北京市海淀实验中学2015年初三月考数学试题
2015北京中考数学试题及答案word版

2015北京中考数学试题及答案word版2015年北京中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 1D. -1答案:C2. 以下哪个图形是轴对称图形?A. 平行四边形B. 等边三角形C. 梯形D. 非等腰三角形答案:B3. 已知一个角的补角是120°,那么这个角的度数是多少?A. 60°B. 120°C. 30°D. 90°答案:A4. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A5. 下列哪个是二次根式?A. √2B. 2√2C. √(-2)D. √2/3答案:A6. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 14C. 16D. 无法确定答案:B7. 已知一个直角三角形的两直角边长分别为3和4,那么这个三角形的斜边长是多少?A. 5B. 7C. 9D. 无法确定答案:A8. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 下列哪个是单项式?A. 2x+3B. 2x^2+3xC. 3x^2D. x^2+y^2答案:C10. 一个多项式减去3x^2+5x-2得到-2x^2+x+4,那么这个多项式是多少?A. x^2+6x+6B. -5x^2+4x+6C. 5x^2-4x+2D. -x^2-6x-6答案:C二、填空题(每题3分,共15分)11. 一个数的平方根是2,那么这个数是______。
答案:412. 一个数的立方根是-2,那么这个数是______。
答案:-813. 一个数的倒数是1/3,那么这个数是______。
答案:314. 一个数的绝对值是7,那么这个数可能是______或______。
答案:7或-715. 一个数的相反数是-7,那么这个数是______。
答案:7三、解答题(每题10分,共55分)16. 计算:(2x-3)(2x+3)-(3x+2)(3x-2)。
北京市海淀实验中学2015年初三月考数学试题

种树棵数 012345
(棵) 人数 10 5 6 9 4 6 如果按照小红的统计数据,请你通过计算
求“圆周”上的所有点到点Qa,b 的“距离”均为 r 的“圆”方程; 3、点 A1,3、 B6,9,写出线段 AB 的垂直平分线的轨迹方
y
程并画出大致图像.
B
A
O
x
17
草稿纸
18
14.函数 y=x2-2x-2 的图象如右图所示,根据其中提 供的信息,可求得使 y≥1 成立的 x 的取值范围是 ______________________
15.如图,三个小正方形的边长都为 1,则图中阴影
部分面积的和是
.(结果保留 π )
14 题
15
题
16. 对 非 负 实 数 x“ 四 舍 五 入 ” 到 个 位 的 值 记 为
2
径作弧,两弧在 AOB 内交于点 C.
3
A.SSS D.AAS
○3 作射线 OC. 则 OC 就是
AOB 的平分线.
B.SAS
C.ASA
6. 为了解某小区家庭使用垃圾袋的情况,小亮随 机
调查了该小区 10 户家庭一周垃圾袋的使用量,结果
如下:7,9,11,8,7,14,10,8,9,7(单位:
交于点 A(1,1) ⑴求两个函数的解析式; ⑵若点 B(4,0),请在第一象限找一点 M,使△ABM 是以 AB 为腰的等腰直角三角形。
直接写出 M 点的坐标。
2015北京市海淀区初三二模试卷(数学)

2015北京市海淀区初三二模试卷(数学)1.中国国家图书馆是亚洲最大的图书馆,截止到今年初馆藏图书达3 119万册,其中古籍善本约有2 000 000册.2 000 000用科学记数法可以表示为A.B.C.D.2.若二次根式有意义,则的取值范围是A.B.C.D.3.我国古代把一昼夜划分成十二个时段,每一个时段叫一个时辰,古时与今时的对应关系(部分)如下表所示.天文兴趣小组的小明等4位同学从今夜23:00至明晨7:00将进行接力观测,每人两小时,观测的先后顺序随机抽签确定,小明在子时观测的概率为古时子时丑时寅时卯时今时23:00~1:00 1:00~3:00 3:00~5:00 5:00~7:00 A.B.C.D.4.如图,小明将几块六边形纸片分别减掉了一部分(虚线部分),得到了一个新多边形.若新多边形的内角和为540deg;,则对应的是下列
哪个图形 A B C D。
北京市海淀区2015届九年级下学期期中考试数学试题(扫描版)及答案

海淀区九年级第二学期期中练习数学试卷答案及评分参考2015.5一、 选择题(本题共30分,每小题3分)题号1 2 3 4 5 6 7 8 9 10 答案B ACD B A C B D B二、填空题(本题共18分,每小题3分) 题号 11 12 13 14 15 16 答案 a (a +b )(a -b ) ()0y kx k =>如,y x =0.6 178小明(1分);一组对边平行且相等的四边形是平行四边形(2分) 30°或150°(只答对一个2分,全对3分)三、解答题(本题共30分,每小题5分)17. (本小题满分5分)解:原式=11223142-⨯++ ………………………………………………………4分 1234=+. ………………………………………………………………5分18. (本小题满分5分)解: 345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥ ② ① 由不等式①得 3x <. ……………………………………………………2分 由不等式②得 2≥x -. ……………………………………………………4分 ∴不等式组的解集为23≤x -<. ……………………………………………………5分19. (本小题满分5分)解: 22(2)()()2x y x y x y y ---+-2222244()2x xy y x y y =-+---………………………………………………2分 243xy y =-+ ……………………………………………………………………3分 ()43y x y =--.…………………………………………………………………4分 ∵43x y =,∴原式= 0. ………………………………………………………………………5分20. (本小题满分5分)证明:∠EBC =∠FCB ,A B E F C D ∴∠=∠. …………………………………………………………1分在△ABE 与△FCD 中,,,,A F AB FC ABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴∆ABE ≌∆FCD .