沪教版初二数学暑假作业几何综合题有答案
初中八年级数学(沪科版)暑假作业(四)含答案

初中八年级数学(沪科版)多媒体暑假作业(四)一. 相信自己。
1.边长都是5cm 的两个正方形 是(填“是”或“不是”)全等图形.2.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 90度。
3. 如,∠A 与∠1是邻补角,∠3与∠B 是同旁内角,∠7与∠C 是内错 角,∠4与∠6是内错角;87654321E DC B A4.在△ABC 中, ∠A =40°,∠B =∠C ,则∠C =70度5.一个三角形三个内角度数的比是2∶3∶4,那么这个三角形是锐角三角形.6.在△ABC 中, ∠A -∠B =36°,∠C =2∠B ,则∠A = 72度,∠B = 36度,∠C =72度.7.如图,DE ∥BC ,∠ADE =60°,∠C =50°,则∠A =70度5.多边形的每个内角都是每个外角的4倍,则这个多边形的边10/十6.多边形的边数增加1,则内角和增加 180度,而外角和= 360度.7.在四边形ABCD 中,若∠A =∠C =90°,2∠B =3∠D ,则∠B = 108度,∠D =72度。
8.若一个多边形的内角和等于1260°,则这个多边形是 9/九 边形.二.择优录用。
1.以长为13cm.10cm.5cm.7cm的四条线段中的三条线段为边,可以画出三角形的个数是( C )A.1个B.2个C.3个D.4个2.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高.三条中线.三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有( B )A.1个B.2个C.3个D.4个3. C.D是线段AB上顺次两点,M.N分别是AC.BD中点,若CD=a,MN=b,则AB的长为( A ).A.2b-aB.b-aC.b+aD.2a+2b4.如图,ΔABC≌ΔADE,∠B = 70º,∠C = 26º,∠ DAC = 30º,则∠EAC =( B )A.27ºB.54ºC.30º D.55º5.下列说法正确的是( C )A.全等三角形是指形状相同的两个三角形;B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积分别相等;D.所有等边三角形都是全等三角形6.已知△ABC与△DEF全等,∠B与∠F,∠C与∠E是对应角,那么①BC=EF;②∠C的平分线与∠E的平分线相等;③AC边上的高与DE边上的高相等;④AB•边上的中线与DE边上的中线相等.其中正确的结论有( C )A.1个 B.2个 C.3个 D.4个7.如图,C是AB的中点,D是BC的中点。
八年级数学几何综合卷(沪教)

八年级几何综合卷一、选择题(每题3分,共18分)1.下列说法中,正确的是 ( ) A .每一个命题都有逆命题 B .假命题的逆命题一定是假命题 C .每一个定理都有逆定理 D .假命题没有逆命题2.如图,∆ABC 中,AD 为∠BAC 的平分线,DE ⊥AB,DF ⊥AC,E 、F 为垂足,在以下结论中:①∆ADE ≅∆ADF ;②∆BDF ≅∆CDF ;③∆ABD ≅∆ACD ;④AE=AF ;⑤BE=CF ;⑥BD=CD .其中正确结论的个数是 ( ) A .1 B .2 C .3 D .4 3.把16个边长为a 的正方形拼在一起,如图,连接BC ,CD ,则∆BCD 是 ( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .任意三角形DCBDEABCB'BC'CA (A')第2题图 第3题图 第4题图 第6题图4.如图,∆ABC 中,∠C=︒90,BD 平分∠ABC 角AC 于D ,DE 是AB 的垂直平分线,DE=21BD ,且DE=1.5cm,则AC 等于 ( ) A .3cm B .7.5cm C .6cm D .4.5cm5.在∆ABC 中,AB=13,AC=15,高AD=12,则BC 的长是 ( ) A .14 B .4 C .14或4 D .以上都不对6.如图,将等腰∆Rt ABC 绕点A 逆时针旋转15后得到∆A ’B ’C ’,若AC=1,则两个三角形重叠部分面积为 ( ) A .33 B .63C .3D .3 3二、填空题(每题2分,共28分)7.把命题“等边对等角”用“如果…那么…”的形式表示为_____________________ _________________________。
8.命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是_________________ _________________________。
沪教版八年级-几何证明综合(二),带答案

主题几何证明综合(二)教学内容1.掌握直角三角形判定定理,熟练运用直角三角形的判定定理进行几何证明;2.认识等腰直角三角形,熟练运用等腰直角三角形性质解决综合问题。
(以提问的形式回顾)等腰直角三角形具有哪些性质?请尽可能多的列举。
