核电站二回路管道系统的FAC资料
FAC损伤导致壁厚减薄的检测方法

监测壁厚 的准确性 , 引入 了有限元分析方法 和封 闭的阻抗模型 , 并使用超声测量壁厚的方法 进行 了验证实验 。结果表明 ,模 型的预测结果与 实验 结果 吻合得非 常好 ,带有 E . P SDC D的
WiM 和 Na M 可 以应用于电站的 F C老化管理 。 R R A
1 引 言
5 9
据D P C D技术 , 建立 了一个新的筛选和检测 F C A 敏感部位的方法 ( 1。首先 ,用常规 F C预 图 ) A
测程序初步选 出可能对 F C敏感的部位 , A 再用超 声测量壁厚技术确定需要优先考虑的部位 。对于 没有使用超声技术进行壁厚测量的部位 ,可以选 用本 文介绍 的宽量程监控技术 ( R ) WiM 。如果 WiM 结果显示存在 F C的敏感区域 , R A 那么就可
I uta Sf y ec 0 5。最近 ,管道壁厚减薄已经成为备受关注的问题 ,一般要 n s i ae n ̄20 ) d r l t Ag 求运营者进行专门的Байду номын сангаас全检查。 由于压水堆核电站二回路中错综复杂的管道系统非常多 ,故要检查所有碳钢管道需
要花费大量的时间。 因此 , 人们普遍选用预测 F C现象发生部位和程度的计算机程序来 A 筛选出对 F AC敏感 的区域 ,比如美国 E R P I的 C E K R H C WO K,德国 SME S公司的 I N W T E ,法国 E F公司的 B TC C R AH C D R -IE O等(hxlt 1 19) C ea ea ,9 6。然后 ,用超声测量壁 . 厚技术来实地检测这些区域的壁厚 ,查找出壁厚减薄最严重 的区域。 但是 , 这些计算机预测程序往往不够准确(hxlt1 19 ) 而且 , C eaea ,96 , . 仅对筛选出的 F C敏感部位 , A 也需要花费大量的时间来逐个点地进行检测。 有时一个典型的 F C预测 A 程序会给出 4 0- 0 0 00 50 个需要检测的部件。 4 但事实上 , 在核电站停堆换料期间仅有约 6 0 0 个部件能被检测。因此 ,很有必要寻找更快的检测程序 。
核电站二回路管道系统的FAC

三、FAC影响因素
在 圆 齿 形 表 面 形 貌 形 成 之 前 , 微 型 缺 陷 必 须 达 到 一 个 临 界 尺 寸 才 能 长 大 。 缺 陷 尺 寸 用沿流体流动方向缺陷长度表征,用Xcrit表示。对于圆形孔洞, Xcrit由下面公式表 示:
Xcrit=
式中,dH是流体直径(对4于 d常H 规 R管e (路7 / 8几) 何形状dH等于管体直径)。
➢ 管路形状的影响
三、FAC影响因素
管道尺寸和形状直接影响流体速度进而影响局部传质速率。如果一个构件的几何形状 能够加速流体流动和湍流程度,则这样的构件会受到更为严重的流动加速腐蚀。流动加 速腐蚀倾向与发生在存在流体动力学干扰的部位,主要是含有蒸汽和水的构件内部或临 接的下游。这些部位包括弯头、弯头、减压器、三通、管道入口、控制节流阀下游、阀 门等。
二、FAC机理
(2)金属表面生成的亚铁离子通过多孔的氧化膜层扩散到主体溶液当中。假设氧化膜层 中不存在网状环流和水流,亚铁离子的扩散是由于浓度梯度控制的。步骤(1)中 产生的H2也经过铁基体和氧化物孔洞扩散到主体溶液当中。上述的两个过程与均匀 腐蚀的这类过程一致。
(3)受溶液中的H+的还原作用,磁铁矿膜在氧化膜/水界面处发生溶解,H+来自金属/ 氧化物界面。
➢第一个过程是在氧化膜/水界面产生溶解的亚铁离子,该过程 可分为三个同时发生的反应:
(1)铁在铁/磁铁矿界面的游离氧水溶液中氧化,反应方程如下:
Fe+2H2O =Fe2++2OH-+H2 =Fe(OH)2+H2 3Fe+4H2O =Fe3O4+4H2 一般认为,有1/2的Fe2+在基体铁/氧化物界面转变为磁铁矿。
• 1.2 FAC事件统计
➢ 据WANO统计,1999年至2007年之间,世界核电行业共发生37起FAC事 件。
材料与水化学第讲核电厂二回路水化学

注意:根据系统设备的材料综合分析
回路系统设备 Steam Cycle Components
HP Turbine Moisture Separator/Reheater LP Turbines
Generator
Condenser
Condensate
Steam Generator
Feedwater
HP Heaters
Deaerator
LP Heaters
热交换器管束、壳侧和管道的材料
Materials of Construction – Heat Exchanger Tubes, Shells and Piping
