 2,当x <0时,f x <0,此时函数f x 单调递减,且f x =e x -1x<0;当0<x <1时,fx <0,此时函数f x 单调递减,且f x =e x -1x >0;当x >1时,fx >0,此时函数f x 单调递增,且f x =e x -1x>0.设f x 1 =g x 2 =k ,g x =x 1+ln x =e 1+ln x -11+ln x=f 1+ln x ,构造函数h x =x-ln x-1,其中x>0,h x =1-1x=x-1x.当0<x<1时,h x <0,此时函数h x 单调递减;当x>1时,h x >0,此时函数h x 单调递增.所以,h x min=h1 =0,即x≥ln x+1,当且仅当x=1时,等号成立.因为f x1=g x2=f1+ln x2.①若1+ln x2<0,即0<x2<1e,则f x1=f1+ln x2<0,此时x1<0,因为函数f x 在-∞,0上单调递减,则x1=1+ln x2<x2;②若0<1+ln x2<1,即1e<x2<1,由于函数f x 在0,1上递减,在1,+∞上递增,则存在x1>1,使得f x1=f1+ln x2,此时1+ln x2<x2<1<x1,存在x1∈0,1,使得f x1=f1+ln x2,此时x1=1+ln x2<x2<1;③若1+ln x2=1,即x2=1,则f x =f1 只有唯一解,此时x1=1,即x1=x2=1;④若1+ln x2>1,即x2>1,因为由于函数f x 在0,1上递减,在1,+∞上递增,则存在x1∈0,1使得f x1=f1+ln x2,此时x1<1<1+ln x2<x2,存在x1>1使得f x1=f1+ln x2,此时x1=1+ln x2<x2.故A对,B错,C对;取x0=1,因为函数f x 在1,+∞上单调递增,且x1>1,x2>1,则1+ln x2>1,由f x1=f1+ln x2可得x1=1+ln x2<x2,则x2-x1=x2-ln x2-1>0,因为函数h x 在1,+∞上单调递增,且x2>1,故h x2随着x2的增大而增大,D对.故选:B.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x-g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.例17.(2022·黑龙江·牡丹江市第二高级中学高三阶段练习)若实数x,y满足4ln x+2ln2y≥x2+8y -4,则( )A.xy=24B.x+y=2C.x+2y=1+2D.x2y=1【答案】A【分析】根据题意将原不等式化简为ln12x2⋅4y≥12x2+4y-2,令a=12x2,b=4y a >0,b >0 ,可知原不等式等价于ln a -a +1 +ln b -b +1 ≥0,再令g x =ln x -x +1,则原不等式等价于g a +g b ≥0;再利用导数求出函数g x 单调性,进而可得g x ≤0,由此可知只有当a =b =1时,即g a =g b =0时才满足g a +g b ≥0,据此即可求出x ,y 的值,进而求出结果.【详解】∵4ln x +2ln 2y ≥x 2+8y -4x >0,y >0 ∴2ln (x 2)+ln 2y ≥x 2+8y -4 ,即ln x 2 +ln 2y ≥12x 2+4y -2 ∴ln 12x 2 ⋅4y ≥12x 2+4y -2,设a =12x 2,b =4y a >0,b >0 ,则有ln ab ≥a +b -2,即ln a +ln b ≥a +b -2,∴ln a -a +1 +ln b -b +1 ≥0,令g x =ln x -x +1,则g x =1x -1=1-x x,∴当x ∈0,1 时,g x >0,g x 单调递增;当x ∈(1,+∞)时,g x <0,g x 单调递减;∴g x max =g 1 =0,即g x ≤0,要使ln a -a +1 +ln b -b +1 ≥0成立等价于g a +g b ≥0成立,只有当a =b =1时,即g a =g b =0时才满足,∴a =12x 2=1,b =4y =1∴x =2,y =14,∴xy =24.故选:A .【点睛】关键点点睛:本题解答的关键是对原不等式的变形,将其变形成ln 12x 2 ⋅4y ≥12x 2+4y -2,再进行换元、构造辅助函数,借助函数的最值和唯一性求解.例18.(2022·全国·高三专题练习)设实数λ>0,若对任意x ∈0,+∞ ,不等式e xλ-ln λx ≥0恒成立,则λ的取值范围是( )A.0<λ≤1eB.0<λ≤e -1C.0<λ≤eD.0<λ≤e 2【答案】C【分析】令f x =e x λ-ln λx ,根据二阶导数的符号判断f (x )的单调性,由零点存在性定理易知∃x 0∈(0,+∞)使f (x 0)=0,此时λ=x 0e x 0,进而讨论f (x )的单调性可知f (x )≥f (x 0),要使题设不等式恒成立,即f (x 0)=e x 0λ-ln λ-ln x 0≥0成立,构造g (x 0)=1x 0-2ln x 0-x 0利用导数研究其单调性确定g (x 0)≥0的区间,进而求λ的范围.【详解】令f x =e xλ-ln λx ,只需要x ∈0,+∞ 上f (x )≥0恒成立,∵f (x )=e x λ-1x 且λ>0,∴f (x )=e x λ+1x2>0,即f (x )在x ∈0,+∞ 上单调递增,∵lim x →0+f (x )=-∞,lim x →+∞f (x )=+∞,∴∃x 0∈(0,+∞),使f (x 0)=0,即λ=x 0e x 0,∴x ∈(0,x 0)时,f (x )<0,f (x )单调递减;x ∈(x 0,+∞)时,f (x )>0,f (x )单调递增;故只需f x ≥f x 0 =e x 0λ-ln λx 0 =e x 0λ-ln λ-ln x 0≥0,令g (x 0)=1x 0-2ln x 0-x 0,∴g (x 0)=-1x 0+12<0,故g (x 0)在x 0∈(0,+∞)上递减,而g (1)=0,∴x 0∈(0,1]时,g (x 0)≥0恒成立,可知λ=x 0e x 0∈(0,e ].故选:C【点睛】关键点点睛:利用导数研究f (x )的单调性并确定极小值点范围,根据f (x 0)=0有λ=x 0e x 0,结合f (x )≥f (x 0)构造新函数,求f (x 0)≥0成立时x 0的区间,进而求参数范围.例19.(2022·全国·高三专题练习)若e x 1=ln x 2,令t =x 2-x 1,则t 的最小值属于( )A.1,32B.32,2C.2,52D.52,3【答案】C【分析】设a =e x 1=ln x 2,把参数t 表示成a 的函数即t =x 2-x 1=e a -ln a ,构造函数,通过导数研究函数最小值及最小值的取值范围.【详解】设a =e x 1=ln x 2,则x 1=ln a ,x 2=e a ,t =x 2-x 1=e a -ln a ,令h (x )=e x -ln x ,h (x )=e x -1x,易知h (x )单增,且h 12=e -2<0,h (1)=e -1>0,则存在x 0∈12,1 ,使h (x 0)=e x 0-1x 0=0,即x ∈(0,x 0),h (x )<0,h (x )单减;x ∈(x 0,+∞),h (x )>0,h (x )单增;又h (x 0)=e x 0-1x 0=0⇒e x 0=1x 0,ln x 0=-x 0,则h (x )≥h (x 0)=e x 0-ln x 0=x 0+1x 0,x 0∈12,1 易知h (x 0)=x 0+1x 0在x 0∈12,1 单减,即h (1)=2<h (x 0)<h 12 =52故选:C【点睛】方法点睛:把双变量转化为单变量,构造新函数,通过导数研究最值情况及参数取值范围.例20.(2022·全国·高三专题练习)若对于任意的0<x 1<x 2<a ,都有x 2ln x 1-x 1ln x 2x 1-x 2>2,则a 的最大值为( )A.1B.eC.1eD.12【答案】C【分析】问题转化为ln x1+2x1<ln x2+2x2,构造函数f(x)=ln x+2x,易得f(x)在定义域(0,a)上单调递增,所以f (x)≥0在(0,a)上恒成立,进而可求出a的最大值.【详解】解:∵0<x1<x2<a,∴x1-x2<0,∴x2ln x1-x1ln x2<2(x1-x2),∴ln x1x1-ln x2x2<2x2-2x1,∴ln x1+2x1<ln x2+2x2,∴函数f(x)=ln x+2x在定义域(0,a)上单调递增,∴f′(x)=1-(ln x+2)x2=-ln x-1x2≥0在(0,a)上恒成立,由-ln x-1≥0,解得0<x≤1e,故a的最大值是1e.故选:C.【点睛】关键点点睛:本题的解题关键是将原式变形为ln x1+2x1<ln x2+2x2,从而构造函数f(x)=ln x+2x且f(x)在定义域(0,a)上单调递增.。

