浅谈建筑结构振动控制
浅议建筑结构振动控制

55科技资讯科技资讯S I N &T NOLOGY I NFORM TI ON 2008NO .27SC I ENCE &TECH NO LOG Y I NFOR M A TI O N 建筑科学1建筑结构振动控制概述自从1972年美籍华人J P T Ya o 提出了土木工程结构控制的概念以来,结构控制的研究从理论、实验到实际应用等方面得到了突飞猛进的发展。
随着现代都市建设的飞速发展,高层建筑和高耸结构不断涌现。
在地震和风荷载作用下,高层建筑的受迫振动使得结构上居住的人有严重的不舒适感,甚至造成结构损伤直至破坏,危害结构的安全性。
传统的抗震结构体系是通过增强结构本身的性能来“抗御”地震作用的,即由结构本身储存和消耗地震能量,以满足结构的抗震设防要求。
但由于人们尚不能准确的估计结构未来可能遭遇的地震的强度和特性,而按传统方法设计的结构其抗震性能不能具备自我调节与自我控制的能力,因此在这种不确定性的地震作用下,结构很可能不满足安全性的要求,而产生严重破坏,甚至倒塌,造成重大的经济损失和人员伤亡。
结构振动控制是指利用传统的控制方法或智能控制理论,在结构特定部位设置某种控制装置、或某种机构、或某种子结构或施加处力,改变或调整结构的动力特性和动力作用,以减小结构振动反应的技术。
结构振动控制系统的基本部件为传感器、处理器和作动器。
传感器感受外部激励和结构状态的变化信息;处理器接受这些信息并依据一定的控制算法计算所需的控制信号;作动器则产生的所需的控制力并作用于结构。
2结构振动控制发展在学术研究日益深入的同时,结构振动控制的工程应用在过去的30多年的时间中也取得了较大进步,特别是在日本、美国、加拿大、新西兰等经济发达国家,其中日本处于领先地位。
目前,日本安装控制装置的建筑物已达600多栋,其中安装主动和半主动控制装置的建筑物有20多栋,安装隔震装置的有500多栋,其余的为其他被动控制装置。
与上述国家相比,我国在结构震动控制的工程应用方面的差距很大,已安装控制装置的建筑物的数量极其有限,其中又以隔震装置比较常见。
建筑结构振动控制与减震技术

建筑结构振动控制与减震技术建筑结构振动是指建筑物在受到外力作用或自身受到激励时产生的动态响应。
振动会带来很多问题,比如噪音、不稳定性和疲劳等。
为了保证建筑物的安全性和舒适性,振动控制和减震技术成为了十分重要的领域。
本文将介绍建筑结构振动控制与减震技术的原理与应用。
1. 介绍建筑结构振动的原因和影响建筑结构振动的主要原因包括地震、风载、人员活动以及机械设备等因素。
振动会导致建筑物的不稳定性,并对建筑内部设备和居住者产生不良影响,如噪音、疲劳等。
因此,对建筑结构振动进行控制和减震十分重要。
2. 振动控制的方法振动控制可以通过几种方法来实现,包括被动控制、主动控制和半主动控制。
被动控制利用刚性连接件、阻尼器等 passibe 部件来吸收和分散振动能量。
主动控制则通过传感器和激励器对振动进行主动干预和抑制。
半主动控制则结合了主动控制和被动控制的优点。
3. 减震技术的原理与应用减震技术通过在建筑物底部安装减震装置,将地震或其他外力引起的振动吸收并分散,从而减小建筑内部的振动幅度。
常见的减震装置包括摆锤、液体阻尼器和弹簧等。
这些装置可以减轻振动对建筑物的影响,提高建筑的抗震能力。
4. 案例分析以某高层建筑为例,介绍减震技术在实际工程中的应用。
该高层建筑采用液体阻尼器作为减震装置,通过改变液体的流动来吸收和消散振动能量。
该减震系统有效地提高了建筑物的稳定性和舒适性,并在地震发生时发挥了重要作用。
5. 进一步展望建筑结构振动控制与减震技术是一个不断发展和改进的领域,目前已经取得了很多成果。
未来的研究可以集中在材料和设计方面,开发更高效和经济的减震装置,提高建筑物的抗震和抗振能力。
总结:建筑结构振动对建筑物的安全性和舒适性产生重要影响。
振动控制和减震技术通过各种方法和装置来减小建筑物的振动幅度,提高其抗震能力。
这些技术在实际工程中已经取得了一些成功,并且仍在不断发展和改进。
