航空发动机控制基础
航空发动机控制

燃气涡轮发动机控制系统介绍现代燃气涡轮发动机闭环控制系统大致分为控制器、传感器、执行器与附件。
最简单的发动机控制系统是通过调节燃油流量来产生期望的发动机推力的系统。
但是实际上,飞行过程中获取飞机的推力是不现实的,而发动机的转子转速n 与发动机的增压比(EPR )是容易获取的且能够表征推力的变化,通常被选择为被控参数。
控制变量为燃油流量,或者执行器(燃油流量计量阀)的位移。
飞机包线:典型的飞机包线表示为飞行高度与飞行马赫数之间关系。
对于涡喷与涡扇发动机,还包括环境温度坐标,也即三维图像。
发动机控制包线是一个允许发动机的工作范围,是以主控制变量燃油流量与发动机转子转速(在EPR 控制的情况下是增压比)之间的关系。
由于燃油流量比(油气比)比燃油流量更适合做主控制变量。
燃油流量比定义为燃油流量Wf 与压气机出口压力p3的比值RU=Wf/p3。
发动机建模与仿真一、稳态发动机模型二、动态发动机模型燃气涡轮发动机的三个基本动力学方程:转子动态方程、压力动态方程与温度动态方程。
单轴发动机转子动力学:单轴发动机可以近似为一个一阶惯性环节。
从输入变量燃油流量至输出变量的传递函数为:Y(s)cb d Wf (s)s a=+-,其中1111Q Q y y a ,b ,c ,d J n J W f J n J W f∆∆∆∆====∆∆∆∆。
双轴发动机转子动力学:为二阶模型。
表示为状态空间为:[]1111212212221212n a a n n a a n n y c c dWf n ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤=+⎢⎥⎣⎦,其中参数与单轴类似,为偏导数,偏导数的值由标称点处偏导数值获得。
表示为传递函数为:12Y(s)k(s z)Wf (s)(s r )(s r )+=++ 压力动力学:压力变化为质量变化的积分。
0p(s)(PV/T)M(s)s =∆。
温度动力学:两种温度动力学:一是由于容积内空气或者燃气的热力学状态改变引起的温度变化(相对较快,快温度动力学),二是金属部件与燃气之间热传导引起的温度变化(相对变化慢,慢温度动力学)。
航空发动机控制基础ppt课件

反馈是将输出返回到输入量的入口
结构简图
f 放大元件
执行元件
供油元件
发动机
Hale Waihona Puke pmwfn
敏感元件
y
闭环控制:
控制比较精确,在现代飞机上被广泛使 用
反应不够及时,被控参数发生偏离,才 开始动作,干扰量连续变化,系统工作不稳 定
偏离原理控制
开环控制:
开环系统是一种最简单的控制方式,特点 是在控制器和被控对象之间只有正向作用, 而没有反馈,即系统的输出量对控制量没有 影响。
航空发动机对控制装置的基本要求
➢可更改性好,满足先进发动机对控制不 断增加的要求
航空发动机对控制装置的基本要求
➢ 结构简单、重量轻、体积小、安装方便
第二章 民航发动机的控制
内容
➢自动控制的基本概念 ➢民航发动机控制的内容
自动控制的基本概念
被控对象:发动机 控制装置:转速控制器(虚线内部分) 控制系统:被控对象+控制装置 被控参数:转速 可控变量:用来改变被控参数大小的因素 干扰作用量:作用在被控对象/控制装置上,
航空发动机对控制装置的基本要求
➢ 良好的动态品质 控制的动态过程要有较好的快速性,而且
过程要平稳
航空发动机对控制装置的基本要求