导数中的双变量问题

导数中的双变量问题

1、设函数 f(x) (2 a)lnx __ (ax(1)讨论函数f (x)在定义域内的单调性;⑵ 当 a ( 3, 2)时,任意 X i ,X 2 [1,3] , (m In 3)a 2l n3 | f(xj f(x 2)| 恒成立,求实数 m 的取值范围.2、已知二次函数g(x)对xR 都满足 g(x 1) g(1 x) x 2 2x 1 且 g(1)1,设函数19f (x) g(x ) ml nx ( mR , x 0).(I)求g(x)的表达式;(H)若 x R ,使f(x) 0成立,求实数m 的取值范围;(皿)设1 m e ,H(x) f(x) (m 1)x ,求证:对于 x b x ? [1,m],恒有 | H (xj H(X 2)| 1 . 3、 设x 3是函数f x x 2 ax b e 3 x , x R 的一个极值点. (1) 求a 与b 的关系式(用a 表示b ),并求f x 的单调区间;25(2) 设ao, g x a— e,若存在1, 20,4,使得f1g 21成立,求a的取值范围.4、 f (x) (x 2 ax b)e x (x R). (1)若a 2,b 2,求函数f(x)的极值;(2) 若x 1是函数f(x)的一个极值点,试求出a 关于b 的关系式(用a表示b ), 并确定f(x)的单调区间;(3) 在(2)的条件下,设a 0,函数g(x) (a 2 14)e x 4 .若存在1, 2 [0,4]使得 | f( 1)f( 2)l 1成立,求a 的取值范围.5、已知函数f x ax 3 bx 2 3x a,b R 在点1, f 1处的切线方程为y 2 0 . ⑴求函数f x 的解析式;导数 0) •⑵若对于区间2,2上任意两个自变量的值x1,x2都有f x1c,求实数c的最小值;⑶若过点M 2,m m 2可作曲线y f x的三条切线,求实数m的取值范围.16、设函数f(x) x aln x(a R).x⑴讨论函数f(x)的单调性;⑵若f(x)有两个极值点X i,X2,记过点A(X i, f(G), B(X2, f(X2))的直线斜率为k,问:是否存在a,使得k 2 a ?若存在,求出a的值;若不存在,请说明理由.7、已知函数f(x) ln x — ax2(a 1)x(a R, a 0).2⑴求函数f(x)的单调增区间;⑵记函数F(x)的图象为曲线C ,设点A(x1,y1),B(x2,y2)是曲线C上两个不同点,如果曲线C上存在点M(x0,y0),使得:①x0X2;②曲线C在点M处的切线平行于直2线AB,贝S称函数F(x)存在“中值相依切线”.试问:函数f(x)是否存在中值相依切线,请说明理由.&已知函数 f (x) (a 1)lnx ax .⑴试讨论f(x)在定义域内的单调性;⑵当a V—1时,证明:N,X2 (0,1),⑴:1)1.求实数m的取值范围.I X1 x2 |9、已知函数f(x) (a 1)lnx ax2 1.⑴讨论函数f(x)的单调性;⑵设a 1,如果对任意X1,X2 (0, ) , |f(xj f(x2) |> 4|X1 X2 |,求a的取值范围.1 210、已知函数f(x)=§x —ax+(a—1) lnx , a 1 .(1)讨论函数f(x)的单调性;11、 已知函数 f(x) x 1 aln x(a 0). (1) 确定函数y f(x)的单调性; (2)若对任意x 1,x 2 0,1,且x 1 x 2,都有| f (x 1) f(x 2)| 4|— — |,求实数a 的取 X ] x 2值范围。

双变量任意,存在性导数问题

双变量任意,存在性导数问题

值域法破解双变量压轴题的四种情形1基本原理.第1类.“任意=存在”型2211,D x D x ∈∃∈∀,使得)()(21x g x f =,等价于函数)(x f 在1D 上上的值域A 是函数)(x g 在2D 上的值域B 的子集,即B A ⊆.其等价转化的基本思想:函数)(x f 的任意一个函数值都与函数)(x g 的某一个函数值相等,即)(x f 的函数值都在)(x g 的值域之中.此类型出现频率最高.第2类.“存在=存在”型2211,D x D x ∈∃∈∃,使得)()(21x g x f =,等价于函数)(x f 在1D 上的值域A 与函数)(x g 在2D 上的值域B 的交集不为空集,即∅≠⋂B A .其等价转化的基本思想:两个函数有相等的函数值,即它们的值域有公共部分.第3类.“任意≥(≤、>、<)任意”型2211,D x D x ∈∀∈∀,使得)()(21x g x f ≥恒成立等价于max min )()(x g x f ≥.其等价转化的基本思想是函数)(x f 的任何一个函数值均大于函数)(x g 的任何一个函数值.同理,可得其他类型.第4类.m x f x f b a x x ≤-∈∀|)()(|],,[,2121型.由于闭区间上连续函数必有最值,故此类转化为m x f x f ≤-|)()(|min max ,解决掉双变量转化为求最值.2.典例分析第1类问题问题应用.例1.已知函数()()ln f x ax x a R =+∈.(1)若1a =,求曲线()y f x =在1x =处切线方程;(2)讨论()y f x =的单调性;(3)12a ≥-时,设()222g x x x =-+,若对任意[]11,2x ∈,均存在[]20,3x ∈,使得()()12f x g x =,求实数a 的取值范围.解析:(2)()f x 定义域为()0,∞+,()1'1ax a x f xx +=+=,当0a ≥时,()'0f x >恒成立,所以()f x 在()0,∞+上单调递增;当0a <时,10,x a ⎛⎫∈- ⎪⎝⎭时()'0f x >恒成立,1,x a ⎛⎫∈-+∞ ⎪⎝⎭时()'0f x <恒成立,所以()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减;综上述,当0a ≥时,()f x 在()0,∞+上单调递增;当0a <时,()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(3)由已知,转化为()f x 在[]1,2x ∈的值域M 和()g x 在[]0,3x ∈的值域N 满足:M N ⊆,易求[]1,5N =.又()1'1ax a x f xx +=+=且12a ≥-,()f x 在[]1,2x ∈上单调递增,故值域[],2ln 2M a a =+.所以152ln 2a a ≤⎧⎨≥+⎩,解得5ln 212a -≤≤,即5ln 21,2a -⎡⎤∈⎢⎥⎣⎦.第2类问题应用例2.已知曲线()y ln x m =+与x 轴交于点P ,曲线在点P 处的切线方程为()y f x =,且2)1(=f .(1)求()y f x =的解析式;(2)求函数()()xf xg x e =的极值;(3)设2(1)1()ln x a lnx h x x +-+=,若存在实数1[1x ∈,]e ,12[x e -∈,1],使得21222222()(1)h x x ln x a x lnx x <+-+成立,求实数a 的取值范围.解析:(1)曲线()y ln x m =+与x 轴交于点(1,0)P m -,1y x m'=+,∴曲线在点P 处的切线斜率111k m m==-+,可得切线方程为0(1)y x m -=--,f (1)2=,21(1)m ∴=--,解得2m =.()(12)y f x x ∴==--,即()1f x x =+.(2)函数()1()x x f x x g x e e +==,()x xg x e-'=,0x ∴>时,()0g x '<,此时函数()g x 单调递减;0x <时,()0g x '>,此时函数()g x 单调递增.0x ∴=是函数()g x 的极大值点,(0)1g =.(3)设21x m =,12[x e -∈ ,1],则[1m ∈,]e ,2222222(1)1(1)ln m a lnm x ln x a x lnx x m +-++-+=.2(1)1()ln x a lnx h x x +-+= ,∴2(1)1()ln m a lnm h m m+-+=.若存在实数1[1x ∈,]e ,12[x e -∈,1],使21222222()(1)h x x ln x a x lnx x <+-+成立,等价于:12()()h x h m <成立,[1m ∈,]e .即2()()min max h x h x <,[1x ∈,]e .令lnx t =,[1x ∈ ,]e ,则[0t ∈,1].22(1)1(1)1()tln x a lnx t a t h x x e +-++-+∴==,[0t ∈,1],(0)1h =,h (1)3ae -=.221[(1)1](1)()()t tt a t a t t t a h t e e +--+-+--'==,a的取值范围是(-∞,32)(32ee --⋃,)+∞.第3类情形应用实例例3.设函数()(0)kx f x xe k =≠.(1)讨论函数()f x 的单调性;(2)设2()24g x x bx =-+,当1k =时,若对任意的1x R ∈,存在2[1,2]x ∈,使得()()12f x g x ≥,求实数b 的取值范围.解析:(1)令()(1)0kx f x kx e '=+>,所以10kx +>,当0k >时,1x k >-,此时()f x 在1,k ⎛⎫-∞- ⎪⎝⎭上单调递减,在1,k ⎛⎫-+∞ ⎪⎝⎭上单调递增;当k 0<时,1x k <-,此时()f x 在1,k ⎛⎫-∞- ⎪⎝⎭上单调递增,在1,k ⎛⎫-+∞ ⎪⎝⎭上单调递减;(2)当1k =时,,()f x 在(),1-∞-上单调递减,在()1,-+∞单调递增.所以对任意1x R ∈,有()11(1)f x f e ≥-=-,又已知存在2[1,2]x ∈,使()()12f x g x ≥,所以()221,[1,2]g x x e -≥∈即存在2[1,2]x ∈,使21()24g x x bx e =-+≤-,即142e b x x-+≥+,又因为当[1,2]x ∈,14114,52e x x ee -+⎡⎤+∈++⎢⎥⎣⎦,所以1242b e ≥+,124b e ≥+,即实数b 的取值范围124b e ≥+.第4类情形应用实例例4.已知函数()()ln 0bf x a x x a =+≠.(1)当2b =时,若函数()f x 恰有一个零点,求实数a 的取值范围;(2)当0a b +=,0b >时,对任意121,,x x e e ⎡⎤∈⎢⎥⎣⎦,有()()122f x f x e -≤-成立,求实数b 的取值范围.解析:(1)定义域为()0,∞+,当2b =时,22()2a x af x x x x+'=+=;当0a >时,()0f x '>,()f x 为增函数,取10a x e -=,120()1(e )0a f x -=-+<,(1)10f =>所以0()(1)0f x f ⋅<,故此时恰有一个零点;当0a <时,令()0f x '=,x =0x <时,()0f x '<,所以()f x 在⎛ ⎝单调递减,x ()0f x '>,所以()f x 在⎫+∞⎪⎪⎭单调递增;要使函数恰有一个零点,需要ln 02af a ==,解得2a e =-,综上,实数a 的取值范围是2a e =-或0a >.(2)因为对任意121,x x e e ⎡⎤∈⎢⎥⎣⎦,有()()122f x f x e -≤-成立,且12max min ()()()()f x f x f x f x --≤,所以max min ()2(e )f x f x -≤-.因为0a b +=,所以=-a b ,所以()ln bf x b x x =-+,1(1)().b b b b x f x bx x x--'=-+=当01x <<时,()0f x '<,当1x >时,()0f x '>;所以函数在1[,1)e上单调递减,在(1,]e 上单调递增,min ()(1)1,f x f ==因为1()bf b e e -=+与()b f e b e =-+,所以max 1()max (),(e),e f x f f ⎧⎫=⎨⎬⎩⎭令1()(e)()e e 2,eb bg b f f b -=-=--则当0b >时,()220b b g b e e -'=+->-=,所以()g b 在()0,∞+上单调递增,故()(0)0g b g >=,所以1()()f e f e>,从而max ()e .bf x b =-+所以12b b e e -+-≤-,即10b e b e --+≤.令()e e 1(0)t t t t ϕ=--+>,则()e 1t t ϕ'=-.当0t >时,()0t ϕ'>,所以()t ϕ在()0,∞+上单调递增.又(1)0ϕ=,所以10b e b e --+≤,即()(1)b ϕϕ≤,解得1b ≤,所以b 的取值范围是(0,1].。