………………………………………………………………4分 ∴BE=CD . ………………………………………………………………………5分21. (本小题满分5分)(1)证明:0k ≠, ∴220 kx x k--=是关于x 的一元二次方程.22(1)4()k k∆=--- ……………………………………………………1分 90=>.∴方程总有两个不相等的实数根. ………………………………………2分(2)解:由求根公式,得192x k±=. ∴1221,x x k k ==-. …………………………………………………………4分 方程的两个实数根都是整数,且k 是整数,∴ 1k =-或1k =.…………………………………………………………5分 F D C B A E22. (本小题满分5分)解: 设例子中的A4厚型纸每页的质量为x 克.………………………………………1分由题意,得 40016020.8x x =⨯-. ………………………………………………2分 解得 4x =. ………………………………………………………3分 经检验, 4x =为原方程的解,且符合题意. ………………………………4分 答:例子中的A4厚型纸每页的质量为4克. …………………………………5分四、解答题(本题共20分,每小题5分)23. (本小题满分5分)(1)证明:四边形ABCD 是平行四边形,∴AD //BC .∴∠DAF=∠F .∠F =45°,∴∠DAE=45°.………………………………………1分 AF 是∠BAD 的平分线, 45EAB DAE ∴∠=∠=.90DAB ∴∠=. 又四边形ABCD 是平行四边形, ∴四边形ABCD 是矩形. …………………………2分(2)解:过点B 作BH AE ⊥于点H ,如图.四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠DCB =∠D =90°.AB =14,DE =8,∴ CE=6.在Rt △ADE 中,∠DAE=45°,∴∠DEA =∠DAE=45°.∴ AD=DE =8.∴ BC =8.在Rt △BCE 中,由勾股定理得 2210BE BC CE =+=. ……………………………………………3分在Rt △AHB 中,∠HAB=45°,∴sin4572BH AB =⋅= . …………………………………………4分在Rt △BHE 中,∠BHE=90°, H FB C A E D FB C A E D∴sin ∠AEB=7210BH BE =. ……………………………………………5分 24. (本小题满分5分)(1)36. ……………………………………………………………………………1分(2)6.700.01±. ……………………………………………………………………3分 (3)21. ……………………………………………………………………………5分25. (本小题满分5分) (1)证明:⊙O 与边AB 相切于点E ,且 CE 为⊙O 的直径.∴CE ⊥AB .AB=AC ,AD ⊥BC ,BD DC ∴=. ………………………………1分又 OE=OC ,∴OD ∥EB .∴ OD ⊥CE .………………………………2分(2)解:连接EF .CE 为⊙O 的直径,且点F 在 ⊙O 上, ∴ ∠EFC =90°.CE ⊥AB ,∴∠BEC =90°.∴+BEF FEC FEC ECF ∠=∠+∠∠=90°. ∴BEF ECF ∠=∠.∴tan tan BEF ECF ∠=∠. ∴BF EF EFFC=.又DF =1, BD=DC =3, ∴ BF =2, FC =4.∴22EF =. ………………………………………………… 3分 ∵∠EFC =90°, ∴∠BFE =90°.由勾股定理,得2223BE BF EF =+=. ……………………4分 EF ∥AD , ∴21BE BF EA FD ==. ∴3AE =. ……………………………………………………5分AEBDCFO26. (本小题满分5分)解:BC +DE 的值为34. ……………………………………………………2分解决问题:连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB // DC .∵四边形ABEF 是矩形,∴AB // FE ,BF =AE . ∴DC // FE .∴四边形DCEF 是平行四边形. ………………………………………………3分 ∴ CE // DF . ∵AC =BF =DF , ∴AC =AE =CE .∴△ACE 是等边三角形. …………………………………………………………4分 ∴∠ACE =60°. ∵CE ∥DF ,∴∠AGF =∠ACE =60°. …………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (本小题满分7分)解:(1)∵抛物线2212y x x =-+与y 轴交于点A ,∴点A 的坐标为(0,2). …………………………………………1分 ∵2211(232)212y x x x -+==+-, ∴抛物线的对称轴为直线1x =,顶点B 的坐标为(1,32). …………2分又∵点C 与点A 关于抛物线的对称轴对称,∴点C 的坐标为(2,2),且点C 在抛物线上.设直线BC 的解析式为y kx b =+. ∵直线BC 经过点B (1,32)和点C (2,2),∴322 2.,k b k b ⎧+=⎪⎨⎪+=⎩ 解得121.k b ⎧=⎪⎨⎪=⎩, ∴直线BC 的解析式为112y x =+.…………………………3分xy O –5–4–3–2–112345–7–6–5–4–3–2–11234567FE DABC GE C A BD F(2) ∵抛物线2212y x x =-+中,当4x =时,6y =,∴点D 的坐标为(4,6). ………………4分∵直线112y x =+中,当0x =时,1y =, 当4x =时,3y =,∴如图,点E 的坐标为(0,1),点F 的坐标为(4,3).设点A 平移后的对应点为点'A ,点D 平移后的对应点为点'D . 当图象G 向下平移至点'A 与点E 重合时, 点'D 在直线BC 上方, 此时t =1;…………………………………………………………5分当图象G 向下平移至点'D 与点F 重合时,点'A 在直线BC 下方,此时t =3.……………………………………………………………………………………6分 结合图象可知,符合题意的t 的取值范围是13t <≤.