冷凝器 管束 壳体和管板 低压加热器 LP Heaters 管束 壳体和管板 管束 壳体和管板 管束 壳体和管板 抽气管线 海军铜, 铝铜, Cu-Ni合金, 不锈钢, 钛合金 碳钢, 铝铜 Cu-Ni 合金, 不锈钢 碳钢 碳钢, 不锈钢 碳钢 碳钢, 不锈钢 碳钢 碳钢; 不锈钢替换件
SG二次侧壳体内表面涂有M1防腐涂层,主要成份为环己胺 (C6H11-NH2),其中含有较高浓度的氯离子 按照《蒸汽发生器去除防腐程序》要求,SG二次侧第一次注 入容积2/3的60℃以上的热水浸泡后排空,第二次再注满热水 浸泡后排空,重复直至防腐层去除干净 2003年11月,俄调试单位(ATE)在对SG二次侧去防腐冲洗过 程中,对1号SG按照程序要求冲洗两次,而对其余3台只注水 冲洗一次
高压加热器 HP Heater
汽水分离再热器
蒸汽发生器的材料
Materials of Construction – Steam Generators
Steam separators- carbon steel, 300-series stainless steel Anti-vibration bars - carbon steel, stainless steel Tube bundle – Alloy 600TT, 690TT, 800Mod, Monel 400 Tube support structure - carbon steel, 400-series stainless steel Shell and shroud - carbon steel
核电厂二回路管道应对流动加速腐蚀机理研究

抽汽 、疏 水 、给 水 、汽 水分 离 再 热 器 管 道 等 ) 中普
遍存 在 。根据 全 世界 超过 1 2 0 0 0堆 ・ 年 的统计 数据 表 明 ,F AC约 占据 核 电 站 管 道 失 效 的 3 3 % ,在 所 有管 道失 效 因素 中名 列第 一位 J 。 为确 保核 电站二 回路 管 道 安全 ,预 防 和减 少 因 F AC导致 事故 的发 生 ,有 必 要 从 工 程 设 计 、安 装 、 在线 监督 等方 面加强 管理 。本 文 重 点 探讨 在 设 计 过 程 中考 虑减缓 流 动加 速腐 蚀 所 采取 的措 施 ,以及 建 立管 道 的监督 检 查制 度 ,以预 防和 减 小 这类 管 道 的 失效 ,为 同类 核 电厂 的 二回路管 理 工 程设 计 和在 役
A bs t r a c t:Ba s ed on t h e low f Ac c e l e r a t ed Co r r o s i o n on t he S e c o nd a r y l o o p Pi p i ng o f Nuc l e a r Po we r Pl a n t ,t hi s Pa p e r Di s c us s e d Abo ut t h e Me c ha n i s m ,I nt r o du c e t he i n S e r v i c e I ns pe c t i on Dev e l o pm e n t i n Di f f e r e nt Co un t r y a n d a l s o i n Ch i n a.To de a l wi t h FAC ,t h i s Pa — pe r Di s c us s e d t h e wa ys t h a t c a n be Ap pl i e d i n t he De s i g n Pr o c e s s a nd Pr e s e n t he t Ava i l a bl e Sc he me t o Mi n i mi z e i t Dur ing t he i n Se r v— i c e I ns p e c t i o n,W h c i h c a n b e a Re f e r e n c e f o r s u c h k i n d o f Nu c l e a r Powe r Pl a n t . Ke y wor ds:n uc l e a r p owe r pl a n t ;f low a c c e l e r a t e d c o r r os i o n;2n d l oo p p i pi ng
压水堆核电厂二回路热力系统初步说明