【导数经典技巧与方法】第15讲-双变量统一-解析版

【导数经典技巧与方法】第15讲-双变量统一-解析版

第15讲双变量统一知识与方法常见的双变量问题,有如下几类:(1)极值点偏移问题;(2)拐点偏移问题;(3)双极值点问题;(4)零点差问题;(5)“恒成立”“能成立”双变量问题;(6)其他的双变量问题.本节主要研究(5)和(6)两类问题的处理方法,其他类型将在后面继续研究.对于一般的双变量问题,要灵活运用“消元”、“减元”、“换元”等操作手法,其核心思想就是化为单变量函数,研究函数的单调性、值域或最值.对于含有“恒成立”“能成立”等关键词的双变量问题,要正确翻译“恒成立”“能成立”等关键词,理解“任意”与“存在”的含义及区别,将问题进行正确转化,分析函数的值域即可解决.下面是一些常见“关键词”的翻译:1.不等式恒成立、能成立问题通常利用分离参数转化为求函数的最值:(1)∀x∈D,f(x)>a(f(x)⩾a)恒成立⇔f(x)min>a(f(x)min⩾a);∀x∈D,f(x)<a(f(x)⩽a)恒成立⇔f(x)max<a(f(x)max⩽a).(2)∃x∈D,f(x)>a(f(x)⩾a)能成立⇔f(x)max>a(f(x)max⩾a);∃x∈D,f(x)<a(f(x)⩽a)能成立⇔f(x)min<a(f(x)min⩽a).变量类函数恒成立、能成立问题(1)若f(x),g(x)的值域分别为A,B,则有:(1)∀x1∈D,∃x2∈E,使得f(x1)=g(x2),则A⊆B;(2)∃x1∈D,∃x2∈E,使得f(x1)=g(x2),则A∩B≠∅.(2)两个函数的最值问题(1)∀x1∈D,∀x2∈E,使得f(x1)>g(x2),则f(x)min>g(x)max;(2)∀x1∈D,∃x2∈E,使得f(x1)>g(x2),则f(x)min>g(x)min;(3)∃x1∈D,∃x2∈E,使得f(x1)>g(x2),则f(x)max>g(x)min.典型例题消元与换元在处理多变量问题时,我们可以分析变量之间的联系,通过代换的方法将其转化为单变量的问题,从而将较为复杂的函数转化为一个简单的函数来处理,实现从未知向已知的转化,顺利解决问题.【例1】设a,b >0,a ≠b ,求证:√ab <b−aln b−ln a <a+b 2.【解析】不妨设b >a >0, (1)先证√ab <b−a ln b−ln a.要证√ab <b−aln b−ln a ,即证ln b −ln a <√ab,即证ln b a <√b a −√ab . 上式中今t =√ba ,则只需证明:2ln t <t −1t (t >1). 令f(t)=2ln t −t +1t (t >1),则f ′(t)=2t −1−1t 2=−t 2+2t−1t 2=−(t−1)2t 2<0,所以f(t)在(1,+∞)上单调递減,又f(1)=0,因此当t >1时,f(t)=2ln t −t +1t <0,即2ln t <t −1t (t >1)成立. 故ln b a<√b a−√ab.(2)再证b−aln b−ln a <a+b 2.即证ln b −ln a >2(b−a)a+b,即证ln ba >2(b a−1)1+ba .令t =ba (t >1),则只需证明:ln t >2(t−1)1+t (t >1),设g(t)=ln t −2(t−1)1+t(t >1),g ′(t)=1t−4(t+1)2=(t−1)2t(t+1)2>0,所以g(t)在(1,+∞)递增,又g(1)=0,因此当t >1时,g(t)=ln t −2(t−1)1+t>0,即ln t >2(t−1)1+t成立,故b−a ln b−ln a <a+b 2.综上,√ab <b−aln b−ln a <a+b 2.【点睛】本题通过比值换元,把双变量不等式变为单变量不等式,从而可以轻松地构造函数解决问题.通过换元把双变量不等式变为单变量,是证明双变量不等式的基本方法. 本题的不等式称为对数平均不等式,两个正数a 和b 的对数平均定义:L(a,b)={a −bln a −ln b (a ≠b),a(a =b).对数平均与算术木平均,几何平均的大小关系:√ab ⩽L(a,b)⩽a+b 2.对数平均不等式在双变量不等式,特别是极值点偏移问题中有着重要的应用. 【例2】已知函数f(x)=ae x (a ≠0),g(x)=12x 2. (1)当a =−2时,求曲线f(x)与g(x)的公切线方程;(2)若y =f(x)−g(x)有两个极值点x 1,x 2,且x 2⩾3x 1,求实数a 的取值范围.【解析】(1)当a =−2时,f(x)=−2e x ,设曲线f(x)上的切点为(x 1,−2e x 1),则切线方程为y +2e x 1=−2e x 1(x −x 1),设曲线g(x)上的切点为(x 2,12x 22),则切线方程为y =12x 22=x 2(x −x 2),由两条切线重合得{−2e x 1=x 2,2e x 1(x 1−1)=−12x 22,则{x 1=0,x 2=−2,所以公切线方程为y =−2x −2. (2)y =f(x)−g(x)=ae x −12x 2,y ′=ae x −x ,因为x 1,x 2是y =f(x)−g(x)的极值点, 所以ae x 1−x 1=ae x 2−x 2=0,所以a =x 1e x 1=x 2e x 2.令x 2=kx 1(k ⩾3),可得x 1e x 1=kx 1ekx 1,则x 1=ln kk−1.设ℎ(x)=ln x x−1(x ⩾3),则ℎ′(x)=1−1x−ln x (x−1)2,令t(x)=1−1x −ln x(x ⩾3),则t ′(x)=1−x x 2<0,t(x)单调递减,得t(x)⩽t(3)=23−ln 3<0,所以ℎ′(x)<0,ℎ(x)单调递减, ℎ(x)⩽ℎ(3)=ln 32,易知ℎ(x)>0,所以x 1∈(0,ln 32].今φ(x)=xe x ,φ′(x)=1−x e x,则φ(x)在(−∞,1]上递增,所以a =x1e x 1∈(0,√36ln 3].【点睛】当一个不等式中出现多个未知数,如何减少变元的个数就成为解决问题的关键.“减元”是在“消元”的思想下进行的,通过“消元”减少变量的个数,可使问题变得简单、易于解决.减元的常用手段有:换元、整体代入、消去常数等.【例3】已知函数f(x)=ln x−ax.(1)讨论f(x)的单调性;(2)若x1,x2(x1<x2)是f(x)的两个零点.证明:(i)x1+x2>2a ;(ii)x2−x1>2√1−eaa.【解析】(1)f(x)定义域(0,+∞),f′(x)=1x −a=1−axx.则当a⩽0时f(x)在(0,+∞)为增函数;当a>0时f(x)在(0,1a )为增函数,在(1a,+∞)为减函数.(2)(i)原不等式等价于x1+x22>1a,因为ax1=ln x1(1),ax2=ln x2(2),由(2)−(1)得,a(x2−x1)=ln x2−ln x1则a=ln x2−ln x1x2−x1,则x1+x22>1a等价于x1+x22>x2−x1ln x2−ln x1(对数平均不等式)即证ln x2−ln x1>2(x2−x1)x1+x2,即证ln x2x1−2(x2x1−1)1+x2x1>0,设t=x2x1(t>1),设g(t)=ln t−2(t−1)1+t(t>1),则g′(t)=1t −2(1+t)2=(t−1)2t(t+1)2>0,所以g(t)在(1,+∞)上为增函数.所以g(t)>g(1)=0,即ln x2x1−2(x2x1−1)1+x2x1>0,所以x1+x22>1a.(ii)设ℎ(x)=ln xx ,则ℎ′(x)=1−ln xx2.所以ℎ(x)在(0,e]上递增,在(e,+∞)上递减.因为a=ℎ(x)有两个不相等的实根,则0<a<1e且1<x1<e<x2.易证ln x <x −1对x ∈(0,1)∪(1,+∞)恒成立(考试中需证明), 则ln 1x >1−x 对x ∈(0,1)恒成立,所以ax 1−1=ln x 1−1=ln x 1e >1−ex 1,因为x 1>0,所以ax 12−2x 1+e >0又因为a >0,Δ=4−4ae >0,所以x 1<1a−√1−eaa或x 1>1a+√1−eaa. 