➢ 可靠性高,维护性好 采用分布式结构降低控制系统的复杂性 将控制器安装在远离发动机的区域 采用砷化镓和碳化硅制造电子元器件 提高系统的耐高温、抗振动和抗电磁干扰的能 力
内容
➢齿轮泵的工作原理 ➢油泵供油量的调节特性
供油元件:燃油泵
❖油泵:是一种将机械能转化为液压能的机械。
❖ 根据用途分类: 燃油泵 特殊需要的
力油
能够引起被控参数变化的外部作用量 给定值:驾驶员的指令值
航空发动机控制系统发展概述

航空发动机控制系统发展概述航空发动机控制系统发展概述摘要:发动机作为飞机的心脏为飞机提供前进的动力,而动力来自于发动机通过进气道、压气机、燃烧室、涡轮及尾喷管共同工作提供的推力。
但是这些部分的工作参数是无法通过自身进行调节的,需要采用智能调控系统进行控制,这就是航空发动机的控制系统。
本文主要就航空发动机控制系统发展进行探讨。
关键词:航空发动机;控制系统;发展1航空发动机控制系统组成和原理1.1航空发动机控制系统组成发动机是飞机的重要系统,除了发动机本体单元体之外,还包括控制系统、传动系统及润滑系统等。
其中控制系统是航空发动机的重要组成部分,现代航空发动机基本都采用全权限数字电子控制(FADEC)系统。
FADEC系统由感受航空发动机工作状态和环境信息的传感装置、对信息进行逻辑判断和控制运算的计算装置、把计算结果施加给航空发动机的控制装置,以及在它们之间传递信息的机械、电缆和管路等组成。
FADEC系统--般可分为控制计算机子系统、燃油与作动子系统、传感器子系统、电气子系统等。
图1为某型发动机FADEC系统的组成图。
控制计算机子系统分为电子控制器和嵌入式软件两部分。
数字电子控制器(EEC)是FADEC系统的核心部件,它处理来自各种传感器和开关装置的信号,经模/数转换为数字量,由其内部机载的控制软件对输入数字量进行诊断、处理,实现各种控制算法、控制逻辑的计算,产生输出数字量,再经过数/模转换成模拟信号,经放大处理,生成控制器输出驱动信号,经电缆传输给相应的液压机械装置。
燃油与作动子系统包括燃油子系统和伺服作动子系统。
燃油子系统包括增压泵、主燃油泵、燃油计量装置、燃油滤、燃油管路、喷嘴等。
伺服作动子系统包括伺服控制单元、伺服作动器及相应附件。
传感器子系统包括控制用传感器和状态监视用传感器等。
1.2航空发动机控制系统原理FADEC系统-般包括转速、压力、温度等多个控制回路,每个控制回路根据相应的输入闭环计算出控制输出,进而实现控制发动机状态的目的。
航空发动机控制系统纵论

航空发动机控制系统纵论发动机控制系统对于发动机而言犹如人的大脑对人体各器官的控制作用,是发动机的核心部件。
航空发动机动力学控制技术的主要目的,是通过对支承结构和质量分布的合理分配,保障发动机在全转速范围内无有害振动。
飞机要在不同的高度和速度下飞行,为了在飞行中保持发动机的给定工作状态,或者按照所要求的规律改变工作状态,都必须对发动机进行控制。
所有这些只有依靠自动控制系统来完成。
目前,我国正在结合高性能军用航空发动机的型号研制工作,开发符合中国国情的航空发动机数控系统,缩短与先进国家的技术差距,推动我国航空发动机技术的发展。
一、发动机控制系统的基本要求(一)穩定性高。
航空发动机是一种高度复杂和精密的热力机械,为航空器提供飞行所需动力的发动机。
作为飞机的心脏,被誉为"工业之花",它直接影响飞机的性能、可靠性及经济性,是一个国家科技、工业和国防实力的重要体现。
航空发动机控制系统能够保障航空器的持续适航,技术具备强实时性、高稳定性及小巧便携等优势,能够在降低监测和诊断设备成本的同时,实现机载化的航空发动机监测与诊断系统的良好运行。