两个底角相等均为45°;两腰相等;斜边上的中线等于斜边的一半;“三线合一”:顶角的平分线,底边上的中线,底边上的高的重合;练习:1.如图,已知BD⊥AE于B,C是BD上一点,且BC=BE,要使Rt△ABC≌Rt△DBE,应补充的条件是.(填一个条件)2.如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是.3.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是.答案:∠D=∠A或∠E=∠ACB或DE=AC或BD=AB;1;45°第2题图ABCDE第1题图第3题图(采用教师引导,学生轮流回答的形式)例1:我们知道在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,其证明全等的条件是“边边角”,那么符合“边边角”条件的两个三角形,是否可以全等呢? 为了解决案例1,我们先看看问题1;问题1:△ABC 与△DEF 中,AB=DE ,AC=DF ,∠B=∠E ,且∠B 与∠E 均为锐角,是否有△ABC ≌△DEF 成立呢?若成立,说明理由;若不成立,请画出反例图形。
问题2:△ABC 与△DEF 中,AB=DE ,AC=DF ,∠B=∠E ,且∠B 与∠E 均为钝角,是否有△ABC ≌△DEF 成立呢?若成立,说明理由;若不成立,请画出反例图形。
通过以上两个问题,概括出例1的结论。
答案:问题1:不成立;如下图所示问题2:成立;证明如下;分别过点A 、D 作AG ⊥CB 交CB 的延长线于点G ,DH ⊥FE 交FE 的延长线于点H . ∵∠ABC=∠DEF ∴∠ABG=∠DEH 而∠G=∠H=90°,AB=DE∴△ABG ≌△DEH (AAS ) ∴AG=DH ∴Rt △ACG ≌Rt △DFH (HL )∴∠C=∠F∴△ABC ≌△DEF (SAS )例1:当“边边角”中所给的相等角为直角或钝角时,可以证明两三角形全等; 当“边边角”中所给的相等角为锐角时,不可以证明两三角形全等例2:如图,Rt △ABC 中,AB=AC ,∠BAC=90°,O 为BC 中点,联结OA ; 问题1:如图1,OA=OB=OC 成立吗?请说明理由;问题2:如图2,如果点M 、N 分别在边AB 、AC 上移动,且保持AN=BM ;请判断△OMN 的形状,并说明理DE FH AB C DE FAB CG由;问题3:如图3,若点M,N分别在线段BA、AC的延长线上移动,仍保持AN=BM,请判断△OMN的形状,并说明理由。
沪科版八年级数学暑假作业(十五)含答案

初中八年级数学(沪科版)多媒体暑假作业(十五)一.相信自己。
1.已知等腰三角形的腰长是6cm,底边长是8cm,•那么以各边中点为顶点的三角形的周长是10cm.2.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为48度.3.如图,△ABC中,AB=AC,∠A=45°,AC的垂直平分线分别交AB,AC于D,E两点,连接CD.如果AD=1,那么∠BCD=22.5度.4.如图,△ABC中,AB=AC,M、N分别是AB、AC的中点,D、E•为BC上的点,连结DN、EM.•若AB=•13cm,•BC=•10cm,•DE=•5cm,•则图中阴影部分的面积为_30cm2.5.如图,在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC•于E,PF⊥BD于F,则PE+PF的值为.6.如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于30度.7.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_120__c m2.8.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是安插在AC上的一动点,则DN+MN的最小值为_10_二.择优录用。
1.时钟8点整,时针与分针之间的夹角为( A )A.120° B.100° C.180° D.160°2.在△ABC中,∠C=90°,AB=BC,AD是∠BAC的平分线,•DE•⊥AB•垂足为E,•若AB=20cm,则△DBE的周长为( A )A.20cm B.16cm C.24cm D.18cm3.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是( B )A.14 B.15 C.16 D.174.如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的C′处,并且C′D∥BC,则CD的长是( A )A.5.如图,△ABC中,∠B与∠C的平分线相交于点O,过点O作MN∥BC,分别交AB、•AC 于点M、N,若AB=12,AC=18,BC=24,则△AMN的周长( A )A.30 B.36 C.39 D.426.如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、•CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是( B )A.3个 B.2个 C.1个 D.0个。
沪教版初二数学暑假作业四边形证明题有答案

四边形证明题1、已知:如图,在正方形ABCD 中,点E 、F 分别在边BC 和CD 上,∠BAE =∠DAF . (1)求证:BE = DF ;(2)联结AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,联结EM 、FM .求证:四边形AEMF 是菱形.2、如图8,已知梯形ABCD 中,AD BC ∥, E 、G 分别是AB 、CD 的中点,点F 在边BC 上,且)(21BC AD BF +=. (1)求证:四边形AEFG 是平行四边形; (2)联结AF ,若AG 平分FAD ∠,求证:四边形AEFG 是矩形.3、如图,在等腰梯形ABCD 中,∠C =60°,AD ∥BC ,且AD =AB =DC ,E 、F 分别在AD 、DC 的延长线上,且DE=CF ,AF 、BE 交于点P 。