因为0<x 1<e 且0<a <1e,所以x 1<1a−√1−eaa因为x 1+x 22>1a,所以x 1+x 22−x 1>1a−(1a−√1−eaa) 即x 2−x 1>2√1−eaa. 【点睛】将关于x 1,x 2的双变量问题等价转化为以x 1,x 2所表示的运算式作为整体的单变量问题,通过整体代换为只有一个变量的函数式,从而使问题得到巧妙的解决,我们将这种解决问题的思想称之为变量归一思想.这是解决双变量问题最重要、最一般的方法.变更主元对于题目涉及到的两个变元,已知其中一个变元在题设给定的范围内任意变动,求另一个变元的取值范围问题,这类问题我们称之为“伪双变量”问题.这种“伪双变量”问题,往往会利用我们习惯将字母x 作为自变量的误区来进行设计.此时,我们可以变更主元,“反客为主”,将另一个变量作为自变量,从而使问题得以解决,我们称这种方法为变更主元法.如下面【例】题. 【例4】设函数f(x)=e 2x −aln x . (1)讨论f(x)的导函数f ′(x)零点的个数; (2)证明:当a >0时,f(x)⩾2a +aln 2a .【解析】(1)f(x)=e 2x −aln x 的定义域为(0,+∞),所以f ′(x)=2e 2x −ax.(1)当a ⩽0时,f ′(x)>0恒成立,故f ′(x)没有零点; (2)当a >0时,因为y =e 2x 为单调递增,y =−ax 单调递增, 所以f ′(x)在(0,+∞)单调递增.又f ′(a)>0,且b 满足{0<b <a4,b <14,时,f ′(b)<0,故零点存在性定理可知,f ′(x)存在唯一的零点.综上所述,当a ⩽0时,f ′(x)没有零点;当a >0时,f ′(x)存在唯一零点. (2)解法1:由(1)知,可设导函数f ′(x)在(0,+∞)上的唯一零点为x 0, 当x ∈(0,x 0)时,f ′(x)<0;当x ∈(x 0,+∞)时,f ′(x)>0, 故f(x)在(0,x 0)单调递减,在(x 0,+∞)单调递增, 所以当x =x 0时,f(x)取得最小值,最小值为f (x 0), 由于2e 2x 0−a x 0=0,所以f (x 0)=a 2x 0+2ax 0+aln 2a⩾2a +aln 2a.故当a >0时,f(x)⩾2a +aln 2a.解法2:令g(a)=2a +aln 2a −e 2x +aln x ,g ′(a)=2+ln 2a −1+ln x =1+ln 2+ln x −ln a .令g ′(a)>0,得a <2ex ;令g ′(a)<0,得a >2ex .所以函数g(a)在(0,2ex)上单调递增,在(2ex,+∞)上单调递减, 所以g(a)max =g(2ex)=4ex +2exln 1ex +2exln x −e 2x =2ex −e 2x .再令ℎ(x)=2ex −e 2x ,ℎ′(x)=2e −2e 2x ,所以ℎ(x)在(0,12)上单调递增,在(12,+∞)上单调递减,ℎ(x)max =ℎ(12)=0.所以g(a)max ⩽0.得证.【点睛】(1)在解题过程中,若以x 为自变量不好做,可以考虑变更主元;(2)变更主元后,要点睛意是对新变量求导.本题解法2中,构造g(a)后,a 才是自变量,而x 变成了参数.【例5】函数f(x)=e mx−1−ln x x,(1)若m =1,求f(x)的单调区间;(2)若f(x)的最小值为m,求m的最小值.【解析】(1)当m=1时,f(x)=e x−1−ln xx ,f′(x)=x2e x−1+ln x−1x2,令u(x)=x2e x−1+ln x−1,易知u(x)在(0,+∞)上单调递增,且u(1)=0,所以当x∈(0,1)时u(x)<0,此时f′(x)<0;当x∈(1,+∞)时u(x)>0,此时f′(x)>0;所以函数f(x)的单调递减区间为(0,1),单调递增区间为(1,+∞).(2)依题意可得:e mx−1−ln xx⩾m恒成立,且等号能够取到.构造关于m的函数g(m)=e mx−1−ln xx−m,g′(m)=xe mx−1−1,令g′(m)>0,得m>1−ln xx ;令g′(m)<0,得m<1−ln xx;所以g(m)在(1−ln xx ,+∞)上单调递增;在(−∞,1−ln xx)上单调递减,故g(m)⩾g(1−ln xx )=e1−ln x x⋅x−1−ln xx−1−ln xx=0.不等式g(m)⩾g(1−ln xx)=0中的等号可以取到,令ℎ(x)=1−ln xx ,则ℎ′(x)=ln x−2x2,易得ℎ(x)在(0,e2)上单调递减,在(e2,+∞)上单调递增,ℎ(x)min=ℎ(e2)=−1e2.所以m⩾−1e2,故m的最小值为−1e2.构造函数【例6】已知函数f(x)=(a+1)ln x+ax2+1.(1)讨论f(x)的单调性;(2)设a<−1,如果对任意x1,x2∈(0,+∞),|f(x1)−f(x2)|⩾4|x1−x2|,求实数a的取值范围.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=a+1x +2ax=2ax2+a+1x,当a⩾0时,f′(x)>0,f(x)在(0,+∞)上单调递增;当a⩽−1时,f′(x)<0,f(x)在(0,+∞)上单调递减;当−1<a<0时,令f′(x)=0,解得x=√−a+12a.则当x ∈(0,√−a+12a)时,f ′(x)>0,f(x)单调递增;x ∈(√−a+12a,+∞)时,f ′(x)<0,f(x)单调递减.故当a ⩾0,f(x)在(0,+∞)上单调递增; 当a ⩽−1时,f(x)在(0,+∞)上单调递减; 当−1<a <0时,f(x)在(0,√−a+12a)单调递增,在(√−a+12a,+∞)单调递减.(2)不妨设x 1⩾x 2,而a <−1,由(1)知f(x)在(0,+∞)单调递减, 从而任意x 1,x 2∈(0,+∞),|f (x 1)−f (x 2)|⩾4|x 1−x 2| 等价于任意x 1,x 2∈(0,+∞),f (x 2)+4x 2⩾f (x 1)+4x 1(∗) 令g(x)=f(x)+4x ,则g ′(x)=a+1x+2ax +4,由于(∗)等价于g(x)在(0,+∞)上单调递减, 得g ′(x)=a+1x+2ax +4⩽0. 从而a ⩽−4x−12x 2+1=(2x−1)2−4x 2−22x 2+1=(2x−1)22x 2+1−2,故a ⩽−2.从而实数a 的取值范围是(−∞,−2].【点睛】本题通过分离变量x 1,x 2,将x 1,x 2分别移到不等式的两侧,得到同构式,根据同构式构造新的函数,得到新函数的单调性,利用导数即可解决问题.本方法在1.6章节有详细介绍. 【例7】已知函数f(x)=x −bx ,g(x)=2aln x .(1)若b =0,函数f(x)的图象与函数g(x)的图象相切,求a 的值;(2)若a >0,b =−1,函数F(x)=xf(x)+g(x)满足对任意x 1,x 2∈(0,1](x 1≠x 2),都有|F (x 1)−F (x 2)|<3|1x 1−1x 2|恒成立,求a 的取值范围;(3)若b =1,函数G(x)=f(x)+g(x),且G(x)有两个极值点x 1,x 2,其中x 1∈(0,13],求G (x 1)−G (x 2)的最小值.【解析】(1)若b =0,函数f(x)=x 的图象与g(x)=2aln x 的图象相切,设切点为(x 0,2aln x 0),则切线方程为y =2ax 0x −2a +2aln x 0,所以{2ax 0=1,−2a +2aln x 0=0,解得x 0=e,a =e 2.所以a =e 2. (2)当a >0,b =−1时,F(x)=x 2+1+2aln x,F ′′(x)=2x +2a x>0,所以F(x)在(0,1]递增.不妨设0<x 1<x 2⩽1,原不等式等价于F (x 2)−F (x 1)<3(1x 1−1x 2),即F (x 2)+3x 2<F (x 1)+3x 1.设ℎ(x)=F(x)+3x =x 2+1+2aln x +3x ,则原不等式等价于ℎ(x)在(0,1]上递减,即ℎ′(x)=2x +2a x−3x 2⩽0在(0,1]上恒成立.所以2a ⩽3x−2x 2在(0,1]上恒成立.