压水堆核电厂二回路热力系统初步设计说明书目录目录 (1)摘要 (1)1、设计要求 (1)2、设计内容 (1)3、热力系统原则方案 (2)3.1 汽轮机组 (2)3.2 蒸汽再热系统 (2)3.3 给水回热系统 (2)4、主要热力参数选定 (3)4.1 一回路冷却剂的参数选择 (3)4.2 二回路工质的参数选择 (3)4.2.1 蒸汽初参数的选择 (3)4.2.2 蒸汽终参数的选择 (3)4.2.3 蒸汽中间再热参数的选择 (3)4.2.4 给水回热参数的选择 (3)5、热力计算方法与步骤 (4)5.1 计算步骤如下面的流程图 (4)5.2 根据流程图而写出的计算式 (5)6、你热力计算数据 (8)6.1 已知条件和给定参数 (8)6.2 主要热力参数选定 (9)6.3 热平衡计算结果表格 (13)6.4 程序及运行结果 (14)6.4.1 用MATLAB程序如下。
(14)6.4.2 运算结果如下图所示。
(17)7、热力系统图 (21)8、结果分析与结论 (22)9、参考文献 (22)摘要二回路系统是压水堆核电厂的重要组成部分,其主要功能是将反应堆一回路系统产生并传递过来的热量转化为汽轮机转动的机械能,并带动发电机组的转动,最终产生电能。
二回路系统的组成以郎肯循环为基础,由蒸汽发生器二次侧、汽轮机、冷凝器、凝水泵、给水泵、给水加热器等主要设备以及连接这些设备的汽水管道构成的热力循环,实现能量的传递和转换。
反应堆内核燃料裂变产生的热量由流经堆芯的冷却剂带出,在蒸汽发生器中传递给二回路工质,二回路工质吸热后产生一定温度和压力的蒸汽,通过蒸汽系统输送到汽轮机高压缸做功或耗热设备的使用,汽轮机高压缸做功后的乏汽经汽水分离再热器再热后送入低压缸继续做功,低压缸做功后的废气排入冷凝器中,由循环冷却水冷凝成水,经低压给水加热器预热,除氧后用高压给水加热器进一步加热,后经过给水泵增压送入蒸汽发生器,开始下一次循环。
二回路汽水循环系统流动加速腐蚀机理分析与管理措施

二回路汽水循环系统流动加速腐蚀机理分析与管理措施摘要:以田湾核电站为例,二回路汽水循环系统内部为流动的高温、高压蒸汽或凝结水,为了全面和深入的掌握二回路汽水循环系统可能发生的腐蚀问题,包括内部的流动加速腐蚀(FAC),外部的海洋性大气腐蚀和保温层下腐蚀等。
本文以FAC为例,并结合大修期间的腐蚀检查,从FAC机理和影响因素的角度详细阐述相关的腐蚀问题,以及对应的减缓或消除FAC的管理措施。
关键词:二回路汽水循环系统、流动加速腐蚀1.引言田湾核电站二回路汽水循环系统主要包括蒸汽系统、给水系统、凝结水系统和疏水系统等。
二回路的管道和设备运行时,内部为流动的高温、高压蒸汽或凝结水,高温设备外部包覆保温层,低温设备外部涂装防腐涂层。
腐蚀问题主要表现为内部的流动加速腐蚀(FAC),外部的海洋性大气腐蚀和保温层下腐蚀等。
本文以FAC为例,从机理及其影响因素的角度详细阐述二回路汽水循环系统腐蚀的问题、以及相应的管理措施。
2.FAC机理在机组运行过程中,管壁内表面覆盖了一层Fe3O4保护膜,在运离保护膜区域的主流区,其流体流速较快,而靠近氧化膜流体边界层的流速较慢,如果主流区中溶解的铁离子未达到饱和,则边界层中已经溶解的铁离子会不断向主流区中迁移,因而在边界层中溶解的铁也处于不饱和状态,故氧化膜中的铁就会溶解到未饱和的边界层中,使Fe3O4氧化膜以一定的速率溶解。
另外氧化膜的孔隙内填有水,金属基体腐蚀产生的铁离子可通过通道直接扩散到氧化膜外的边界层。
这三个区域(主流区、边界层、氧化膜)不断发生溶解铁的迁移,而高速流动的水又将迁移于水中的溶解铁带走,从而导致管件内表面的不断腐蚀,这个过程称为FAC发生的机理。
3.FAC的影响因素结合FAC发生过程中所需的条件,可确定影响FAC的因素有三类,即流体动力学因素、环境因素及金属学因素。
各因素对FAC的作用情况如下:3.1流体动力学因素该因素包括流速、管壁粗糙度、管路几何形状和流体含汽率等。
浅析核电厂二回路系统管道洁净化施工

4 . 2对施工场所进行分 区管理 4 . 4 - 3管道 配 管在 专用 场地 进行 ,管道 对 口前 ,清 除距 管 口 0 1 5 am 范 围 内管 道 内 、 r 外壁上 的毛刺 、 铁锈 、 铁渣、 油污等 , 检 查 4 . 2 . 1 I 类 工作 区 : 将 汽轮机平 台 、 润滑油 和 E H油 安装 区域 、 1 转动设备及精密设备进行解体 的区域 、 主蒸汽 系统 以及 汽轮机 导气 并 清理 管 内异 物 。
管 道 施 工 区域 划 为 I 类工作 区, 对 该 类 区域 管 理 要 求 如 下 : 4 . 4 . 4管 道坡 口预 制 采 用 机 械 加 工 方 式 进 行 , 现 场 制 作 的 三 通 应 a . 所 有工作人员不得携 带食物 、 饮料 、 香烟 、 火 柴 等 物 品进 入 工 认 真 清 除焊 渣 、 焊瘤 、 药皮等杂物 , 保证其通径 。
科 技 论 坛
・ 9 3・
浅析核 电厂 二 回路 系统管道 洁 净化 施工
张 伟 ( 中 电投 电 力 工程 有 限公 司烟 台分 公 司 , 山东 海阳 2 6 5 1 0 0 )