(1)求证:AF=BE ;(2)请猜测∠BPF 的度数,并证明你的结论。
4、如图,在矩形ABCD 中,BM ⊥AC ,DN ⊥AC ,M 、N 是垂足.(1)求证:AN =CM ;(2)如果AN =MN =2,求矩形ABCD 的面积.5.如图.在平行四边形ABCD 中,O 为对角线的交点,点A DBEF O CM第1题图B EA D GC F(第2题图)E 为线段BC 延长线上的一点,且BC CE 21=.过点E 作EF ∥CA ,交CD 于点F ,联结OF .(1)求证:OF ∥BC ;(2)如果梯形OBEF 是等腰梯形,判断四边形ABCD 的形状, 并给出证明.6、如图,在正方形ABCD 中,点E 、F 分别是边AB 、AD 的中点,DE 与CF 相交于G ,DE 、CB 的延长线相交于点H ,点M 是CG 的中点. 求证:(1)BM//GH ; (2)BM ⊥CF .7.已知:如图,AE ∥BF ,AC 平分∠BAD ,交BF 于点C ,BD 平分∠ABC ,交AE 于点D ,联结CD .求证:四边形ABCD 是菱形.8.如图,在正方形ABCD 中,点E 、F 分别是边AB 、AD 的中点,DE 与CF 相交于G ,DE 、CB 的延长线相交于点H ,点M 是CG 的中点.求证:(1)//BM GH (2)BM CF ⊥(第6题)FO EDC BA第21题图9.已知:如图,在梯形ABCD 中,AD //BC ,AB =CD ,点E 、F 在边BC 上,BE =CF ,EF =AD .求证:四边形AEFD 是矩形.10.如图,在□ABCD 中,E 、F 分别为边ABCD 的中点,BD 是对角线,过A 点作AG //DB 交CB 的延长线于点G .(1)求证:DE ∥BF ;(2)若∠G =90 ,求证:四边形DEBF 是菱形.11.已知:如图,在梯形ABCD 中,AD //BC ,BC =2AD ,AC ⊥AB ,点E 是AC 的中点,DE的延长线与边BC 相交于点F .求证:四边形AFCD 是菱形.12.(本题共2小题,每小题6分,满分12分)(1)试判断线段AD 与BC 的长度之间有怎样的数量关系?并证明你的结论;w W w . (2)现有三个论断:①AD = AB ;②∠B +∠C= 90°;③∠B = 2∠C .请从上述三个论断中选择一个论断作为条件,证明四边形AEFD 是菱形.四边形证明题答案1.证明:(1)∵正方形ABCD ,∴AB=AD ,∠B =∠D =90°…………………………(2分)∵∠BAE = ∠DAFA E F C D (第9题)(第11题图)F∴△ABE ≌△ADF ……………………………………………………………(1分) ∴BE = DF ……………………………………………………………………(2分) (2)∵正方形ABCD ,∴∠BAC =∠DAC ………………………………………(1分) ∵∠BAE =∠DAF ∴∠EAO =∠FAO ……………………………………(1分)∵△ABE ≌△ADF ∴AE = AF …………………………………………(1分) ∴EO=FO ,AO ⊥EF …………………………………………………………(2分) ∵OM = OA ∴ 四边形AEMF 是平行四边形……………………………(1分) ∵AO ⊥EF ∴四边形AEMF 是菱形……………………………………(1分) 2.(1)证明:联结EG ,∵ 梯形ABCD 中,AD BC ∥,且E 、G 分别是AB 、CD 的中点, ∴ EG //B C ,且)(21BC AD EG +=,…………………………(2分) 又∵)(21BC AD BF +=- 第-一-网 ∴ EG =BF .……………………………………………………(1分) ∴ 四边形AEFG 是平行四边形.…………………(2分)(2)证明:设AF 与EG 交于点O , ∵ EG //AD ,∴∠DAG =∠AGE∵AG 平分FAD ∠,∴∠DAG =∠GAO ∴∠GAO =∠AGE∴ AO=GO .………………………………(2分)∵四边形AEFG 是平行四边形,∴ AF =EG ,四边形AEFG 是矩形…………………………(2分)3.证明:(1)∵梯形ABCD 是等腰梯形,AD ∥BC∴ ∠BAE=∠ADF ………………………………………………(1分)∵AD = DC ∴ AE=DF …………………………………………(1分)∵BA=AD ∴△BAE ≌△ADF , …………………………………(1分) ∴BE=AF . …………………………………………………………(1分) (2)猜想∠BPF=120°.……………………………………………………(1分)∵由(1)知△BAE ≌△ADF ,∴∠ABE=∠DAF .…………………(1分) ∴∠BPF=∠ABE+∠BAP=∠BAE .……………………………………(1分) 而AD ∥BC ,∠C=∠ABC=60°,∴=120°.∴∠BPF=∠BAE =120°.………………………………………………(1分)4、证:(1)∵四边形ABCD 是矩形,∴AD ∥BC ,AD =BC . ∴∠DAC =∠BCA .