设y =3x −2x 2,在(0,1]上递减,所以y min =3−2=1,所以2a ⩽1, 又a >0,所以0<a ⩽12;(3)若,函数所以,由题意知是的两根, 所以,所以,数े ,所以, 当时,在上单调函数, 所以的最小值为, 即的最小值为. 任意存在分析值域1b =1()()()2ln G x f x g x x a x x=+=-+2221()(0)x ax G x x x ++'=>12,x x 2210x ax ++=12122111111,2,,2x x x x a x a x x x =+=-==--()()()1211111111112ln G x G x G x G x x x x x x ⎤⎡⎫⎛⎫⎛⎫-=-=--+⎥⎪⎢ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎭⎦11()2ln H x x x x x x ⎡⎤⎛⎫=--+ ⎪⎢⎥⎝⎭⎣⎦222(1)(1)ln 1()21ln x x x H x x x x +-⎛⎫'=-= ⎪⎝⎭10,3x ⎛⎤∈ ⎥⎝⎦()0,()H x H x '<10,3⎛⎤ ⎥⎝⎦()H x 120ln31633H -⎛⎫=⎪⎝⎭()()12G x G x -20ln 3163-【例9】已知函数(1)当时,求在区日上的最大值和最小值;(2)若在区间上,函数的图象恒在直线下方,求的取值范围. (3)设,当时,若对于任意,存在,使,求实数的取值范围. 【解析】(1)当时,,, 令,解得:,令,解㥂:,所以在区间上是增函数,在上为减函数, 所以,又,所以; (2)令.,①若,令,得柭侾,点, 当,即时,在上有,在上有,在上有, 此时在区间上是增函数,21()ln .(R)2f x a x x a ⎛⎫=-+∈ ⎪⎝⎭0a =()f x 1,e e ⎡⎤⎢⎥⎣⎦(1,)+∞()f x 2y ax =a 219()()2,()26g x f x ax h x x bx =-=-+23a =1(0,2)x ∈2[1,2]x ∈()()12g x h xb 0a =21()ln 2f x x x =-+2(1)(1)11()x x x f x x x x x-+--+'=-+==()0f x '>01x <<()0f x '<1x >()f x 1,1e ⎡⎤⎢⎥⎣⎦[1,e]max 1()(1)2f x f ==-2211e 1(e)1e 22ef f ⎛⎫=-->=- ⎪⎝⎭2min()()12e f x f e ==-21()()22ln (0)2g x f x ax a x ax x x ⎛⎫=-=--+> ⎪⎝⎭(1)[(21)1]1()(21)2x a x g x a x a x x ---'=--+=12a >()0g x '=1211,21x x a ==-211x x >=112a <<(0,1)()0g x '>()21,x ()0g x '<()2,x +∞()0g x '>()g x ()2,x +∞并且在该区间上有,不合题意; 当,即时,同理可知,在区间上,有,也不合题意; ②若,则有, 此时在区间上恒有,从而在区间上是减函数; 要使在此区间上恒成号,综上,当时,函数的图䝴恒在直线下方;(3)当时,由(2)中(1)知在上是增函数,在上是减函数, 所以对任意,都有,又已知存在,使, 即存在,鿇, 即存在即存在,使.因为, 所以实数的取值范围是.【点睛】本题不等式型双变量问题,通过分析两个函数的最值加以解决. 一般地,①,使得,则; ②,使得,则; ③,使得,则()()2(),g x g x ∈+∞211x x =1a ()g x (1,)+∞()((1),)g x g ∈+∞12a210a -(1,)+∞()0g x '<()g x (1,)+∞()0g x <11,22a ⎡⎤∈-⎢⎥⎣⎦()f x 2y ax =23a =()g x (0,1)(1,2)1(0,2)x ∈()17(1)6g x g =-2[1,2]x ∈()()12q x h x 2[1,2]x ∈2197266x bx -+-2213[1,2],23x bx x ∈+2[1,2]x ∈1323b x x+132516,([1,2])363y x x x ⎡⎤=+∈∈⎢⎥⎣⎦b 8,3⎛⎤-∞ ⎥⎝⎦12,x D x E ∀∈∀∈()()12f x g x >min max ()()f x g x >12,x D x E ∀∈∃∈()()12f x g x >min min ()()f x g x >12,x D x E ∃∈∃∈()()12f x g x >max min ()()f x g x +>【例10】设是函数的一个极值点. (1)求与的关系式(用表示),并求的单调区间;(2)设.若存在,使得,求实数的取值范围.【解析】(1),由,解得.所以,当时,当时,在上单调递减,在上单调递增,在上单调递减.(2)由(1)可知,当时,在区间上单调递增,在区间上单调递减, 那么在区间上的值域是, 而,那么在上的值域为.又在上是增函数, 所以在上的值域为, 以实数的取值范围是.【点睛】存在,使得"等价于“,而则要通过与的值域得到.强化训练1.已知函数,其中(1)试讨论函数的单调性 (2)在时,是否存在极值点?如果存在,不妨设为且,试判断3x =()23()e ()z f x x ax b a -=++∈R a b a b ()f x 2250,()e 4x a g x a ⎛⎫>=+ ⎪⎝⎭12,[0,4]x x ∈()()121f x g x -a 23()(2)e x f x x a x b a -⎡⎤'=-+-+-⎣⎦(3)0f '=32b a =--233()(2)33e (3)(1)e x x f x x a x a x x a --⎡⎤'=-+---=--++⎣⎦4a <-4a >-()f x (,1)a -∞--(1,3)a --(3,)+∞0a >()f x (0,3)(3,4)()f x [0,4][min{(0),(4)},(3)]f f f 31(0)(23)e 0,(4)(13)e 0,(3)6f a f a f a -=-+<=+>=+()f x [0,4]3(23)e ,6a a ⎡⎤-++⎣⎦225()e 4x g x a ⎛⎫=+ ⎪⎝⎭[0,4]()g x [0,4]2242525,e 44a a ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦a 30,2⎛⎤ ⎥⎝⎦12,[0,4]x x ∈()()121f x g x -()()¡±12min 1f x g x -<()()12main f x g x -()f x ()g x 2()e 12,(,)x f x x ax ax x a =---∈∈R R e 2.71828≈()f x 12ea >()f x 12,x x 12x x <与的大小并说明理由.【解析】(1)因为, 所以①当时,,所以的变化如下表:所以在单调迸减,在单调递增. ②当时,即,所以的变化如下表:所以在单调递增. ③当时,即时, 当时,,所以,当时,; 当时,; 当时,, ④当时,即时, 当时,,所以,()()12f x f x +1e e+-2()e 12,x f x x ax ax a =---∈R ()()(1)e 2(1)(1)e 2x x f x x a x x a '=+-+=+-20a e 20xa ->,(),()x f x f x'()f x (,1)-∞-(1,)-+∞12ea =ln(2)1a =-,(),()x f x f x'()f x (,)-∞+∞ln(2)1a <-102ea <<ln(2)x a <e 20,10xa x -<+<ln(2)x a <()e 2(1)0x a x -+>ln(2)1a x <<-()e 2(1)0x a x -+<1x >-()2(1)0x e a x -+>ln(2)1a >-12ea >1ln(2)x a -<<e 20,10xa x -<+>()e 2(1)0x a x -+<当时,;当时,. 所以在单调递增,单调递减,单调递增. 当时在单调减,在单调递增; 当时在单调递增; 当时在单调递增,单调递减,单调䏲以;当时在单调递增,单调递减,单调递增. (2).