……………………………7分28. (本小题满分7分)(1)补全图形,如图1所示.…………………………………………………………1分GFEDCBA图1图2(2)方法一:证明:连接BE ,如图2. ∵四边形ABCD 是菱形,GFEDCBA∴AD ∥BC .120ADC ∠=︒,60DCB ∴∠=︒. AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ……………………………………………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知, 50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒.……………………………………………………………………3分 100GEB DEC BEC ∴∠=∠+∠=︒. GEB CBE ∴∠=∠. 50FBC ∠=︒,50EBG EBC FBC ∴∠=∠-∠=︒.…………………………………………………………4分 EBG BEC ∴∠=∠. 在△GEB 与△CBE 中,,,,GEB CBE BE EB EBG BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEB ≌△CBE .EG BC ∴=. ………………………………………………………………………………5分 方法二:证明:连接BE ,设BG 与EC 交于点H ,如图3. ∵四边形ABCD 是菱形, ∴AD ∥BC .120ADC ∠=︒,60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知,50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒.……………………………………………3分50FBC ∠=︒, 图350EBG EBC FBC BEC ∴∠=∠-∠=︒=∠. ………………………………………………4分 BH EH ∴=.在△GEH 与△CBH 中,,,,GEH CBH EH BH EHG BHC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEH ≌△CBH .HG F ED CBAEG BC ∴=. ………………………………………………………………………………5分(3)3AE BG EG +=. …………………………………………………………………7分 29.(本小题满分8分)解:(1)① (3,1); ……………………………………………………………………1分② 点B . ………………………………………………………………………2分(2)依题意,3(2)y x x =-+-≥图象上的点P 的限变点必在函数3,13,21x x y x x -+⎧=⎨--<⎩≥≤的图象上.2≤b '∴,即当1x =时,b '取最大值2.当2b '=-时,23x -=-+.5x ∴=. ………………………………………3分 当5b '=-时,53x -=-或53x -=-+.2x ∴=-或8x =. ………………………………4分 52≤≤b '-,由图象可知,k 的取值范围是58≤≤k .……………………………………………5分(3)2222()y x tx t t x t t =-++=-+,∴顶点坐标为(,)t t .………………………………………………………………6分若1t <,b '的取值范围是≥b m '或≤b n ',与题意不符. 若1≥t ,当1≥x 时,y 的最小值为t ,即m t =;当1x <时,y 的值小于2[(1)]t t --+,即2[(1)]n t t =--+.22(1)1s m n t t t t ∴=-=+-+=+.∴s 关于t 的函数解析式为 211)s t t =+≥ (. ……………………………7分 当t=1时,s 取最小值2.∴s 的取值范围是s ≥2. ………………………………………………………8分xy–4–3–2–1123456789–7–6–5–4–3–2–11234O。
海淀区2015九年级期末数学试题和答案

2015-2016海淀区初三数学期末试题 2015.11.方程2350x x --=的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根 2.在Rt △ABC 中,∠C =90º,35BC AB ==,,则sin A 的值为A.35 B.45 C. 34 D. 433.若右图是某个几何体的三视图,则这个几何体是A. 长方体B. 正方体C. 圆柱D. 圆锥4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是 A.16 B. 13 C. 12 D. 235.如图,△ABC 和△A 1B 1C 1是以点O 为位似中心的位似三角形,若C 1为OC 的中点,AB =4,则A 1B 1的长为A. 1B. 2C. 4D. 86.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数3=-y x的图象上的两点,若x 1<0<x 2,则下列结论正确的是A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<07.如图,AB 是半圆O 的直径,AC 为弦,OD ⊥AC 于D ,过点O 作 OE ∥AC 交半圆O 于点E ,过点E 作EF ⊥AB 于F .若AC =2,则OF 的长为A .12B .34C .1D .2 8.如图1,在矩形ABCD 中,AB <BC ,AC ,BD 交于点O .点E 为线段AC 上的一个动点,连接DE ,BE ,过E 作EF ⊥BD 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的图1 图2A .线段EFB .线段DEC .线段CED .线段BE 二、填空题(本题共16分,每小题4分)9.若扇形的半径为3cm ,圆心角为120°,则这个扇形的面积为__________ cm 2.10.在某一时刻,测得一根高为2m 的竹竿的影长为1m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为 m.11.如图,抛物线2y ax =与直线y =bx +c 的两个交点坐标分别为()2,4A -,()1,1B ,则关于x 的方程20ax bx c --=的解为__________.12.