但是随着系统规模和复杂程度的不断提高,基于文档的系统工程面临的困难越来越突出,如信息表示不准确造成歧义、难以从海量文档中查找所需信息、无法与其他工程领域的设计相衔接(如软件、机械、电子等)。
于是基于模型的系统工程(MBSE)应运而生,这也是未来系统工程发展的必然趋势。
(二)精度高。
航空发动机的工作环境复杂,工作温度范围大(环境温度~2000 ℃),导致结构工艺特征参数和结构特征参数的变化范围大,引起发动机结构振动具有非线性时变特性。
同时,转静件间隙、支承刚度、同心度、不平衡量分布等动力学参数和气动流场气动力等,随发动机状态和温度场的变化而变化,造成各连接结构部件振动传递特性相差也较大。
在保证发动机可靠性的前提下,要求发动机的“寿命长”。
这是发动机经济性的另一项指标。
航空发动机状态控制系统课件

系统发展历程与趋势
发展历程
航空发动机状态控制系统经历了从机械液压式到全权限数字电子控制(FADEC )的发展过程,技术不断升级换代。
趋势
未来发展方向包括更加智能化的控制算法、更加精确的传感器技术以及更加可 靠的网络通信技术等。
02 航空发动机状态检测技术
传感器技术
01
02
03
传感器类型
温度、压力、振动、位移 等传感器用于监测航空发 动机的工作状态。
自适应鲁棒控制
自适应鲁棒控制是一种结合了自适应控制和鲁棒控制的算法,它 能够根据系统的不确定性和扰动情况,自动调整控制器参数,以
保证系统的稳定性和性能。
04 航空发动机状态控制系统设计
系统架构设计
系统架构概述
01
介绍航空发动机状态控制系统的整体架构,包括各组成部分及
其功能。
分层架构设计
02
详细描述系统架构中的各层,包括感知层、控制层、执行层等
航空发动机状态控制系 统课件
目录
Contents
• 航空发动机状态控制系统概述 • 航空发动机状态检测技术 • 航空发动机状态控制算法 • 航空发动机状态控制系统设计 • 航空发动机状态控制系统实现与验
证 • 航空发动机状态控制系统案例分析
01 航空发动机状态控制系统概述
系统定义与功能
定义
航空发动机状态控制系统是用于监测 、控制和优化航空发动机性能的一套 综合系统。
功能
实时监测发动机状态参数,如温度、 压力、转速等;控制燃油流量、点火 时刻等关键参数;对发动机性能进行 优化,确保安全、高效运行。
系统重要性及应用领域
重要性
航空发动机状态控制系统是保障 飞行安全和提高飞行效率的关键 技术之一。
航空发动机控制系统课件

通过检测发动机进气、排气和 燃油系统的压力和流量,判断
是否存在故障。
维护与保养
定期更换润滑油和滤清器
保持发动机内部清洁,防止磨损和堵塞。
定期检查涡轮和压气机
确保发动机的空气流动畅通无阻。
检查电气线路和传感器
确保发动机控制系统的正常工作和信号传输 。
调整燃油和点火系统
保证发动机的正常燃烧和功率输出。
涡轮增压器
涡轮增压器是航空发动机控制系统中 用于提高发动机进气压力的执行器。
涡轮增压器的工作温度和压力很高, 因此需要采用耐高温、耐磨损的材料 制造,同时需要定期进行维护和更换 易损件。
涡轮增压器通过将废气排出发动机后 驱动涡轮,涡轮再带动压气机将空气 压缩并送入发动机,从而提高发动机 的进气压力和密度。
喷油嘴
喷油嘴是航空发动机控制系统 中控制燃油喷射的关键执行器
。
喷油嘴通过精确控制燃油的喷 射量和喷射时间,实现发动机 的燃油供给和燃烧过程的控制
。
喷油嘴通常由针阀和喷嘴组成 ,针阀用于控制燃油的流动, 喷嘴则将燃油雾化成微小颗粒 ,以便更好地与空气混合燃烧 。