又∵DN ⊥AC ,BM ⊥AC , ∴∠DNA =∠BMC .∴⊿DAN ≌⊿BCM , ---------------------------------------------------(3分)∴AN =CM . ---------------------------------------------------------------(1分)(2)联结BD 交AC 于点O , ∵AN = NM =2,∴AC = BD =6,又∵四边形ABCD 是矩形, ∴AO =DO =3,在⊿ODN 中,OD =3,ON =1,∠OND =︒90,∴DN =2222=-ON OD ,--------------------------------------(2分) ∴矩形ABCD 的面积=212=⨯DN AC .-----------------------(1分)5.解:(1)方法1:延长EF 交AD 于G (如图1).……………1分 在平行四边形ABCD 中,AD ∥BC ,BC AD =. ∵EF ∥CA ,EG ∥CA , ∴四边形ACEG 是平行四边形. ∴ CE AG =.……………1分|又∵BC CE 21=,BC AD =,∴ GD AD BC CE AG ====2121.……………1分∵AD ∥BC ,∴ECF ADC ∠=∠. 在CEF △和DGF △中,∵DFG CFE ∠=∠,ECF ADC ∠=∠,DG CE =,∴CEF △≌DGF △(A.A.S ). ∴DF CE =.…………………1分 ∵四边形ABCD 是平行四边形,∴OD OB =.∴OF ∥BE . ………………1分 方法2:将线段BC 的中点记为G ,联结OG (如图2). ………………1分∵四边形ABCD 是平行四边形,∴OD OB =.∴OG ∥CD . …………1分 ∴FCE OGC ∠=∠.∵EF ∥CA ,∴FEC OCG ∠=∠.∵BC GC 21=,BC CE 21=,∴CE GC =.在OGC △和FCE △中,∵FEC OCG ∠=∠,CE GC =,FCE OGC ∠=∠,AB(第5题图1)DCOEFGAB(第5题图2)DC OEFG∴OGC △≌FCE △(A.S.A ). …………………1分 ∴FC OG =. 又∵OG ∥CF ,∴四边形OGCF 是平行四边形. …………………1分∴OF ∥GC . …………………1分 其他方法,请参照上述标准酌情评分.(2)如果梯形OBEF 是等腰梯形,那么四边形ABCD 是矩形. ……………1分 ∵OF ∥CE ,EF ∥CO ,∴四边形OCEF 是平行四边形. ∴OC EF =.……………1分又∵梯形OBEF 是等腰梯形,∴EF BO =. ∴OC OB =.(备注:使用方法2的同学也可能由OGC △≌FCE △找到解题方法;使用方法1的同学也可能由四边形ACEG 是平行四边形找到解题方法). ∵四边形ABCD 是平行四边形,∴OC AC 2=,BO BD 2=. ∴BD AC =.……………1分∴平行四边形ABCD 是矩形. ……………1分6.证明:(1)∵在正方形ABCD 中,AD //BC ,∴∠A =∠HBE ,∠ADE =∠H ,…(1分)∵AE =BE ,∴△ADE ≌△BHE .………………………………………(1分) ∴BH =AD =BC .…………………………………………………………(1分) ∵CM =GM ,∴BM //GH .………………………………………………(1分)(2)∵在正方形ABCD 中,AB =AD =CD ,∠A =∠ADC =90º,又∵DF =21AD ,AE =21AB ,∴AE =DF .∴△AED ≌△DFC .………(1分) ∴∠ADE =∠DCF .………………………………………………………(1分) ∵∠ADE +∠GDC =90º,∴∠DCF +∠GDC =90º.∴∠DGC =90º.…(1分) ∵BM //GH ,∴∠BMG =∠DGC =90º,即BM ⊥CF .…………………(1分)7、证明:∵AC 平分∠BAD , ∴∠BAC=∠CAD .又 ∵AE ∥BF , ∴∠BCA=∠CAD . --------------------------1分 ∴∠BAC=∠BCA .∴ AB=BC . --------------------1分 同理可证AB=AD .∴ AD=BC . ----------------------1分 又 AD ∥BC ,∴ 四边形ABCD 是平行四边形. -----1分 又AB=BC ,∴□ABCD 是菱形. -----1分 8. 证明:(1)∵正方形ABCD ∴90A EBH ∠=∠=︒AD BC =…………1′∵E 是AB 的中点 ∴ AB BE =…………1′ ∵AED BEH ∠=∠∴AED BEH ≅…………1′∴AD BH = ∴BC BH =…………1′ ∵M 是CG 的中点 ∴//BM GH …………1′(2)证AED CDF ≅ …………1′ ∴ADE DCF ∠=∠ ∵90DCF CDE ∠+∠=︒ ∴90CGH ∠=︒ ………1′ ∵//BM GH ∴90CMB CGH ∠=∠=︒ ∴BM CF ⊥ …………1′9.证法一: ∵在梯形ABCD 中,AD //BC ,又∵EF =AD∴四边形AEFD 是平行四边形.………………………………………(1分) ∴AD //DF ,∴∠AEF =∠DFC .