对于正整数n ,定义210()=()10,,≥n n F n f n n ⎧<⎨⎩,其中()f n 表示n 的首位数字、末位数字的平方和.例如:2(6)636F ==,()22(123)1231310F f ==+=.规定1()()F n F n =,1()(())k k F n F F n +=(k 为正整数).例如:()()112312310F F ==,21(123)((123))(10)1F F F F ===.(1)求:2(4)F =____________,2015(4)F =______________; (2)若3(4)89m F =,则正整数m 的最小值是_____________. 三、解答题(本题共30分,每小题5分) 13.计算:()()1201511sin 30 3.142-⎛⎫-+-π-+ ⎪⎝⎭.14.如图,△ABC 中,AB =AC ,D 是BC 中点,BE ⊥AC 于E . 求证:△ACD ∽△BCE .15.已知m 是一元二次方程2320x x --=的实数根,求代数式(1)(1)1m m m+--的值.16.抛物线22y x =平移后经过点(0,3)A ,(2,3)B ,求平移后的抛物线的表达式.17.如图,在平面直角坐标系xOy 中,正比例函数2y x =与反比例函数ky x=的图象交于A ,B 两点,A 点的横坐标为2,AC ⊥x 轴于点C ,连接BC .(1)求反比例函数的解析式; (2)若点P 是反比例函数ky x=图象上的一点,且满足△OPC 与△ABC 的面积相等,请直接写出点P 的坐标.B18.如图,△ABC 中,∠ACB =90°,4sin 5A =, BC =8,D 是AB 中点,过点B 作直线CD 的垂线,垂足为E . (1)求线段CD 的长; (2)求cos ABE ∠的值.四、解答题(本题共20分,每小题5分) 19.已知关于x 的一元二次方程()2220mx m x -++=有两个不相等的实数根12,x x .(1)求m 的取值范围; (2)若20x <,且121x x >-,求整数m 的值.20. 某工厂生产的某种产品按质量分为10个档次,据调研显示,每个档次的日产量及相应为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为x 的产品时,当天的利润为y 万元.(1)求y 关于x 的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.A21.如图,四边形ABCD 是平行四边形,点A ,B ,C 在⊙O 上,AD 与⊙O 相切,射线AO 交BC 于点E ,交⊙O 于点F .点P 在射线AO 上,且∠PCB =2∠BAF . (1)求证:直线PC 是⊙O 的切线;(2)若ABAD =2,求线段PC 的长.22.阅读下面材料:小明观察一个由11⨯正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1.他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值. 请回答: (1)如图1,A 、B 、C 是点阵中的三个点,请在点阵中找到点D ,作出线段CD ,使得CD ⊥AB ;(2)如图2,线段AB 与CD 交于点O .为了求出AOD ∠的正切值,小明在点阵中找到了点E ,连接AE ,恰好满足AE CD ⊥于F ,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明计算:OC =_______________;tan AOD ∠=_______________;C图1 图2 图3参考小明思考问题的方法,解决问题:如图3,计算:tan AOD ∠=_______________.五、解答题(本题共22分,第23题7分,第24题7分,第25小题8分) 23.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点(1,4)A ,(,)B m n . (1) 求代数式mn 的值;(2) 若二次函数2(1)y x =-的图象经过点B ,求代数式32234m n m n mn n -+-的值; (3) 若反比例函数k y x=的图象与二次函数2(1)y a x =-的图象只有一个交点,且该交点在直线y x =的下方,结合函数图象,求a 的取值范围.24.如图1,在△ABC 中,BC =4,以线段AB 为边作△ABD ,使得AD=BD , 连接DC ,再以DC 为边作△CDE ,使得DC = DE ,∠CDE =∠ADB =α.(1)如图2 ,当∠ABC=45°且α=90°时,用等式表示线段AD ,DE 之间的数量关系;(2)将线段CB 沿着射线CE 的方向平移,得到线段EF ,连接BF ,AF . ① 若α=90°,依题意补全图3, 求线段AF 的长; ②请直接写出线段AF 的长(用含α的式子表示).图2 图3 备用图BBB图1图325. 在平面直角坐标系xOy 中,设点()11,P x y ,()22,Q x y 是图形W 上的任意两点.定义图形W 的测度面积:若12x x -的最大值为m ,12y y -的最大值为n ,则S m n =为图形W 的测度面积.例如,若图形W 是半径为1的⊙O .当P ,Q 分别是⊙O 与x 轴的交点时,如图1,12x x - 取得最大值,且最大值m =2;当P ,Q 分别是⊙O 与y 轴的交点时,如图2,12y y -取得最大值,且最大值n =2.则图形W 的测度面积4S mn ==.(1)若图形W 是等腰直角三角形ABO ,OA =OB =1.①如图3,当点A ,B 在坐标轴上时,它的测度面积S = ; ②如图4,当AB ⊥x 轴时,它的测度面积S = ;(2)若图形W 是一个边长为1的正方形ABCD ,则此图形测度面积S 的最大值为 ;(3)若图形W 是一个边长分别为3和4的矩形ABCD ,求它的测度面积S 的取值范围.图1图2数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到步应得的累加分数。
2015年海淀中考数学一模试题及答案

解: ( x 2y)2 (x y)( x y) 2 y2 x2 4xy 4 y2 ( x2 y2 ) 2 y2 ………………………………………………2 分
4 xy 3y 2 ……………………………………………………………………3
6. 如图,已知∠ AOB.小明按如下步骤作图: (1) 以点 O 为圆心,适当长为半径画弧,交
OA 于点 D ,交 OB 于点 E.