未来的研究应该致力于提高减震装置的效率和经济性,进一步提升建筑物的抗振性能。
振动控制技术在建筑结构中的应用

振动控制技术在建筑结构中的应用随着城市化进程的加快,越来越多的高层建筑被兴建起来,而随着建筑在高度和体量上的不断提高,建筑振动带来的问题也越来越显著。
建筑物振动不仅会直接影响建筑物的运行和使用,还可能对附近环境产生破坏性影响。
因此,随着科技的发展和技术的不断进步,振动控制技术变得越来越重要。
在建筑结构中应用振动控制技术,可以有效地降低结构的振动能量,提高建筑的抗震性以及安全性。
一、振动控制技术的分类振动控制技术可以分为被动控制、主动控制和半主动控制三种方式。
被动控制:是指采用减震器、阻尼器、质量阻尼器等被动元件来控制建筑物震动的方式,它的主要作用是通过阻尼的方式来降低建筑物的振动响应。
主动控制:主动控制包括主动质量调节、主动阻尼调节、主动刚度调节和主动控制源等方式。
主动控制是通过对振动控制系统中主动元件加以控制,改变结构的动力学特性使体系均在一个频率范围中被摆脱共振的状态,进而达到降低结构振动响应的目的。
半主动控制:是介于被动控制和主动控制之间的一种控制方式,主要是通过半主动元件来保证系统的稳定性。
半主动控制系统由被动元件和可控元件组成,可控元件可以根据振动响应的需要来调节其性能参数。
二、振动控制技术在建筑结构中的应用1.减震器减震器是一种常用的被动控制技术,它将阻尼器、摆钟等结构嵌入到建筑体系中,通过不断地调节各种阻尼器的参数来减少结构振动。
2.主动控制主动控制技术在建筑结构中主要是将控制源嵌入结构中,并通过对控制源进行控制,达到改变结构动力特性的目的。
在主动控制中,控制器可应变结构所受到的地震荷载进行控制,以达到结构的抗震性能。
主动控制通过调整控制源的位置和矢量,能够有效地降低结构振幅,提高建筑的抗震性。
3.半主动控制半主动控制技术将可控阻尼器、可控质量调节器等半主动元件嵌入到结构中,在建筑结构受到地震荷载时,能够快速地改变阻尼和质量等性能参数,从而达到降低结构振动响应的目的。
半主动控制技术具有优点:可以快速地响应外界激励,结构响应控制性能好,控制器结构简单,能耗低,成本费用较低等。
建筑结构振动分析与控制研究

建筑结构振动分析与控制研究1. 引言建筑结构的振动是指结构在受到外界力的作用下发生的运动。
振动问题一直以来都是建筑工程中的一个重要课题,对于保证建筑结构的安全性、舒适性和耐久性至关重要。
本文将探讨建筑结构振动的分析和控制方法,以及相关研究进展。
2. 建筑结构振动分析2.1 建筑结构振动的分类建筑结构的振动可分为自由振动和强迫振动。
自由振动是指建筑结构在没有外界力作用下的自身振动,如地震、风荷载等;而强迫振动是指建筑结构受到外界力作用的振动,如机械设备运转等。
2.2 振动模态分析振动模态分析是一种常用的建筑结构振动分析方法。
它通过求解结构的固有振动频率和模态形状,得到结构的振动特性。
通常采用有限元法作为振动模态分析的数值计算方法,这种方法具有计算精度高、适用范围广等优点。
3. 建筑结构振动控制3.1 主动控制方法主动控制方法是指通过引入外界控制力来改变建筑结构的振动特性。
常见的主动控制方法包括质量和刚度变化法、控制杆法以及智能材料控制等。
这些方法能够实时调节建筑结构的振动特性,从而减小结构的振动响应。
3.2 被动控制方法被动控制方法是指通过在结构上添加附加物用以吸收或耗散振动能量,从而减小结构的振动响应。
常见的被动控制方法包括隔震、摆锤、液体阻尼器等。
这些方法通过改变结构的动力特性,降低结构与外界激励的耦合效应,从而减小结构的振动响应。
4. 建筑结构振动控制研究进展4.1 结构振动控制理论研究近年来,随着计算机技术和控制理论的不断发展,建筑结构振动控制研究取得了重要进展。
研究人员通过建立结构动力模型和振动控制模型,提出了一系列高效的振动控制算法和方法。
4.2 智能材料在振动控制中的应用智能材料在振动控制中具有重要的应用潜力。
形状记忆合金和压电材料等智能材料可以根据外界激励的变化自动调节其力学性能,从而减小建筑结构的振动响应。