理由如下:由(1)知有两个极值点:,所以令, 则,令,则,令,因为,且在上单调递减,所以存在,使得,即存在使得,所以当时,,即时,使得,当时,,即时,使得. 当时,, 1x <-()2(1)0x e a x -+>ln(2)a x <()2(1)0x e a x -+>()f x (,1)-∞-(1,ln 2)a -(ln 2,)a +∞20a ()f x (,1)-∞-(1,)-+∞12ea =()f x (,)-∞+∞102e a <<()f x (,ln 2)a -∞(ln 2,1)a -(1,)-+∞12ea >()f x (,1)-∞-(1,ln 2)a -(ln 2,)a +∞()()12e 1ef x f x ++<-1,()2ea f x >121,ln 2x x a =-=()()2121(1)(ln 2)2ln 2f x f x f f a a a a e+=-+=--+-211()2ln 2e 2e h a a a a a ⎛⎫=--+-> ⎪⎝⎭21()1ln 22ln 22e h a a a a ⎛⎫'=--> ⎪⎝⎭ln2t a =1t >-2()21(1)g t t t t =--+>-1(0)0,02g g ⎛⎫>< ⎪⎝⎭()g t (1,)-+∞0102t <<()00g t =010ln 22a <<()00h a '=01t t -<<()0g t >012ea a<<()0h a '>0t t <()0g t <0a a <()0h a '<12e a >()200000011()2ln 222ln 2e eh a h a a a a a a =--+-=--+因为,所以.设,因为在成立, 所以在单调递增, 所以,,所以.2.已知函数,其中为实常数.(1)若当时,在区间[1,e]上的最大值为,求的值;(2)对任意不同两点,设直线的斜率为,若0恒成立,求的取值范围.【解析】(1)因为函数, 所以,因为,所以则,得, 当时,,当时,,所以在时,取最大值, 因为当时,在区间上的最大值为, 所以当时,在区间上的最大值, 解得. 当时,在区间上的最大值,解得,不合题意; 当时,在区间上的取大值, 010ln 22a <<012a <<()ln (1u x x x x =<()1ln 0u x x '=+>1x <<()ln u x x x =11()22e e h a <--+=--21e 1()1e eh a +<--=-()ln 1f x x ax =-+a 0a >()f x 1-a ()()()()1122,,,A x f x B x f x AB k 12x x k ++>a ()ln 1f x x ax =-+11(),0ax f x a x x x-'=-=>0a >()0f x '=1x a=10,x a ⎛⎫∈ ⎪⎝⎭()0f x '>1,x a ⎛⎫∈+∞ ⎪⎝⎭()0f x '<1x a =()f x 0a >()f x [1,e]1-101a<<()f x [1,e](1)ln111f a =-+=-2a =11e a()f x [1,e]111ln 11f a a a a ⎛⎫=-⨯+=- ⎪⎝⎭e a =1ea>()f x [1,e](e)lne e 12e 1f a a =-+=-=-不合题意; 综上,.(2)因为对任意不同两点, 设直线的軼率为,若恒成立, 所以,所以, 所以在上是增函数, 所以在上恒成立,所以, 因为,所以,当且仅当时,即, 所以.所以的取值范围是. 3.设函数.(1)若曲线在点处的切线与直线垂直,求的单调递减区间和极小值(其中为自然对数的底数);(2)若对任意恒成立,求的取值范围.【解析】(1)由已知得.因为曲线在点处的切线与直线垂直, 所以此切线的煂車为0.2a =()()()()1122,,,A x f x B x f x AB k 120x x k ++>22111221ln ln 0x ax x ax x x x x --+++>-2222211121ln ln 0x x ax x x ax x x +---+>-2()ln m x x x ax =+-(0,)+∞1()20m x x a x'=+-(0,)+∞min 12a x x ⎛⎫+ ⎪⎝⎭0x >11222x x x x+⋅=12x x =x =22a a (-∞()ln ,R kf x x k x=+∈()y f x =(e,(e))f 20x -=()f x e ()()1212120,x x f x f x x x >>-<-k 21()(0)kf x x x x'=->()y f x =(e,(e))f 20x -=即,有,解得.所以,由㥂,由得. 所以在上单调递减,在上单调递增, 当时取得极小值.故的单调递减区间为,极小值为2.(2)条件等价于对任意(*)恒成立. 设.所以(*)等价于在上单调递减. 由在上恒成立, 得恒成立.所以(当且仅当时等号成立), 故的取值范围是. 4.已知函数.(1)当时,讨论的单调性; (2)设.当时,若对任意,存在,使,求实数取值范围.【解析】, 令.(e)0f '=210e e k -=e k =221e e()(0)x f x x x x x-'=-=>()0f x '<0e x <<()0f x '>e x >()f x (0,e)(e,)+∞e x =()f x e(e)ln e 2ef =+=()f x (0,e)()()1211220,x x f x x f x x >>-<-()()ln (0)kh x f x x x x x x=-=+->()h x (0,)+∞21()10k h x x x'=--(0,)+∞2211(0)24k x x x x ⎛⎫-+=--+> ⎪⎝⎭14k12x =k 1,4⎡⎫+∞⎪⎢⎣⎭1()ln 1(R)a f x x ax a x-=-+-∈12a()f x 2()24g x x bx =-+14a =1(0,2)x ∈2[1,2]x ∈()()12f x g xb 222111(1)()(0)a ax x a f x a x x x x --++-'=-+=>2()1(0)h x ax x a x =-+->(i)当,当,函数单调递减; 当时,,函数单调递增.(ii)当时,由,即,解得.当时,时,函数单调递减;时,,函上单调递减. 当时,当,函数单调遌当;当,函数单调递增. 综上所述:当时,函数在单调递减,单调递增; 当时,函数在上调递减; 当时,在单调递减,单调递增, (2)当时,在上是减函数,在上是增函数, 所以对任意,有,又已知存在,使, 所以 又当时,,与(*)矛盾; 当时,,时与(*)矛盾; 当时,.0,()1(0)a h x x x ==-+>(0,1),()0,()0x h x f x ∈>'<()f x 1x >()0,()0h x f x <'>()f x 0a ≠()0f x '=210ax x a -+-=1211,1x x a==-102a <<1110,(0,1)x a->>∈()0,()0h x f x >'<()f x 11,x a ⎛⎫∈-+∞ ⎪⎝⎭()0,()0h x f x >'<()f x 0a <110a-<(0,1),()0,()0x h x f x ∈>'<()f x (1,),()0,()0x h x f x ∈+∞<'>()f x 0a ()f x (0,1)(1,)+∞12a =()f x (0,)+∞102a <<()f x 1(0,1),1,a ⎛⎫-+∞ ⎪⎝⎭11,1a ⎛⎫- ⎪⎝⎭14a =()f x (0,1)(1,2)1(0,2)x ∈min 1()(1)2f x f ==-2[1,2]x ∈()()12f xg x ()221,[1,2](*)2g x x -∈22()()4([1,2])g x x b b x =-+-∈1b <min ()(1)520g x g b ==->[1,2]b ∈2min ()()40g x g b b ==-2b >min 117()(2)84,28g x g b b ==--综上所䢑,实数的取值范围就是. b 17,8⎡⎫+∞⎪⎢⎣⎭。