1
(2) 分别以点 D 、 E 为圆心,大于 DE 的长为半径画弧,两弧在∠ AOB 的内部相交于点 C.
2
(3) 画射线 OC.
根据上述作图步骤,下列结论正确的是 A .射线 OC是∠ AOB的平分线 B .线段 DE平分线段 OC C .点 D和点 C 关于直线 DE对称 D . OE=CE 7.某次比赛中, 15 名选手的成绩如图所示,则这 l5 名选 手成绩的众数和中 位数分别是
200
300
400
500
600
摸到白球的次数 m
58
118
189
237
302
359
m
摸到白球的频率
n
0.58
0.59
0.63
0.593 0.604
从这个袋中随机摸出一个球,是白球的概率约为
(结果精确到 0.1 )
14. 如图,点 C 为线段 AB上一点,将线段 CB绕点 C 旋转,得到线段 CD,若 DA
E
F
A
B
C
D
18. 解不等式组:
3x 4>5x 2 x 1x 4
33
北京市海淀区2015届九年级数学第二次模拟考试试卷

北京市海淀区2015届九年级数学第二次模拟考试试卷海淀区九年级第二学期期末练习数学试卷答案及评分参考选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)15三、解答题(本题共30分,每小题5分) 17.(本小题满分5分)解:原式213=+-……………………..………………………………...4分4.……………………………………………………………...5分18. (本小题满分5分)解法一:去括号,得 22133x x -+≤.………………………………………..1分移项, 得 22133x x -+≤.…………………………………………..2分合并,得 1533x -≤. ……………………………………………3分系数化为1,得 5x -≥. …………………………………...……4分 不等式的解集在数轴上表示如下:. ……………………………………………5分解法二:去分母,得 2233x x -+≤. …………………………………………………1分移项, 得 2332x x -+≤.…………………………………………………2分合并, 得 5x -≤. ……………………………………………..3分 系数化为1,得 5x -≥. ………………………………………………..4分不等式的解集在数轴上表示如下:. …………………………………………5分19.(本小题满分5分) 证明:在△ABC 中 ∵∠BAC =∠BCA ,∴AB =CB . ……………………………………………1分 ∵∠BAE =∠BCD =90°,DA在Rt △EAB 和Rt △DCB 中, ,,AB CB BE BD =⎧⎨=⎩∴Rt △EAB ≌Rt △DCB . ……………………………………4分 ∴∠E =∠D . …………………………………………5分20.(本小题满分5分) 解:原式()()()3444x x x x x x x --=---…………………………………………………………….1分()2344x x x x x --+=-……………………………………………………………2分22444x x x x -+=-.………………………………………………………………3分 ∵2410x x --=,∴241x x -=.…………………………………………………………………4分 ∴原式1451+==.………………………………………………..5分 21. (本小题满分5分)解:设小明家到学校的距离为x 米.…………………………………………..1分由题意,得403025x x +=.……………………………………………………..3分解得 6000x =. ……………………………………………..4分答:小明家到学校的距离为6000米. ……………………………………….5分 22. (本小题满分5分)解:(1)∵关于x 的方程24310x x a -+-=有两个实数根,∴2(4)4(31)0a ∆=---≥.……………………………………………………..1分 解得 53a ≤.……………………………………………2分∴a 的取值范围为53a ≤.(2)∵53a ≤,且a 为正整数,∴1a =.……………………………………………………………3分∴方程24310x x a -+-=可化为2420x x -+=.∴此方程的根为1222x x ==分四、解答题(本题共20分,每小题5分) 23. (本小题满分5分) (1)证明: ∵ED ⊥AD ,∴∠ADE =90°.在Rt △ADE 中,∠DAE=30°,AE =4,∴60DEA =∠o ,122DE AE ==.……………………………………1分 ∵2EC =, ∴DE EC =.∴EDC C =∠∠.又60,EDC C DEA +=∠=∠∠o Q∴30C DAE =∠=∠o.∴AD=DC . ………………….……………………………2分(2)解:过点A 作AF ⊥BC 于点F ,如图.∴∠AFC =∠AFB =90°.∵AE =4,EC =2, ∴AC =6.在Rt △AFC 中,∠AFC =90°,∠C=30°,∴132AF AC ==在Rt △AFB 中,∠AFB =90°,tan B =3,∴1tan AFBF B==.……….………………………………………………………………………4分∴AB (5)分24. (本小题满分5分)(1)8m =;5n =;………………………………………………………………………………...2分 (2)………………………………………...4分(3)适中. …………………………………………………………………….5分25.