喷油嘴的性能直接影响发动机 的燃烧效率和性能,因此需要 定期检查和维护,以确保其正 常工作和良好的性能。
具有输出力矩大、响应速度快的特点,适用于 大负载的场合。
气动执行器
利用压缩气体驱动,具有结构简单、可靠性高的优点。
控制算法的优化与改进
自适应控制算法
根据系统参数变化,自动调整控制参数,提 高控制精度。
鲁棒控制算法
针对不确定性因素,设计鲁棒控制器,提高 系统稳定性。
滑模控制算法
通过滑模面的设计,实现快速响应和抗干扰 能力。
航空发动机的动态特性与控制技术

航空发动机的动态特性与控制技术航空发动机,作为现代航空领域的核心部件,其性能的优劣直接决定了飞行器的飞行品质和安全性。
在航空发动机的研发和应用中,动态特性与控制技术是两个至关重要的方面。
航空发动机的动态特性是指其在运行过程中,各种参数随时间的变化规律和响应特性。
这包括了转速、推力、温度、压力等关键参数的动态变化。
了解和掌握这些动态特性对于优化发动机设计、提高发动机性能以及保障飞行安全都具有极其重要的意义。
航空发动机是一个极其复杂的系统,其内部包含了众多的部件和流动过程。
在运行时,各个部件之间相互作用,形成了复杂的动态响应。
例如,当飞行员突然改变油门杆位置时,发动机的转速和推力不会瞬间达到新的稳定值,而是会经历一个过渡过程。
这个过程中,发动机的各个部件需要重新调整工作状态,以适应新的工况。
这种动态响应的快慢和稳定性,直接影响了发动机的性能和可靠性。
同时,航空发动机在不同的飞行条件下,其动态特性也会有所不同。
比如,在高空、低温、低气压的环境中,发动机的燃烧过程、气体流动等都会发生变化,从而导致动态特性的改变。
因此,为了确保发动机在各种复杂的飞行条件下都能稳定可靠地工作,就必须深入研究其动态特性。
而控制技术则是为了实现对航空发动机动态特性的有效管理和优化。
通过采用先进的控制技术,可以使发动机在不同的工况下都能保持最佳的工作状态,提高燃油效率,降低排放,同时增强发动机的可靠性和耐久性。
现代航空发动机的控制技术已经发展到了相当高的水平。
从早期的机械控制,到后来的液压控制,再到如今的电子控制,控制技术的不断进步为航空发动机性能的提升提供了有力的支持。
电子控制技术的应用,使得对航空发动机的控制更加精确和灵活。
通过传感器实时监测发动机的各种参数,如转速、温度、压力等,并将这些信息传递给电子控制单元(ECU),ECU 根据预设的控制算法和策略,对发动机的燃油供给、进气量、喷油量等进行精确调节,从而实现对发动机工作状态的优化控制。
航发(机械燃油调节器)控制原理

❖ CFM56-5B发动机数字式电子控制器的燃油控制规律用于 计算燃油计量阀的供油指令信号。该指令信号送到燃油计量 装置,以产生合适的燃油流量控制发动机的风扇转速,从而 提供相应的推力。供油量的指令信号的计算取决于风扇转速 的指令信号、各种安全保护限制因素和相应的控制规律。
下垂凸轮杠杆机构完成系统反
馈信号nH的计算,保证滚轮位移x 与nH转速之间满足给定的函数关系, 即 x=f1(nH)
d) 油门放大器
油门放大器如图所示,它由角形杠杆5,压力比阀3,小活 塞2,油门活塞8,弹簧7,节流嘴1,喷嘴挡板6和平衡喷 嘴挡板4等组成。
油门放大器是控制器的核心,完成顺馈通路与反馈回路的 信号综合,并根据综合后的信号控制执行元件-油门位置 ,即控制供往发动机的油量。