摘
要: 核 电厂二 回路 系统对安装环境及清 洁度要 求较 高 , 本文 阐述 了通过对 工作场 所分类管理和对 系统管道分级管理来控制洁净
化 施 工的 措 施 。
关键词 : 核 电厂 ; 二 回路 系统 ; 洁净化
1 核 电厂 二 回路 系统 洁 净 化 施 工 的 范 围 及 特 点 核电厂二回路系统洁净化施工 的管道包括主蒸汽 系统 、 主给水 表 1 结水系统 、 加热器疏 水排气系统 、 闭式 冷却水 系统 、 定子 冷却 水系统 、 油系统 、 氢气 和二 氧化碳系统等 , 这 些系统 对安装环境 、 安装工艺和清洁度要求较高 。
核电厂二回路热力系统.pdf

低压给水加热系统的功能是利用汽轮机低压缸抽汽加热凝 结水,以提高循环热效率,共有四级低加。
高压加热器利用高压缸抽汽加热给水,以提高循环热 效率。
共有两级高加。 回热系统中的热交换设备主要是给水加热器和除氧器。给
水加热器一般为表面式热交换设备。 蒸汽进入加热器壳体流经换热管束外表面,加热在管束里 流动的水,其本身凝结成疏水经疏水管线排出加热器。 凝结水经进口水室流入换热管束被蒸汽加热,经出口水室 流出完成加热过程。 加热器传热效率与加热器的传热面积、传热管子的清洁度、 给水流速、加热蒸汽和给水的温度等因素有关。 一般把位 于凝结水泵以后和除氧器以前的给水加热器处于凝结水泵出 口压力下工作,称为低压给水加热器;位于主给水泵出口以 后的给水加热器处于给水泵高压力下工作,称为高压给水加 热器。
对一个全部采用逐级自流的疏 水系统,高压加热器逐级自流疏 水至除氧器;对于除氧器前面几 级低加加热器,疏水最终导入凝 汽器。
这种自流疏水系统,不增添任何设备,系统简单,但经济 性差。这是由于从较高压力的加热器的疏水流到较低压力的加 热器时,部分闪蒸蒸汽就排挤了一部分低压加热蒸汽,即减少 了汽轮机的较低压力抽汽量。若保持汽轮机功率不变,势必增 加凝汽循环发电量,最后增加了在凝汽器中的热损失。同时, 疏水经过最后一级加热器排入凝汽器,热量被循环水带走,从 而又引起额外的热损失。若逐级自流的疏水,最后不排到凝汽 器,而是送入热阱或凝结水泵入口,则经济性会有所改善。
采用疏水泵使得系统复杂,投资增 加,耗厂用电,维修运行费用提高。因 此,一般在低压的热器末级或次末级使 用。例如,我国大亚湾核电厂,二回路 系统第3、4级低压加热器的疏水经疏水 泵送入第3、4级低压加热器之间的凝结 水管道中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
step2
step3
二、FAC机理
2.2 FAC的作用机理
通常认为流动加速腐蚀是静止水中的均匀腐蚀的一种扩展,其区别在 于流动加速腐蚀的氧化膜/溶液界面存在流体运动。考虑到金属表面 多孔铁磁相膜的存在,流动加速腐蚀可以分解为两个耦合过程。
第一个过程是在氧化膜/水界面产生溶解的亚铁离子,该过程可分
呈现典型的磁铁矿黑色。
二、FAC机理
2.1 流动加速腐蚀的概念
在单相液态流条件下,当腐蚀速率较高时,金属表面会出现典型 的马蹄铁形状的蚀坑,形成扇贝形状或桔子瓣形的腐蚀形貌。扇贝形
腐蚀形貌常出现在发生严重管壁减薄的大直径管道内表面。在双相流
条件下,大型管道表面的流动加速腐蚀形态是 ―老虎花纹‖状形貌。
Date
1976 1982 1983 1984 1985 1986 1987 1988
Surry 1
Catawba Susquehanna 1 Zion 1 Turkey Point 3 Millstone 2
Rupture of low pressure heater drain line in feedwater line
中。假设氧化膜层中不存在网状环流和水流,亚铁离子的扩散是
由于浓度梯度控制的。步骤(1)中产生的H2也经过铁基体和氧化 物孔洞扩散到主体溶液当中。上述的两个过程与均匀腐蚀的这类
过程一致。
(3)受溶液中的H+的还原作用,磁铁矿膜在氧化膜/水界面处发生溶解 ,H+来自金属/氧化物界面。
1 1 4 Fe3O 4 (2 b)H H 2 Fe(OH ) (b2 b ) ( b)H 2 O 3 3 3
材料 :碳钢 温度 : 140oC 流速 : 2.2m/s 氧含量 : <5ppb 水化学 : AVT (pH8.5-9.7)
一、FAC背景
1.2 FAC事件统计
Plant Name
Oconee 3 Browns Ferry 1 Oconee 2 Calvert Cliffs Handdam Neck Surry 2 Trojan 2 Surry 2
薄后最薄处只有1.4mm。
一、FAC背景
1.1 典型FAC事件-2
日本Mihama FAC 失效位置示意图
破裂位置
5人死亡,6人受伤!!