(本小题满分5分)证明:连接OE,OC.在△OEC与△OAC中,,,,OE OAOC OCCE CA=⎧⎪=⎨⎪=⎩∴△OEC≌△OAC..1分∴∠OEC=∠OAC.∵∠OAC=90°,∴∠OEC=90°.∴OE⊥CF于E.∴CF与⊙O相切.…………………………………………………...2分(2)解:连接AD.∵∠OEC=90°,∴∠OEF=90°.∵⊙O的半径为3,∴OE=OA=3.在Rt△OEF中,∠OEF=90°,OE= 3,EF= 4∴5OF分3tan4OEFEF==.在Rt△FAC中,∠FAC=90°,8AF AO OF=+=,∴tan6AC AF F=⋅=.…………………………………………………………4分∵AB为直径,∴AB=6=AC,∠ADB=90°.∴BD=2BC.在Rt△ABC中,∠BAC=90°,∴BC=∴BD=26. (本小题满分5分)解:(1)当k=1时,使得原等式成立的x分(2)当0<k<1时,使得原等式成立的x分(3)当k>1时,1 . (3)解决问题:将不等式240 (x a ax+-<研究函数2(0)y x a a=+>与函数4yx=∵函数4yx=的图象经过点A(1,4),B函数2y x=的图象经过点C(1,1),DFF若函数2(0)y x a a =+>经过点A (1,4),则3a =, ……………………………………4分 结合图象可知,当03a <<时,关于x 的不等式24(0)x a a x+<>只有一个整数解.也就是当03a <<时,关于x 的不等式240 ()x a a x+-<>0只有一个整数解. ………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (本小题满分7分)解:(1)∵抛物线224y mx m m x -++=与y 轴交于点A (0,3),∴43m +=. ∴1m =-.∴抛物线的表达式为232y x x =-++.……………………………………1分 ∵抛物线232y x x =-++与x 轴交于点B ,C , ∴令0y =,即 2320x x +-=+. 解得 11x =-,23x =.又∵点B 在点C 左侧,∴点B 的坐标为(1,0)-,点C 的坐标为(3,0).……………………...……3分(2)∵2223(1)4y x x x +=---++=,∴抛物线的对称轴为直线1x =. ∵抛物线的对称轴与x 轴交于点D ,∴点D 的坐标为(1,0).……………………………………………...………4分 ∵直线y kx b =+经过点D (1,0)和点E (1,2)--,∴0,2.k b k b +=⎧⎨-+=-⎩解得1,1.k b =⎧⎨=-⎩∴直线DE 的表达式为1y x =-. ………………………………………5分 (3)1t <或3t > ………………………………………………………7分28.(本小题满分7分)(1)∠ADE =90α︒-.………………………………………….…1分 (2)①证明:∵四边形ABFE 是平行四边形,∴AB ∥EF .∴EDC ABC α∠=∠=. …………………………….……2分 由(1)知,∠ADE =90α︒-,∴90ADC ADE EDC ∠=∠+∠=︒. …………………...……3分 ∴AD ⊥BC . ∵AB =AC ,∴BD =CD .……………………………..……………4分②证明:∵AB =AC ,∠ABC =α, ∴C B α∠=∠=.∵四边形ABFE 是平行四边形, ∴AE ∥BF , AE =BF .∴EAC C α∠=∠=.……………………………………5分 由(1)知,2DAE α∠=, ∴DAC α∠=.……………………………………………………6分∴DAC C ∠=∠. ∴AD =CD . ∵AD =AE =BF , ∴BF =CD .∴BD =CF .…………………………………………………7分 是经检验:此时⊙M② 阴影部分关于直线12y =对称,故不妨设点M 位于阴影部分下方. ∵点M 在y 轴上,⊙M 上只有一个点为12T T -联络点, 阴影部分关于y 轴对称,∴⊙M 与直线AC 相切于O (0,0),且⊙M 与直线AD 相离. 作ME ⊥AD 于E ,设AD 与BC 的交点为F ,∴MO = r ,ME > r ,F (0,12).在Rt △AOF 中,∠AOF =90°,AO =1,12OF =,∴AF =在Rt △FEM 中,∠FEM ∴sin ME FM =⋅∠r >∴02r <<。
北京市海淀区九年级数学第二次模拟考试试卷(扫描版)

北京市海淀区2015届九年级数学第二次模拟考试试卷海淀区九年级第二学期期末练习数学试卷答案及评分参考选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分)17.(本小题满分5分)解:原式213=+-……………………..………………………………...4分4.……………………………………………………………...5分18. (本小题满分5分)解法一:去括号,得 22133x x -+≤.………………………………………..1分 移项, 得 22133x x -+≤.…………………………………………..2分 合并,得 1533x -≤. ……………………………………………3分 系数化为1,得 5x -≥. …………………………………...……4分不等式的解集在数轴上表示如下:. ……………………………………………5分解法二:去分母,得 2233x x -+≤. …………………………………………………1分移项, 得 2332x x -+≤.