研究人员通过开展智能材料在建筑结构振动控制中的应用研究,为解决建筑结构振动问题提供了新的思路和方法。
建筑施工组织设计方案中的施工现场振动控制

建筑施工组织设计方案中的施工现场振动控制在建筑施工中,振动控制是一项重要的工作,它可以有效地保护周围环境和降低对施工结构的影响。
本文将探讨建筑施工组织设计方案中的施工现场振动控制措施,并提供一些建议以实现更好的振动控制效果。
一、振动控制的重要性施工现场振动对周围环境和结构的影响不容忽视。
振动会引起地基沉降、土壤液化、结构破坏等问题,给周围居民和建筑物带来安全隐患。
因此,在建筑施工中,采取振动控制措施势在必行。
二、施工现场振动源在建筑施工过程中,振动源主要有以下几个方面:1. 施工机械:如挖掘机、打桩机等大型设备在操作时会产生较大的振动;2. 施工工艺:如混凝土浇筑、爆破等操作都会引起振动;3. 运输车辆:如卡车、装载机等车辆行驶时也会产生一定的振动;4. 施工地质条件:如存在软黏土地质、薄弱地基等情况时,振动的影响会更加显著。
三、施工现场振动控制措施为了控制施工现场振动对周围环境和结构的影响,以下是一些常见的振动控制措施:1. 合理规划施工:在施工之前,要进行详细的工程规划,并尽量减少振动源对敏感区域的影响;2. 振动监测:通过振动监测仪器对施工现场及周边环境进行实时监测,及时采取措施来控制振动;3. 合理调整施工工艺:例如优化混凝土浇筑工艺,采用减振器等设备来降低振动;4. 选择低振动设备:选用低噪音、低振动的施工机械和设备,如采用橡胶履带等;5. 控制爆破振动:在进行爆破工程时,要合理布置爆破点位,采用减振垫、减振井等来吸收振动能量;6. 地基加固:对于存在薄弱地基的施工现场,可以采取地基加固措施来提高地基的承载能力,减少振动的传递;7. 限制施工现场进入:对特别敏感的区域,可以设置限制进入区域,减少人员和设备引起的振动。
四、建立振动控制方案的步骤制定一个有效的施工现场振动控制方案有以下几个步骤:1. 了解相关法律法规:要了解当地对施工振动的限制标准,并遵守相关法律法规;2. 详细调查研究:对施工现场及周边环境进行详细的调查研究,了解敏感区域及现场的振动特征;3. 振动预测与评估:通过振动预测和评估,确定施工振动对周边环境和结构的影响程度;4. 制定振动控制措施:根据振动预测和评估结果,制定合适的振动控制措施,并确保其可行性;5. 实施方案并监测:按照振动控制方案,对施工现场进行振动监测,并及时调整措施以达到控制效果。
钢结构的建筑振动控制

钢结构的建筑振动控制建筑振动控制是当今工程设计领域中一个重要的研究方向,尤其对于钢结构建筑来说更是至关重要。
在建筑振动控制领域中,钢结构作为一种优秀的结构材料,具有较高的抗震性能和振动控制能力,被广泛应用于现代建筑设计中。
本文将探讨钢结构的建筑振动控制方法及其应用。
一、动力特性分析在进行钢结构建筑振动控制之前,我们需要先了解其动力特性,包括结构的固有频率、振型和阻尼比等参数。
通过动力特性的分析,我们可以更好地把握结构振动的规律,有针对性地进行振动控制措施的设计。
二、质量调节质量调节是一种常用的钢结构建筑振动控制方法。
通过在结构上增加附加质量,可以改变结构的固有频率,从而影响其振动特性。
一种常见的质量调节方法是添加质量阻尼器,如调谐质量阻尼器和阻尼式质量阻尼器。
这些阻尼器能够利用质量的调节作用来吸收结构振动的能量,达到减小振动幅值的效果。
三、刚度调节刚度调节是另一种有效的钢结构建筑振动控制方法。
通过改变结构的刚度,可以调整结构的固有频率,从而控制结构的振动响应。
一种常见的刚度调节方法是采用可调刚度结构元件,如剪力墙和转角补强等。
这些可调刚度结构元件能够根据外部加载条件和振动特性需求,实时调整结构的刚度,从而减小结构的振动。
四、控制系统设计在钢结构建筑振动控制过程中,控制系统的设计尤为重要。
控制系统可以根据结构振动的实际情况,通过传感器采集结构振动信号,并将信号传递给控制器进行处理。
控制器根据预设的控制算法,输出控制力或控制信号,对结构进行控制。
常用的控制算法包括主动控制和半主动控制。