一、FAC背景
Mihama FAC 失效
28 年从未检测 开裂时最薄处壁厚 1.4 mm (原厚度10 mm) FAC 速率 = 0.34 mm year-1
一、FAC背景
1.3 FAC的危害
压力容器和管道的降级; 电站降功率或者停堆; 人员伤害; 经济损失。
二、FAC机理
2.1流动加速腐蚀的概念
流动加速腐蚀(Flow-accelerated corrosion,简称FAC)就是碳 钢或低合金钢表面保护性的氧化膜在水流或气液两相流作用下发生 溶解、破坏的过程。由于氧化膜的不断减薄,保护性能下降,腐蚀 速率上升,最后达到一种平衡状态——腐蚀速率和溶解速率趋于一 致,并保持这个稳定的腐蚀速率持续下去。金属表面局部区域的氧 化膜非常薄,几乎相当于金属的裸露表面。一般情况下,腐蚀表面
1991 1992 1993 1994 1995
Fort Calhoun
Mihama
extraction steam line
condensate line downstream of an orifice
1997
2004
一、FAC背景
1.2 FAC事件统计
据WANO统计,1999年至2007年之间,世界核 电行业共发生37起FAC事件。
核电站二回路管道系统的FAC
苏州院寿命中心化学及状态评估研究所 2012年08月
提纲
一、FAC背景 二、FAC机理 三、FAC影响因素 四、FAC分析
五、FAC有效管理
一、FAC背景
1.1 典型FAC事件-1
1986年12月9日,美国Surry核电厂2号机组凝结水管线 上的一个18英寸弯头运行时突然破裂,造成4死4伤的严
Damage
Leak in extraction line Rupture of discharge line MSR drain line Failure of expander in reheater drain line Rupture of elbow in cold reheat steam line Rupture of feedwater heater line Rupture of feedwater line elbow Leak in main feedwater line E/C wear of elbow in main feedwater line
E/C wear of feedwater line E/C wear of feedwater line Leak in moisture separator line Leak in moisture separator line Heater drain recirculation line
1990
单相流:圆齿状、波状或桔皮状
两相流:老虎斑纹
二、FAC机理
2.2 FAC的作用机理
Fe Fe2 step1
氧化膜中的扩散 Fe
2
流体边界层中的扩散 2 Fe3O4 Fe
氧化膜的形成 DO 氧化膜的溶解 + H
Fe 的扩散
2+
为三个同时发生的反应: (1)铁在铁/磁铁矿界面的游离氧水溶液中氧化,反应方程如下: Fe+2H2O =Fe2++2OH-+H2 =Fe(OH)2+H2 3Fe+4H2O =Fe3O4+4H2
一般认为,有1/2的Fe2+在基体铁/氧化物界面转变为磁铁矿。
二、FAC机理
(2)金属表面生成的亚铁离子通过多孔的氧化膜层扩散到主体溶液当
重后果。最后190个部件被更换。Surry核电厂的FAC事
故唤起了世界核电对FAC的重视。
一、FAC背景
1.1 典型FAC事件-2
2004年8月9日,日本美滨核电厂3号机组低压加 热器到除氧器之间的凝结水管道破裂,11名工
人被严重烫伤,其中五人死亡。事后检查发现
,由于FAC作用使得原来约10mm厚度的管道减