③发动机一旦出现喘振,Pt3会急剧下降,以Wf/Pt3作为控制参 数时,Wf将随Pt3的减小而减小,使压气机自动退出喘振, 但会使剩余功率减小。
由于这种加速控制规律不是按发动机加速相似关系建立的, 因此,飞行条件改变时, Wf/Pt3与nH的关系曲线会略有改变 ,不能保证在任何飞行条件下都获得同样良好的加速性。
图中,①-稳态供油量曲线;
②-最佳加速供油量曲线;
③-发动机涡轮前燃气最高允
许温度限制线;
④-压气机喘振边界;
⑤-发动机贫油熄火边界。
最佳加速供油量曲线
当发动机加速时,加速供油量达到相应转速下允许的极限供 油量,即紧挨Tt4max和压气机喘振边界,通常称这条极限供 油量曲线为最佳加速供油量曲线。之所以将这条曲线称为最 佳加速供油量曲线,是因为按这条供油量曲线进行加速时, 加速时间Tac最小。这条曲线形状特殊,初始有一阶跃,接 着曲线供油量大小与斜率随发动机转速n大小而变。这条曲 线也随飞行条件变化而变化,从理论上不易确定,一般用试 验方法确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
安全限制 超转限制 超温限制 超压限制 超功率限制
•
民航发动机的控制类型 机械液压式控制
JT8D JT9D-7J PT6T 监控型电子式控制
JT9D-7R4 CFM56-3 RB211-535E4 全权限数字电子控制
PW4000 V2500 CFM56-5 Trent GE90
成熟 全权限监控——以安全为主兼顾性能和经济性
未来 全权限数字电子控制——以安全为主兼顾性能、经济性和 环保性
•
CFM56 FADEC系统的功能
•
•
航空动力装置控制包括: 进气道控制、发动机[核心机]控制、排气装 置控制
•
航空发动机控制基础 aircraft engine control 根据自动控制原理运用机械、液压、气压、 电气等控制装置使航空发动机自动地按预定 规律工作,以便发动机在各种飞行条件下能 安全工作并获得最佳的或接近最佳的性能。
•
第三章 燃油泵
内容
齿轮泵的工作原理 油泵供油量的调节特性
能够引起被控参数变化的外部作用量 给定值:驾驶员的指令值
•
控制作用量:能改变给定值大小的作用量 调准和调准机构:改变控制作用量的过程及其
机构 过渡过程和平衡稳定过程 结构简图
r
•
•
•
控制系统的基本控制方式和被控对象之 间,不仅存在正向作用,而且存在反馈作用
•
过渡控制
目的:过渡过程能迅速、稳定、可靠的进行 启动控制 加速控制 减速控制 压气机防喘控制 加力接通及关闭控制等
•
压气机控制 在启动、加速和减速过程中保证压气机稳定工作,不发生 喘振
控制方案(程序控制) 1 按转速n的压气机控制。 2 按压比进行控制 3 按n2和压气机进口温度控制VBV、VSV 4 按相似转速控制 5 按照n1、n2、大气总温、进口温度、环境压力、飞行马赫数、
Wf 燃油流量
Ae 喷管出口面积
•
控制方案(调节规律或调节计划)
根据外界干扰(飞行高度和速度的变化)和 驾驶员的指令来改变可控变量,以保证发动 机被控参数不变或者按预定的规律变化,从 而达到控制发动机推力的目的。
不带加力的单转子涡喷发动机
Wf
n
双、三转子的涡喷和涡扇发动机
Wf
nH
Wf
EPR
Wf
π
* c
保证发动机的安全工作。 不熄火、不超温、不超载、不喘振、不超转 防止压气机的喘振(VBV variable bleed valve、 VSV variable stator vane) 提高发动机的性能(涡轮间隙控制TCC)
•
•
•