…………………………………………………2分合并,得 5x -≤. ……………………………………………..3分 系数化为1,得 5x -≥. ………………………………………………..4分不等式的解集在数轴上表示如下:. …………………………………………5分19.(本小题满分5分)证明:在△ABC 中∵∠BAC =∠BCA ,∴AB =CB . ……………………………………………1分∵∠BAE =∠BCD =90°,在Rt △EAB 和Rt △DCB 中, DA,,AB CB BE BD =⎧⎨=⎩∴Rt △EAB ≌Rt △DCB . ……………………………………4分∴∠E =∠D . …………………………………………5分20.(本小题满分5分)解:原式()()()3444x x x x x x x --=---…………………………………………………………….1分 ()2344x x x x x --+=-……………………………………………………………2分 22444x x x x-+=-.………………………………………………………………3分 ∵2410x x --=,∴241x x -=.…………………………………………………………………4分 ∴原式1451+==.………………………………………………..5分 21. (本小题满分5分)解:设小明家到学校的距离为x 米.…………………………………………..1分由题意,得 403025x x +=.……………………………………………………..3分解得 6000x =. ……………………………………………..4分 答:小明家到学校的距离为6000米. ……………………………………….5分22. (本小题满分5分)解:(1)∵关于x 的方程24310x x a -+-=有两个实数根,∴2(4)4(31)0a ∆=---≥.……………………………………………………..1分解得 53a ≤.……………………………………………2分 ∴a 的取值范围为53a ≤.(2)∵53a ≤,且a 为正整数, ∴1a =.……………………………………………………………3分∴方程24310x x a -+-=可化为2420x x -+=.∴此方程的根为1222x x ==分四、解答题(本题共20分,每小题5分)23. (本小题满分5分)(1)证明: ∵ED ⊥AD ,∴∠ADE =90°.在Rt △ADE 中,∠DAE=30°,AE =4,∴60DEA =∠o ,122DE AE ==.……………………………………1分 ∵2EC =, ∴DE EC =.∴EDC C =∠∠.又60,EDC C DEA +=∠=∠∠o Q∴30C DAE =∠=∠o.∴AD=DC . ………………….……………………………2分(2)解:过点A 作AF ⊥BC 于点F ,如图.∴∠AFC =∠AFB =90°.∵AE =4,EC =2, ∴AC =6.在Rt △AFC 中,∠AFC =90°,∠C=30°,∴132AF AC ==在Rt △AFB 中,∠AFB =90°,tan B=3,∴1tan AFBF B==.……….………………………………………………………………………4分∴AB (5)分24. (本小题满分5分)(1)8m =;5n =;………………………………………………………………………………...2分 (2)………………………………………...4分(3)适中. …………………………………………………………………….5分25.(本小题满分5分) 证明:连接OE ,OC .在△OEC 与△OAC 中, ,,,OE OA OC OC CE CA =⎧⎪=⎨⎪=⎩∴△OEC ≌△OAC..1分∴∠OEC =∠OAC .∵∠OAC =90°, ∴∠OEC =90°. ∴OE ⊥CF 于E .∴CF 与⊙O 相切.…………………………………………………...2分(2)解:连接AD .∵∠OEC =90°,∴∠OEF =90°.∵⊙O 的半径为3,∴OE =OA=3.在Rt △OEF 中,∠OEF =90°,OE = 3,EF = 4∴5OF 分3tan 4OE F EF ==. 在Rt △FAC 中,∠FAC =90°,8AF AO OF =+=,∴tan 6AC AF F =⋅=.…………………………………………………………4分 ∵AB 为直径,∴AB =6=AC ,∠ADB =90°.∴BD =2BC .在Rt △ABC 中,∠BAC =90°,∴BC =∴BD =26. (本小题满分5分) 解:(1)当k =1时,使得原等式成立的x 分(2)当0<k <1时,使得原等式成立的x 分(3)当k >1时,1 .…..解决问题:将不等式240 (x a a x +-<研究函数2(0)y x a a =+>与函数4y x =∵函数4y x=的图象经过点A (1,4),B 函数2y x =的图象经过点C (1,1),D F F若函数2(0)y x a a =+>经过点A (1,4),则3a =, ……………………………………4分 结合图象可知,当03a <<时,关于x 的不等式24(0)x a a x+<>只有一个整数解.也就是当03a <<时,关于x 的不等式240 ()x a a x+-<>0只有一个整数解. ………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (本小题满分7分)解:(1)∵抛物线224y mx m m x -++=与y 轴交于点A (0,3),∴43m +=. ∴1m =-.∴抛物线的表达式为232y x x =-++.