如何处理导数问题中含有两个变量的问题

如何处理导数问题中含有两个变量的问题

, 一 一 2
式 转 化 为l n > —
1 + ( )
, 即证 明l n > - 2 x - 2 :  ̄x ∈( 1 + ) 恒 成 立

l + x
x -2 证 明: 设g ( x) : 1 n x 一 — 2


x∈( 1 , +∞) ,
1 +x 一
二 ! ( X ) >0, / 则g ( x) : 1 n x 一2 x - 2 :  ̄( 1 , + ∞) 上单调递增 , g ( x ) > g ( 1 ) : O .


1 +x ‘
又. . . 0 < a < b . 一 b
2 b

证明: . . . 0 ≤b < a ≤1 。 要证 < ) 二 < 2

h , ( x) : 2 x ( 1 n x — l n a ) +( a 2 + x 2 ) . 一 2 a : 2 x ( 1 n x — l n a ) +

a +x a +x
[ ( a 2 + x 2 ) ( 1 n x

l n z ) 一
例2 : 函数f ( x ) = l n x , 当0 < a < b时 , 求证 : f ( b ) 一 f ( a ) >
2 a ( b — a)
a + b
2 a x + 2 a] , ( x > a )



1 ] ,
( x ) ≥0
恒成立 .
正负情况即可 . 求导过程相对较简单. 如 果 有 的 同 学 对 变 量 集 中不 太 熟 练 .我 们 也 可 以换 一 个 角度来 考虑 , 对我 们要证 明的不等式l n b — l n a > — 2 a ( b - a )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数双变量问题分类整理【例】(2018全国卷Ⅰ)已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:1212()()2-<--f x f x a x x .【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x-+'=--+=-. (i )若2≤a ,则()0'≤f x ,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当2()a a x+∈+∞时,()0f x '<; 当(22a a x -+∈时,()0f x '>. 所以()f x在)+∞单调递减,在单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点1x ,2x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <. 所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--.【例】(2018浙江)已知函数()ln f x x =.(1)若()f x 在1x x =,2x (12x x ≠)处导数相等,证明:12()()88ln 2f x f x +>-;(2)若34ln 2a -≤,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点. 【解析】(1)函数()f x的导函数1()f x x '=-,由12()()f x f x ''=1211x x -=-, 因为12x x ≠12+== 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x ++=.设()ln g x x =,则1()4)4g x x'=, 所以所以()g x 在[256,)+∞上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (2)令(||)a k m e -+=,2||1()1a n k+=+,则()||0f m km a a k k a -->+--≥, ()))0a f n kn a n k n kn --<---<≤,所以,存在0(,)x m n ∈使00()f x kx a =+, 所以,对于任意的a ∈R 及(0,)k ∈+∞,直线y kx a =+与曲线()y f x =有公共点.由()f x kx a =+得k =设()h x =则22ln 1()12()x ag x a h x x x -+--+'==,其中()ln g x x =-.由(1)可知()(16)g x g ≥,又34ln 2a -≤, 故()1(16)134ln 2g x a g a a --+--+=-++≤,所以()0h x '≤,即函数()h x 在(0,)+∞上单调递减,因此方程()0f x kx a --=至多1个实根. 综上,当34ln 2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点. 【例】(2018天津)已知函数()xf x a =,()log a g x x =,其中1a >.(1)求函数()()ln h x f x x a =-的单调区间;(2)若曲线()y f x =在点11(,())x f x 处的切线与曲线()y g x =在点22(,())x g x 处的切线平行,证明122ln ln ()ln ax g x a+=-; (3)证明当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线. 【解析】(1)由已知,()ln xh x a x a =-,有()ln ln xh x a a a '=-.令()0h x '=,解得0x =.由1a >,可知当x 变化时,()h x ',()h x 的变化情况如下表:所以函数()h x 的单调递减区间(,0)-∞,单调递增区间为(0,)+∞.(2)证明:由()ln xf x a a '=,可得曲线()y f x =在点11(,())x f x 处的切线斜率为1ln x a a .由1()ln g x x a'=,可得曲线()y g x =在点22(,())x g x 处的切线斜率为21ln x a .因为这两条切线平行,故有121ln ln xa a x a=,即122(ln )1xx a a =.两边取以a 为底的对数,得21log 2log ln 0a a x x a ++=,所以122ln ln ()ln ax g x a+=-. (3)证明:曲线()y f x =在点11(,)xx a 处的切线1l :111ln ()x x y a a a x x -=⋅-.曲线()y g x =在点22(,log )a x x 处的切线2l :2221log ()ln a y x x x x a-=⋅-. 要证明当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线,只需证明当1ee a ≥时,存在1(,)x ∈-∞+∞,2(0,)x ∈+∞,使得l 1和l 2重合.即只需证明当1e e a ≥时,方程组1112121ln ln 1ln log ln x x x a a a x a a x a a x a ⎧=⎪⎪⎨⎪-=-⎪⎩①②有解,由①得1221(ln )x x a a =,代入②,得111112ln ln ln 0ln ln x x a a x a a x a a-+++=. ③ 因此,只需证明当1ee a ≥时,关于1x 的方程③有实数解.设12ln ln ()ln ln ln x x au x a xa a x a a=-+++, 即要证明当1ee a ≥时,函数()y u x =存在零点.2()1(ln )xu x a xa '=-,可知(,0)x ∈-∞时,()0u x '>;(0,)x ∈+∞时,()u x '单调递减,又(0)10u '=>,21(ln )21()10(ln )a u a a '=-<,故存在唯一的0x ,且00x >,使得0()0u x '=,即0201(ln )0x a x a -=.由此可得()u x 在0(,)x -∞上单调递增,在0(,)x +∞上单调递减. ()u x 在0x x =处取得极大值0()u x .因为1ee a ≥,故ln(ln )1a -≥, 所以0000012ln ln ()ln ln ln xxa u x a x a a x a a=-+++02012ln ln 22ln ln 0(ln )ln ln a a x x a a a +=++≥≥. 下面证明存在实数t ,使得()0u t <.由(1)可得1ln x a x a +≥,当1ln x a>时, 有12ln ln ()(1ln )(1ln )ln ln a u x x a x a x a a +-+++≤2212ln ln (ln )1ln ln aa x x a a=-++++, 所以存在实数t ,使得()0u t <,因此,当1ee a ≥时,存在1(,)x ∈-∞+∞,使得1()0u x =. 所以,当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线. 【例】(2016年全国Ⅰ) 已知函数2()(2)(1)xf x x e a x =-+-有两个零点.(I )求a 的取值范围;(II )设1x ,2x 是()f x 的两个零点,证明:122x x +<. 【解析】(Ⅰ).(i )设,则,只有一个零点.(ii )设,则当时,;当时,. 所以在上单调递减,在上单调递增. 又,,取满足且,则 ,故存在两个零点. (iii )设,由得或.'