早期: 单变量控制——基本的安全考虑
发展: 多变量监控——以安全为主兼顾性能
•
航空发动机对控制装置的基本要求
良好的动态品质 控制的动态过程要有较好的快速性,而且过 程要平稳
•
航空发动机对控制装置的基本要求
可靠性高,维护性好 采用分布式结构降低控制系统的复杂性 将控制器安装在远离发动机的区域 采用砷化镓和碳化硅制造电子元器件 提高系统的耐高温、抗振动和抗电磁干扰的能 力
开环系统没有纠正偏差的能力,当受到干扰 时,会引起系统精度降低,它的精度完全取 决于系统元器件的精度和调整的准确度
•
复合控制
指令机构 敏感元件
放大元件
执行元件
供油元件
敏感元件
发动机
•
思考题
闭环控制的原理是什么
•
民航发动机控制的内容
发动机控制内容有: 燃油流量控制 空气流量控制 涡轮间隙控制 冷却控制 其它系统控制 涡桨、涡轴发动机控制 超音速民航机控制
航空发动机控制基础
航空发动机(燃气涡轮发动机)推力 工作原理
进气道
压气机
燃烧室
涡轮
喷管
飞机在不同的飞行阶段,需要不同的推力 起飞、爬升、巡航、下降、进近、着陆、复飞 此外,飞行条件也在不断变化。
•
控制发动机的推力或功率输出以满足飞机的需 要。 燃油系统将清洁的、无蒸汽的、经过增压的、 计量好的燃油输送给燃烧室。 燃油量的多少要由燃油控制器给出
•
发动机控制的目的
稳态控制:保持既定发动机的稳定工作点 过渡控制:快速而又稳定可靠 极限控制:保证发动机的主要参数不超出安
全限制
•
稳态控制
目的:为了获得所需要的推力和功率 转速控制 压力比控制 慢车控制 反推力控制 加力控制 进气道控制
•
被控参数和可控变量
表征发动机推力的量 N1 EPR
涉及的内容控制理论、发动机原理、气体 动力学、工程热力学、机械、液压、电子、 计算机等各方面的知识。
•
航空发动机对控制装置的基本要求
保证最有效的使用发动机,最大限度地发 挥其潜力
最大状态 巡航 慢车
•
航空发动机对控制装置的基本要求
保证动力装置稳定工作,控制精度高 有极强的抗干扰能力 调节的准确度要高
反馈是将输出返回到输入量的入口
结构简图
f
放大元件 p 执行元件 m 供油元件 w f 发动机
n
y
敏感元件
•
闭环控制:
控制比较精确,在现代飞机上被广泛使用 反应不够及时,被控参数发生偏离,才开 始动作,干扰量连续变化,系统工作不稳定 偏离原理控制
•
•
•
开环控制:
开环系统是一种最简单的控制方式,特点是 在控制器和被控对象之间只有正向作用,而 没有反馈,即系统的输出量对控制量没有影 响。
f
敏感元件
放大元件 p 放大元件 m
放大元件 wf
放大元件 n
•
开环控制: 反应及时,控制系统和被控对象(发动机) 同时感受外界所有的干扰量变化,控制装置 变化与发动机变化同步,稳定性好。
控制精度差 不能感受所有的干扰量 对发动机内部的变化无法感知
•
开环与闭环控制系统的比较 闭环系统引入了反馈,精度高,可以采用成 本较低,精度不太高的元件构成精度较高的 控制系统
•
航空发动机对控制装置的基本要求
可更改性好,满足先进发动机对控制不 断增加的要求
•
航空发动机对控制装置的基本要求
结构简单、重量轻、体积小、安装方便
•
•
第二章 民航发动机的控制
内容
自动控制的基本概念 民航发动机控制的内容
•
自动控制的基本概念
•
•
被控对象:发动机 控制装置:转速控制器(虚线内部分) 控制系统:被控对象+控制装置 被控参数:转速 可控变量:用来改变被控参数大小的因素 干扰作用量:作用在被控对象/控制装置上,