………………………………………(1分)∵AB =CD ,∴∠B =∠C .………………………………………………(1分) 又∵BE =CF ,∴△ABE ≌△DCF .……………………………………(1分) ∴∠AEB =∠DFC ,……………………………………………………(1分) ∴∠AEB =∠AEF .………………………………………………………(1分) ∵∠AEB +∠AEF =180º,∴∠AEF =90º.……………………………(1分) ∴四边形AEFD 是矩形.………………………………………………(1分)证法二: 联结AF 、DE .…………………………………………………………(1分)∵在梯形ABCD 中,AD //BC ,又∵EF =AD ,∴四边形AEFD 是平行四边形.………………………………………(1分)∵AB =CD ,∴∠B =∠C .………………………………………………(1分) ∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,…………………………(1分) ∴△ABF ≌△DCE .……………………………………………………(1分) ∴AF =DE ,………………………………………………………………(2分) ∴四边形AEFD 是矩形.………………………………………………(1分)10、证明:(1)∵□ABCD ,∴A B ∥CD ,AB =CD -----------------------------------1分 ∵E 、F 分别为AB 、CD 的中点,∴DF =12DC ,BE =12AB∴DF ∥BE ,DF =BE ---------------------------------------------------------------------1分 ∴四边形DEBF 为平行四边形∴DE ∥BF -----------------------------------------------------------------------------------1分 (2)证明:∵AG ∥BD ,∴∠G =∠DBC =90°,∴∆DBC 为直角三角形---1分 又∵F 为边CD 的中点.∴BF =12DC =DF ------------------------------------------1分又∵四边形DEBF 为平行四边形,∴四边形DEBF 是菱形----------------------1分11.证明:∵在梯形ABCD 中,AD //BC ,∴∠DAE =∠FAE ,∠ADE =∠CFE .……(1分)又∵AE =EC ,∴△ADE ≌△CFE .…………………………………………(1分) ∴AD =FC ,…………………………………………………………………(1分) ∴四边形AFCD 是平行四边形.……………………………………………(1分)∵BC =2AD ,∴FC =AD =21BC .……………………………………………(1分) ∵AC ⊥AB ,∴AF =21BC .…………………………………………………(1分) ∴AF =FC ,……………………………………………………………………(1分) ∴四边形AFCD 是菱形.……………………………………………………(1分)12.(1)解:线段AD 与BC 的长度之间的数量为:3BC AD =.…………………(1分)证明:∵ AD // BC ,DE // AB ,∴ 四边形ABED 是平行四边形.∴ AD = B E .………………………………………………………(2分) 同理可证,四边形AFCD 是平行四边形.即得 AD = FC .……(1分) 又∵ 四边形AEFD 是平行四边形,∴ AD = EF .……………(1分) ∴ AD = BE = EF = FC .∴ 3BC AD =.……………………………………………………(1分)(2)解:选择论断②作为条件.…………………………………………………(1分)证明:∵ DE // AB ,∴ ∠B =∠DEC .…………………………………(1分)∵ ∠B +∠C = 90°,∴ ∠DEC +∠C = 90°.即得 ∠EDC = 90°.………………………………………………(2分) 又∵ EF = FC ,∴ DF = EF .……………………………………(1分) ∵ 四边形AEFD 是平行四边形,∴ 四边形AEFD 是菱形.…………………………………………(1分)。
沪科版八年级数学暑假作业(二十一)含答案

沪科版八年级数学暑假作业(二十一)含答案一. 相信自己。
1.等腰三角形一底角为30°,底边上的高为9cm,则这个等腰三角形的腰长为18cm2.某楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为30元,楼梯宽为2m,则购买这种地毯至少需要420元3.若代数式在实数范围内有意义,则x取值范围是04.一元二次方程的根的情况是有两个不相等的实数根5.已知方程的两个根x1和x2,则=36.直角三角形中,自锐角顶点所引的两条中线长为5和,那么这个直角三角形的斜边长为7.一个多边形的外角和是内角和的,则这个多边形的边数为_9_ 8.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率是0.125,那么第8组的频数20二.择优录用。