()(1)2(1)(1)(2)xxf x x e a x x e a =-+-=-+0a =()(2)xf x x e =-()f x 0a >(,1)x ∈-∞'()0f x <(1,)x ∈+∞'()0f x >()f x (,1)-∞(1,)+∞(1)f e =-(2)f a =b 0b <ln2ab <223()(2)(1)()022a fb b a b a b b >-+-=->()f x 0a <'()0f x =1x =ln(2)x a =-若,则,故当时,, 因此在上单调递增.又当时,,所以不存在两个零点. 若,则,故当时,; 当时,.因此在上单调递减, 在上单调递增.又当时,, 所以不存在两个零点.综上,的取值范围为.(Ⅱ)不妨设,由(Ⅰ)知,,又在上单调递减,所以等价于,即.由于,而,所以.设,则.所以当时,,而,故当时,.从而,故. 【例】(2015新课标Ⅱ)设函数2()mxf x ex mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意1x ,2x [1,1]∈-,都有12|()()|f x f x -1e -≤,求m 的取值范围. 【解析】(Ⅰ)()(e 1)2mxf x m x '=-+.若0m ≥,则当(,0)x ∈-∞时,10mx e -≤,()0f x '<;当(0,)x ∈+∞时,10mx e -≥,()0f x '>. 若0m,则当(,0)x ∈-∞时,10mx e ->,()0f x '<;当(0,)x ∈+∞时,10mx e -<,()0f x '>.所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[1,0]-单调递减,在[0,1]单调递增.故()f x 在0x 处取得最小值.所以对于任意1x ,2x [1,1]∈-,12|()()|1f x f x e --≤的充要条件是:(1)(0)1(1)(0)1f f e f f e --⎧⎨---⎩≤≤,即11m m e m e e m e -⎧--⎨+-⎩≤≤ ① 设函数()1tg t e t e =--+,则()1tg t e '=-.当0t时,()0g t '<;当0t 时()0g t '>.2ea ≥-ln(2)1a -≤(1,)x ∈+∞'()0f x >()f x (1,)+∞1x ≤()0f x <()f x 2ea <-ln(2)1a ->(1,ln(2))x a ∈-'()0f x <(ln(2),)x a ∈-+∞'()0f x >()f x (1,ln(2))a -(ln(2),)a -+∞1x ≤()0f x <()f x a (0,)+∞12x x <12(,1),(1,)x x ∈-∞∈+∞22(,1)x -∈-∞()f x (,1)-∞122x x +<12()(2)f x f x >-2(2)0f x -<222222(2)(1)x f x x ea x --=-+-22222()(2)(1)0xf x x e a x =-+-=222222(2)(2)x x f x x ex e --=---2()(2)xx g x xex e -=---2'()(1)()x xg x x e e -=--1x >'()0g x <(1)0g =1x >()0g x <22()(2)0g x f x =-<122x x +<故()g t 在(,0)-∞单调递减,在(0,)+∞ 单调递增.又(1)0g ,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0,()0g m g m -≤≤,即①式成立,当1m 时,由()g t 得单调性,()0g m ,即1m e m e ->-;当1m <-时,()0g m ->,即1m e m e -+>-综上,m 的取值范围是[1,1]-.关于极值点双变量的求参数范围问题: 【例】(2020·湖北高三模拟)已知函数()12ln f x x a x x=-+⋅. (1)讨论()f x 的单调性;(2)设()2ln g x x bx cx =--,若函数()f x 的两个极值点()1212,x x x x <恰为函数()g x 的两个零点,且()12122x x y x x g +⎛⎫'=-⋅ ⎪⎝⎭的范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,求实数a 的取值范围.【答案】(1)当1a ≤时,单调递减区间为()0,∞+,无单调递增区间;当1a >时,单调递减区间为(()0,,a a +∞;单调递增区间为(a a ;(2)4⎡⎫+∞⎪⎢⎪⎣⎭【解析】【分析】(1)求解导函数,根据导函数的分子(二次函数)分类讨论()f x '与0的关系,从而可分析出函数的单调性;(2)根据已知条件构造关于12x x 的新函数,根据新函数的单调性分析出12x x 的取值范围,然后根据a 与12x x 的关系即可求解出a 的取值范围.【详解】(1)()f x 的定义域为()0,∞+,()22212211a x ax f x x x x--+'=-+=-. (i )若1a ≤,则()0f x '≤,当且仅当1a =,1x =时,()0f x '= (ii )若1a >,令()0f x '=得12x a x a ==当(()20,x a a a ∈++∞时,()0f x '<;当(x a a ∈时,()0f x '>,所以,当1a ≤时,()f x 单调递减区间为()0,∞+,无单调递增区间; 当1a >时,()f x 单调递减区间为(()0,,aa++∞;单调递增区间为(a a +.(2)由(1)知:1a >且12122,1x x a x x +==.又()12g x b cx x'=--, ∴()12121222x x g b c x x x x +⎛⎫'=--+⎪+⎝⎭, 由()()120g x g x ==得()()22112122lnx b x x c x x x =-+-, ∴()()()()1222121212121222-+⎛⎫'=-=----⎪+⎝⎭x x x x y x x g b x x c x x x x .()121112212122212ln ln1⎛⎫- ⎪-⎝⎭=-=-++x x x x x x x x x x x x ,令12(0,1)x t x =∈,∴2(1)ln 1t y t t -=-+, ∴22(1)0(1)t y t t --'=<+,所以y 在()0,1上单调递减. 由y 的取值范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,得t 的取值范围是10,2⎛⎤⎥⎝⎦,∵122x x a +=, ∴()222222211221212112212212(2)242x x x x x xa x x x x x x a x x x x ++=+=++===++,∴2122119422,2x x a t x x t ⎡⎫=++=++∈+∞⎪⎢⎣⎭,又∵1a >,故a 的取值范围是⎫+∞⎪⎪⎣⎭. 【点睛】(1)含参函数的单调性分析,要注意抓住参数的临界值进行分类讨论;(2)利用导数求解双变量问题,多数情况下需要构造关于12x x (或21x x )的新函数,借助新函数的单调性分析问题. 关于极值点双变量的最值问题:【例】(2020·福建省高三)已知函数21()2ln f x x ax x=--,a ∈R . (1)讨论()f x 的单调性;(2)若()f x 有两个极值点()1212,x x x x <,求()()212f x f x -的最大值. 【答案】(1)分类讨论,详见解析;(2)14ln 22+. 【解析】 【分析】(1)求出导函数,根据二次函数的∆与0的关系来分类讨论函数的单调性,并注意一元二次方程根的正负与定义域的关系;(2)由()1212,x x x x <是两个极值点得到对应的韦达定理形式,然后利用条件将()()212f x f x -转变为关于某一变量的新函数,分析新函数的单调性从而确定出新函数的最大值即()()212f x f x -的最大值.【详解】(1)21221()22x ax f x x a x x'-+=-+=,0x >,2221y x ax =-+,当2480a ∆=-≤,即a ≤≤0y ≥,此时()f x 在(0,)+∞上单调递增;当a <22210x ax -+=有两个负根,此时()f x 在(0,)+∞上单调递增;当a >22210x ax -+=有两个正根,分别为1x =2x =,此时()f x 在()10,x ,()2,x +∞上单调递增,在()12,x x 上单调递减.综上可得:a ≤()f x 在(0,)+∞上单调递增,a >()f x 在0,2a ⎛⎫- ⎪ ⎪⎝⎭,2a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在22a a ⎛⎫-+ ⎪ ⎪⎝⎭上单调递减.(2)由(1)可得12121,2x x a x x +=⋅=,a >211221ax x =+,222221ax x =+,∵a >22a >,∴10,2x ⎛∈ ⎝⎭,22x ⎛⎫∈+∞ ⎪ ⎪⎝⎭, ∴()()()222122211122ln 22ln f x f x x ax x x ax x -=-+--+2221212ln 2ln 1x x x x =-++-+22222222222211132ln 2ln1ln 12ln 22222x x x x x x x ⎛⎫=-++-+=-++++ ⎪⎝⎭令22t x =,则12t >,13()ln 12ln 222g t t t t =-++++ 222213231(21)(1)()12222t t t t g t t t t t'-+----=--+== 当112t <<时,()0g t '>;当1t >时,()0g t '< ∴()g t 在1,12⎛⎫⎪⎝⎭上单调递增,在(1,)+∞单调递减∴max 14ln 2()(1)2g t g +==∴()()212f x f x -的最大值为14ln 22+。

相关文档
最新文档