控制系统的设计需要充分考虑结构的动力特性和实际工程要求,以实现最佳的振动控制效果。
五、实例应用钢结构的建筑振动控制方法已经成功应用于许多工程项目中。
例如,在高层建筑中,可以采用质量调节措施,如安装调谐质量阻尼器,来减小结构的振动幅值。
在大跨度桥梁中,可以采用刚度调节措施,如加装剪力墙,来提高结构的抗震性能和振动控制能力。
浅谈建筑结构振动控制技术

浅谈建筑结构振动控制技术【摘要】建筑结构的振动控制技术在高层建筑中应用越来越广泛,本文对现有的建筑结构振动控制方法进行简单的介绍和分类,并简单比较下各类控制方法的优劣点。
【关键词】振动控制;主动控制;被动控制;混合控制;半主动控制0.引言在结构控制概念提出后,许多学者对结构控制的方式和结构控制的设计计算方法进行了相关的研究,对建筑结构的振动反应进行了控制分析,并进行了可行性和可用性的广泛研究,发表了一系列关于现代控制理论的文章。
并在工程实际中得到了应用,本文主要介绍下建筑结构的各类振动控制方法。
1.主动控制技术主动控制装置通常由传感器、计算机、驱动设备三部分组成,传感器用来监测外部激励或结构响应,计算机根据选择的控制算法处理监测的信息及计算所需的控制力,驱动设备根据计算机的指令产生需要的控制力。
对于控制方式尤其是控制装置而言,现应用于土木工程结构中的主动控制系统有:(1)主动调谐质量阻尼器(Active Tuned Mass Damper,简称AMD),它是将调谐质量阻尼器与电液伺服助动器连接,构成一个有源质量阻尼器,因质量运动所产生的主动控制力和惯性力都能有效地减小结构的振动反应。
(2)主动拉索(Active Tendon)控制装置,它是利用拉索分别连接着伺服机构和结构的适当位置,伺服机构产生的控制力由拉索实施于结构上以减小结构的振动反应。
(3)挡风板(Aerodynamic Appendage)控制装置,它是通过在建筑物顶部设置可以闭合和张开的挡风板,根据结构反应的变化情况,合理地调节挡风板的受风面积,利用风力本身来控制结构的反应。
对于土木工程结构来说,主动控制还处于理论阶段,特别是其经济因素和可靠性有待于接受更多的实践检验,但随着科技的进步、试验手段的更新,尤其是研究人员的广泛增加,相信会不断挖掘其优势,克服其不足使主动控制在结构工程中的应用得到进一步发展。
2.被动控制技术被动控制中具有代表性的装置有:耗能器(Dissipaters)、被动拉索(Passive Tendon).被动调频质量阻尼器(Passive Tuned Mass Damper,简称,PTMD或TMD)、调频液体阻尼器(Tuned Liquid Damper,简称,TLD)等。
高层建筑结构的振动控制

高层建筑结构的振动控制随着城市化进程的加速,高层建筑的建设成为了一个普遍的趋势。
然而,高层建筑所面临的振动问题对其安全性和舒适性提出了严峻挑战。
因此,高层建筑结构的振动控制成为了一项重要的研究课题。
本文将从被动控制和主动控制两个方面探讨高层建筑结构的振动控制方法及其应用。
一、被动控制方法被动控制是指通过材料的力学性质变化来减小结构振动。
最常见的被动控制方法是添加阻尼器和减振器。
阻尼器是一种通过消耗振动能量来减小结构振动的装置。
常见的阻尼器包括摩擦阻尼器、液体阻尼器和粘弹性阻尼器。
减振器是一种通过改变结构的刚度和质量分布来减小结构振动的装置。
常见的减振器包括质量阻尼器、液体填充质量阻尼器和钢筋混凝土阻尼器。
被动控制方法简单易行,但其控制效果受到环境影响较大,不能自适应地调整控制参数。
二、主动控制方法主动控制是指通过使用传感器和执行器实时监测和调整结构振动。
主动控制方法可以实时地感知并响应结构的振动状态,可以根据结构的实际情况动态调整控制参数以达到最佳控制效果。
主动控制方法常用的技术包括阻尼控制、阻尼比控制和频率控制。
阻尼控制是通过调整阻尼器的力学参数来改变结构的耗能能力,从而减小结构的振动。
阻尼比控制是通过调整被动阻尼器和主动阻尼器的阻尼比例,以实现结构振动的有效控制。
频率控制是通过改变结构的固有频率和阻尼比来主动调整结构的振动特性。