1.下列说法中不正确的是( A )A.三个角度之比为3:4:5的三角形是直角三角形B.三边之比为3:4:5的三角形是直角三角形C.三个角度之比为1:2:3的三角形是直角三角形D.三边之比为1:2:的三角形是直角三角形2.等边三角形边长为a,则该三角形的面积为( C )A. B. C. D .3.对于任意实数a.b,下列等式总能成立的是( C )A. B .C. D .4.若,则代数式的值是( C )A.0 B.1 C.-1 D .5.如果,那么的值为( C )A.1 B.-4 C.1 或-4 D.-1或3)6.把方程化为的形式,则m.n的值是( B7.在给定的条件中,能画出平行四边形的是( C )A.以60cm为一条对角线,20cm.34cm为两条邻边B.以6cm.10cm为两条对角线,8cm为一边C.以20cm.36cm为两条对角线,22cm为一边D.以6cm为一条对角线,3cm.10cm为两条邻边8.正方形具有而菱形不一定具有性质的是( B )A.对角线互相平分 B.对角线相等C.对角线平分一组对角 D.对角线互相垂直9.用两个完全相同的直角三角板,不能拼成如下图形的是( D )。
沪科版八年级数学暑假作业(六)含答案

初中八年级数学(沪科版)多媒体暑假作业(六)一.相信自己。
-,则这个点在第二/2象限或原点。
1.若点(x,y)的坐标满足y =2x2.点(5,-3)左平移3个单位,下平移2个单位坐标后的坐标是(2,-5)3.如图, 直线L, m的解析式分别是y = x +3 和y = - 2x4.某长途汽车客运公司规定按如图方法收取旅客行李费,则:旅客最多可免费携带行李30kg。
5.若10个数的平方和是370,方差是33那么这10个数的平均数为26.在∆ABC中,BC = 10,AB = 6,那么AC 的取值范围是4< x < 167.一组数据从小到大排列为a, 3, 4, 6, 7, 8, b,其平均数为6,极差是8,则这组数据的方差是68.腰长为12cm,底角为15度的等腰三角形的面积为369.如图,在∆ABC中,∠ACB = 90度,∠B= 30度, DE 垂直平分BC,BD = 5,则∆ACD的周长为1510.函数 y =11x - + (x-2)°中,x 的取值范围是x > 1且 x ≠ 2二.择优录用。
1.若 y -1 与 2x +3 成正比例,且 x = 2 时, y = 15,则 y 与 x 间的函数解析式是 ( B )A .y =2x +3 B.y = 4x + 7 C.y =2x +2 D.y =2x +152.若函数y = ax + b ( a ≠0) 的图象如图(4)所示不等式ax + b ≥0的解集是 ( B )A. x ≥ 2B.x ≤ 2C.x = 2D.x ≥ -b a3.如图,若量得∠B =∠C =∠D =∠E = 35︒, 那么∠A = ( C )A.35︒B. 45︒C.40︒D.50︒4.下列命题是真命题的是: ( B )A. 面积相等的两个三角形全等B.三角形的外角和是360︒C. 有一个角是30︒的等腰三角形底角为75︒D.角平分线上的点到角的两边上的点的距离相等5.直线y = x , y = 3 , x = - 1所围成的三角形面积是 ( D )A.9B. 5C.6D.86.三角形三内角平分线的交点到( B )距离相等A.三顶点B.三边C.三边中点D.三条高三.挑战奥数。
2024-2025学年沪科版初二数学下册暑假练习试卷及答案

2024-2025学年沪科版初二数学下册暑假练习试卷一、单选题(每题3分)1.展开并化简((x+2)(x−3))A.(x2−x−6)B.(x2−5x+6)C.(x2+x−6)D.(x2−5x−6)正确答案:A2.解方程(2x−3=5x+2))A.(x=−53)B.(x=53C.(x=−1)3)D.(x=13正确答案:A3.如果一个正方形的周长是(20cm),那么它的面积是多少?A.(25cm2)B.(100cm2)C.(50cm2)D.(20cm2)正确答案:A4.若(a:b=2:3)且(b:c=4:5),则(a:c)等于多少?A.(8:15)B.(2:5)C.(4:9)D.(1:2)正确答案:A5.从装有3个红球和2个蓝球的袋子里随机抽取一个球,抽到红球的概率是多少?)A.(35)B.(25)C.(12)D.(34正确答案:A总分:15分二、多选题(每题4分)1. 关于整数的加减运算,下列哪些说法是正确的?A. 两个正数相加的结果一定是正数B. 两个负数相加的结果一定是负数C. 一个正数和一个负数相加,结果可能是正数,也可能是负数D. 减去一个正数等于加上一个负数E. 减去一个负数等于加上一个正数答案: A, B, C, D, E解析:整数的加减运算是初一数学的基本概念。
上述所有选项都是关于整数加减法的正确描述。
2. 在代数式中,下列哪些表达式是多项式?A.(3x2+2x−5)+2)B.(1xC.(x3−3x2+x−1)D.(2xy+3y2)E.(√x+1)答案: A, C, D解析:多项式是由变量的幂次方与系数相乘并相加形成的表达式。
选项B和E中分别含有(x)的负指数和根号,因此不是多项式。