高层建筑结构的振动控制方法有许多应用场景。
例如,在地震区域,主动控制方法可以及时应对地震振动,保护结构的完整性和人员的安全。
另外,在风区,结构的风振问题也是一个重要的挑战。
通过主动控制方法可以减小高层建筑的风振响应,提升结构的稳定性和舒适性。
还有,在交通枢纽,如桥梁和高速公路上,主动控制方法也可以应用于减小结构的振动,提升结构的使用寿命和设施的安全性。
总结起来,高层建筑结构的振动控制是一个复杂而关键的问题。
被动控制方法和主动控制方法都有各自的优缺点,应根据具体的应用场景选择合适的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈建筑结构振动控制
摘要:文章从不同角度对结构振动控制进行了分类,介绍了其发展与现状,并对近年来控制理论在结构控制方而的新进展给以综述,最后对有待进一步研究的问题进行了探讨,以促进结构振动控制的研究。
关键词:结构振动控制;自主控制;上木工程结构
abstract: this article from a different perspective on the structural vibration control classification, its development and status, and give summarized in the the structure controlling party and the new advances in control theory in recent years, last discussed the issue needs further study .to promote the study of the structural vibration control.key words: structural vibration control; self-control; engineering structures on wood
中图分类号:c935 文献标识码:a 文章编号:2095-2104(2012)结构振动控制是一个应用领域广泛的工程问题。
所谓结构振动控制(以下称为结构控制)是指采用某种措施使结构在动力载荷作
用下的响应不超过某一限量,以满足工程要求。
结构控制问题是一种多学科交叉的理论与工程问题,其结构类型繁多、控制目标不同、实现手段多样。
目前,国内外控制界对这类问题的研究十分重视,有大量的学术论文发表,其中不少新结果得到了实际工程应用。
本文旨在对当前结构控制的一此新进展加以
综述,并对此有待进一步研究的问题给以归纳。
一、结构控制的特点、发展与现状
(一)按控制对能量需求来划分
从控制对外部能量需求的角度,结构控制可分为:被动结构控制、主动结构控制、混合结构控制、半主动结构控制。
除被动控制外,其他三种控制方式中的控制力全部或部分地根据反馈信号按照某种事先设计的控制律实时产生。
主动结构控制效果较好,对环境有较强的适应力,但完全依赖外部能源,闭环稳定性比其他方式差。
在被动控制中,控制力不是由反馈产生的。
其主要优点是:成本低、不消耗外部能量、不会影响结构的稳定性;缺点是:对环境变化的适应力与控制效果不如其他方案。
混合控制是指用主动控制来补充和改善被动控制性能的方案。
由于混合了被动控制,因此减小了全主动控制方案中对能量的要求。
半主动控制中通常包含某种对能量需求很低的可控设备,如可变节流孔阻尼器等作用时所需的外部能量通常比主动控制小得多。
一此初步研究表明混合控制与半主动控制的性能大大优于被动控制,甚至可达到或超过主动控制的性能,并在稳定性与适用性方面要优于后者,因此成为当前研究的一个热点。
(二)按结构特性划分
从被控结构的特性划分,结构控制可分为柔性结构控制与刚性结构控制。
其中柔性结构包括大型柔性空间结构、大跨度桥梁等;刚性结构则包括武器系统中稳定平台、车辆悬挂系统、多刚体机器
人等。
对于两类结构控制所用的主动控制设备也不相同,如在柔性结构控制中传感器与执行器常用的智能材料是分布智能材料,如压电材料;而刚性结构控制中传感器与执行器常用的智能材料是电智能材料,如磁致伸缩材料。