3. 下列哪组数能够构成直角三角形的三边?A. 3, 4, 5B. 5, 12, 13C. 6, 8, 10D. 7, 24, 25E. 9, 16, 21答案: A, B, C, D解析:直角三角形的三边长满足勾股定理,即(a2+b2=c2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第27题图)PNM DCB A 几何综合题1.已知:如图,矩形纸片ABCD 的边AD=3,CD=2,点P 是边CD 上的一个动点(不与点C 重合,把这张矩形纸片折叠,使点B 落在点P 的位置上,折痕交边AD 与点M ,折痕交边BC 于点N .(1)写出图中的全等三角形. 设CP=x ,AM=y ,写出y 与x 的函数关系式;(2)试判断∠BMP 是否可能等于90°. 如果可能,请求出此时CP 的长;如果不可能,请说明理由.2、已知边长为1的正方形ABCD 中, P 是对角线AC 上的一个动点(与点A 、C 不重合),过点P 作 PE ⊥PB ,PE 交射线DC 于点E ,过点E 作EF ⊥AC ,垂足为点F. (1)当点E 落在线段CD 上时(如图10),① 求证:PB=PE ;② 在点P 的运动过程中,PF 的长度是否发生变化?若不变,试求出这个不变的值,若变化,试说明理由;(2)当点E 落在线段DC 的延长线上时,在备用图上画出符合要求的大致图形,并判断上述(1)中的结论是否仍然成立(只需写出结论,不需要证明);(3)在点P 的运动过程中,⊿PEC 能否为等腰三角形?如果能,试求出AP 的长,如果不能,试说明理由.D CBA E P 。
F(图1)D CBA (备用图)3、如图,直线y =+与x 轴相交于点A,与直线y =相交于点P . (1) 求点P 的坐标.(2) 请判断△OPA 的形状并说明理由.(3) 动点E 从原点O 出发,以每秒1个单位的速度沿着O P A →→的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B .设运动t 秒时,矩形EBOF 与△OPA 重叠部分的面积为S .求S 与t 之间的函数关系式.4.已知:如图,梯形ABCD 中,AD ∥BC ,ο90=∠A ,ο45=∠C ,4==AD AB .E 是直线AD 上一点,联结BE ,过点E 作BE EF ⊥交直线CD 于点F .联结BF . (1)若点E 是线段AD 上一点(与点A 、D 不重合),(如图1所示)①求证:EF BE =.②设x DE =,△BEF 的面积为y ,求y 关于x 的函数解析式,并写出此函数的定义域.(2)直线AD 上是否存在一点E ,使△BEF 是△ABE 面积的3倍,若存在,直接写出DE 的长,若不存在,请说明理由.5.已知: O 为正方形ABCD 对角线的交点,点E 在边CB 的延长线上,联结EO ,OF ⊥OE 交BA 延长线于点F ,联结EF (如图4)。
(1) 求证:EO=FO ;(2) 若正方形的边长为2, OE=2OA ,求BE 的长;(3) 当OE=2OA 时,将△FOE 绕点O猜想并证明△AOE 1是什么三角形。
6.(本题满分10分,第(1)小题3分,第(2)小题4分,第(3)小题3分)如图,在正方形ABCD 中,点E 、F 分别在BC 、AD 的延长线上,且EA ⊥CF ,垂(第3题图1)FEDCBA(第3题备用图) DCBA足为H ,AE 与CD 相交于点G .(1)求证:AG=CF ;(2)当点G 为CD 的中点时(如图1),求证:FC=FE ;(3)如果正方形ABCD 的边长为2,当EF=EC 时(如图2),求DG 的长.几何综合题答案1.(1) ⊿MBN≌⊿MPN (1)∵⊿MBN≌⊿MPN ∴MB=MP , ∴22MP MB = ∵矩形ABCD∴AD=CD (矩形的对边相等) ∴∠A=∠D=90°(矩形四个内角都是直角) (1)∵AD=3, CD=2, CP=x, AM=y ∴DP=2-x,MD=3-y (1)Rt⊿ABM 中,42222+=+=y AB AM MB同理 22222)2()3(x y PD MD MP -+-=+= (1)222)2()3(4x y y -+-=+ (1)∴ 6942+-=x x y (1)(3)︒=∠90BMP (1)图1图2ABCDEFHGA BCDEFHG当︒=∠90BMP 时,可证DMP ABM ∆≅∆ ………………………………1 ∴ AM=CP ,AB=DM∴ 1,32=-=y y ………………………………1 ∴ 1,21=-=x x ………………………………1 ∴当CM=1时,︒=∠90BMP 2.(1)① 证:过P 作MN ⊥AB ,交AB 于点M ,交CD 于点N∵正方形ABCD ,∴ PM=AM ,MN=AB ,从而 MB=PN ………………………………(2分) ∴ △PMB ≌△PNE ,从而 PB=PE …………(2分) ② 解:PF 的长度不会发生变化,设O 为AC 中点,联结PO ,∵正方形ABCD , ∴ BO ⊥AC ,…………(1分) 从而∠PBO=∠EPF ,……………………(1分) ∴ △POB ≌△PEF , 从而 PF=BO 22=…………(2分)(2)图略,上述(1)中的结论仍然成立;…………(1分)(1分) (3)当点E 落在线段CD 上时,∠PEC 是钝角,从而要使⊿PEC 为等腰三角形,只能EP=EC ,…………(1分)这时,PF=FC ,∴ 2==AC PC ,点P 与点A 重合,与已知不符。
……(1分) 当点E 落在线段DC 的延长线上时,∠PCE 是钝角,从而要使⊿PEC 为等腰三角形,只能CP=CE ,…………(1分) 设AP=x ,则x PC -=2,22-=-=x PC PF CF ,又 CF CE 2=,∴)22(22-=-x x ,解得x=1. …………(1分)综上,AP=1时,⊿PEC 为等腰三角形3.解:(1)y y ⎧=+⎪⎨=⎪⎩解得:2x y =⎧⎪⎨=⎪⎩………………………1′∴ 点P 的坐标为(2, ………………………1′(2)当0y =时,4x = ∴点A 的坐标为(4,0) ………………………1′ ∵4OP ==4PA == ……………1′∴ OA OP PA ==∴POA V 是等边三角形 ………………………1′ (3)当0<t ≤4时, ………………………1′212S OF EF ==g g ………………………1′当4<t <8时, ………………………1′2S =+-………………………1′ 4.(1)①证明:在AB 上截取AE AG =,联结EG .∴AEG AGE ∠=∠.又∵∠A =90°,∠A +∠AGE +∠AEG =180°.∴∠AGE =45°. ∴∠BGE =135°. ∵AD ∥BC .∴∠C +∠D =180°.又∵∠C =45°. ∴∠D =135°.∴∠BGE =∠D. ……………………………………………………………1分 ∵AD AB =,AE AG =.∴DE BG =. …………………………………………………………………1分∵BE EF ⊥.∴∠BEF =90°.又∵∠A +∠ABE +∠AEB =180°,∠AEB +∠BEF +∠DEF =180°, ∠A =90°.∴∠ABE =∠DEF. (1)分∴△BGE ≌△EDF. (1)分∴EF BE =.(1)②y 关于x 的函数解析式为:23282+-=x x y .....................................1分 此函数的定义域为:40<<x . (1)分(2)存在.…………………………………………………………………………1分Ⅰ当点E 在线段AD 上时,522±-=DE (负值舍去). ………………1分Ⅱ当点E 在线段AD 延长线上时,522±=DE (负值舍去). ………………1分Ⅲ当点E在线段DA 延长线上时,5210±=DE . ………………………………1分∴DE 的长为252-、252+或5210±.5、(1)证明:∵ABCD 是正方形,对角线交于点O , ∴AO=BO ,AC ⊥BD ,-----------------------------------------------------------1分 ∴ ∠OAB=∠OBA,∴∠OAF=∠OBE ,--------------------------------------1分∵AC ⊥BD ,OF ⊥OE ,∴∠AOF=90AOE ︒-∠=∠BOE ,------------1分 ∴△AOF ≌△BOE , ∴EO=FO.----------------------------------------------------------------------------1分(2)解:∵ABCD 是正方形,边长为2,∴,∴OE=2OA= ∵OF ⊥OE ,EO=FO ,∴EF=4,--------------------------------------------------1分 ∵△AOF ≌△BOE ,∴AF=BE ,--------------------------------------------------1分设AF=BE=x , 在Rt △EFB 中,222EF EB BF =+,即2216(2)x x =++解得1x =-±x >0,∴1x =,即1---------------2分 (3)△AOE 1是直角三角形。
-------------------------------------------------------------1分 证明:取OE 中点M ,则OM=EM=12OE ,-----------------------------------------------1分∵OE=2OA ,∴OA=12OE ,∴OA=OM∵∠EOB=30︒,∵AC ⊥BD ,∴∠AOE=60︒,∴△OAM 是等边三角形,----------1分 ∴AM=OM=EM ,∴∠MAE=∠MEA,∴∠MAO=∠MOA ,∵∠MAE+∠MEA+∠MAO+∠MOA=180︒,∴2∠MEA+2∠MOA=180︒, ∴∠MEA+∠MOA=90︒,--------------------------------------------------------------------1分 即△AOE 1为直角三角形。
6.(1)证明:∵在正方形ABCD 中,AD=CD ,∠ADC=∠CDF=90º,∵AE ⊥CF ,∴∠AGD=90º–∠GAD=∠CFD ,………………………(1分)∴△ADG ≌△CDF ,…………………………………………………(1分)∴AG=CF .……………………………………………………………(1分)(2)证明:过点F 作FM ⊥CE ,垂足为M ,……………………………………(1 分)∵∠ECG=∠ADG=90º,∠CGE=∠DGA ,CG=DG ,∴△ECG ≌△ACD ,…(1 分)∴CE=AD=CD .∵FM//CD ,∴CM=DF=DG=21CD=21CE ,………(1 分) ∴FC=FE .………………………………………………………………(1 分)(3)解:联结GF ,∵EF=EC,EH ⊥CF,GF=CG .……………………………………(1 分)设DF= DG=x ,则GF=CG=2–x ,∵222FG DG DF =+,∴222)2(x x x -=+, …………………………(1分)∴222±-=x (负值舍去),∴DF=222-.…………………………(1 分)。