相应地所研究的控制问题侧重点也有所不同,如柔性结构控制中多研究分布参数系统,在控制器设计时所考虑的是模型简化与控制溢出等问题,波动控制是其中较新提出的一类控制问题。
而在刚性结构控制中则较多研究智能材料的非线性与在不同约束下的控制器设计问题。
(三)按控制效果要求划分
精度要求是根据不同的应用而定的。
不同的指标决定了不同的控制。
如稳定平台,控制目的是消除振动,使平台系统尽可能保持稳定,而在土木结构中,控制目的是减少振动和保证安全,并不要求完全消除振动。
在高精度应用中常采用精密的智能结构,如stewark六自由度稳定平台,采用t erlenol_d材料,在尺寸与重量方而都较小,在控制器设计时常采取比较复杂的控制策略,以求达到高的控制效果,比如微米级或纳米级精度,而相对地,对控制能量要求不大。
相反在一些低精度结构控制中由于被控结构特点往往超大尺寸,超大重量,如高层建筑,控制律则要相对简单,高可靠性,低控制能量。
二、结构振动控制中的一些理论
(一)结构控制中建模与模型简化
建模的目的是建立结构及控制系统在外部动态载荷作用下的动力响应模型,尽量真实地描述整个系统的行为。
通常的建模方法有两种: 1)根据牛顿力学原理建立系统的数学模型。
对于复杂结构,这类模型往往维数较高或者是分布系统,多用于系统动力学响应分析与对闭环系统的性能评价方而。
2)利用系统的输入/输出数据采用控制中的系统辨识算法辨识出系统模型,辨识算法不同,则得到的描述模型也不尽相同。
(二)最优控制问题
1)混合最优控制。
通过被动控制可以在一个给定范围内改变结构的质量、刚度与阻尼等参数,进而改变结构的动力学特性。
而基于结构原始参数,按照某一准则可设计出具有理想闭环性能的控制器。
在保证上述理想闭环系统动态特性前提下,同步进行控制器与结构参数重新设计,就有可能同时优化结构与控制参数,在同样的控制效果下最小化控制能量,即实现“被动与主动控制的最优混合”,得到性能与结构参数满足给定约束的最小能量控制器。
如果通过这种优化得到的主动控制器所需能量为零,则对应的最优控制是被动控制。
这种最优混合问题可化为凸二次规划问题,数值解的收敛速度快并能保证全局最优解。
2)可行控制。
通常的输出或输入约束下的最优控制是在l2范数约束下最小化通常最优控制中的某一标量性能函数,而可行性控制是对输出和输入同时加可行性约束,但并不最小化某个标量性能指标。
从这一意义上,可行控制不是最优的,但优点在于易于求得数
值解,如利用matlab的lmi软件工具箱。
(三)随机控制
在结构模型中,结构动力学特性与外部作用力通常存在着不确定性。
此外对结构响应输出测量时,由于柔性结构动力学特性是无穷维的,分散点测量无法对状态进行完全观测,而且存在传感器噪声,因此对结构控制中一此问题的研究需要随机控制理论。
(四)智能控制
在结构控制中,神经元网络除用于辨识结构模型外,也用于结构控制。
间接预报学习控制用于大型空间结构中,自适应神经控制用于柔性空间结构振动控制,使用bp算法及随机优化搜索算法训练的神经元网络逼近多自由度结构的逆动态和控制结构响应。
三、有待研究的控制问题
1)控制器设计角度的建模与模型简化:由于结构系统维数高,含有未建模动态特性及参数不确定性等,研究面向低阶鲁棒控制器设计的辨识方法及模型简化技术等问题是具有实际意义的,同时对于含智能材料的结构,由于材料的强非线性,对材料与结构间的非线性相互作用的辨识也需进一步研究。
2)研究一些较新的鲁棒控制器设计方法:另外研究基于某类特殊结构(如含磁致伸缩材料的稳定平台)的振动控制机理与鲁棒控制算法等都是有很强的工程应用前景的问题。
3)结构控制中的混合控制:不同类型的控制算法集成的研究即混合控制方式目前是控制界极受关注的问题,在结构控制中研究主动与被动控制间的最优混合,具有实际意义的方向。
4)
许多结构控制问题对于可靠性要求很高,而在正常条件下又无法对整个闭环系统进行实现证实控制方案的正确性,如为提高建筑物的抗震能力而设计的结构控制器。