……………………………………1分 ∵抛物线232y x x =-++与x 轴交于点B ,C , ∴令0y =,即 2320x x +-=+. 解得 11x =-,23x =.又∵点B 在点C 左侧,∴点B 的坐标为(1,0)-,点C 的坐标为(3,0).……………………...……3分(2)∵2223(1)4y x x x +=---++=,∴抛物线的对称轴为直线1x =. ∵抛物线的对称轴与x 轴交于点D ,∴点D 的坐标为(1,0).……………………………………………...………4分 ∵直线y kx b =+经过点D (1,0)和点E (1,2)--,∴0,2.k b k b +=⎧⎨-+=-⎩解得1,1.k b =⎧⎨=-⎩∴直线DE 的表达式为1y x =-. ………………………………………5分 (3)1t <或3t > ………………………………………………………7分28.(本小题满分7分)(1)∠ADE =90α︒-.………………………………………….…1分 (2)①证明:∵四边形ABFE 是平行四边形,∴AB∥EF.∴EDC ABCα∠=∠=.…………………………….……2分由(1)知,∠ADE =90α︒-,∴90∠=∠+∠=︒.…………………...……3分ADC ADE EDC∴AD⊥BC.∵AB=AC,∴BD=CD.……………………………..……………4分②证明:∵AB=AC,∠ABC =α,Array∴C Bα∠=∠=.∵四边形ABFE是平行四边形,∴AE∥BF, AE=BF.∴EAC Cα∠=∠=.……………………………………5分由(1)知,2∠=,DAEα∴DACα∠=. (6)分∴DAC C∠=∠.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴BD=CF.…………………………………………………7分② 阴影部分关于直线12y =对称,故不妨设点M 位于阴影部分下方. ∵点M 在y 轴上,⊙M 上只有一个点为12T T -联络点, 阴影部分关于y 轴对称,∴⊙M 与直线AC 相切于O (0,0),且⊙M 与直线AD 相离. 作ME ⊥AD 于E ,设AD 与BC 的交点为F ,∴MO = r ,ME > r ,F (0,12).在Rt △AOF 中,∠AOF =90°,AO =1,12OF =,∴AF =在Rt △FEM 中,∠FEM ∴sin ME FM =⋅∠r >∴02r <<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市海淀实验中学2015年初三月考数学试题班级____________________ 姓名___________________ 分数______________一、选择题(本小题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的。
1. 2-的绝对值是( )A. 2B. 2-C.12 D. 12- 2. 从财政部公布的2014年中央公共财政预算支出结构中,交通运输支出约为4350亿元,比去年同期增长7.1%.将4 350用科学记数法表示应为( )A. 4.35×103B. 0.435×104C. 4.35×104D. 43.5×102 3. 由5个相同的正方体组成的几何体如图所示,则它的主视图是( )4.有五张形状、大小、质地都相同的卡片,上面分别画有下列图形:①正方形;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,正面图形既是轴对称图形,又是中心对称图形的概率是( )A.51 B. 52 C. 53 D. 545. 如图,下面是利用尺规作AOB ∠的角平分线OC 的作法,在用尺规作角平分线时,用到的三角形全等的判定方法是( )作法:○1以O 为圆心,任意长为半径作弧,交OA ,OB 于点D ,E . ○2分别以D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在AOB ∠内交于点C .○3作射线OC .则OC 就是AOB ∠的平分线. A .SSS B .SAS C .ASA D .AASA.B.C.D.主视方向6. 为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是( ) A.极差是6 B.众数是7 C.中位数是8 D.平均数是107. 右图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的 半径为5cm ,水面宽AB 为8cm ,则水的最大深度CD 为( )A. 4cmB. 3cmC. 2cmD. 1cm8. 已知关于x 的一元二次方程2210mx x +-=有两个不相等的实数根,则m 的取值范围是( ) A. 1m <- B. 1m > C. 1m <且0m ≠ D. 1m >-且0m ≠9.一个多边形的外角和是内角和的一半,则这个多边形的边数为( )A. 5B. 6C. 7D. 810.如图,梯形ABCD 中,AB ∥CD ,∠A =30°,∠B =60°,AD =32, CD =2,点P 是线段AB 上一个动点,过点P 作PQ ⊥AB 于P , 交其它边于Q ,设BP 为x ,△BPQ 的面积为y ,则下列图象中, 能表示y 与x 的函数关系的图象大致是( ).x y 6312O x y 6312O x y 6312O xy 6312O二、填空题(本题共18分,每小题3分)11.函数13-=x y 的自变量x 的取值范围是 _______.12. 分解因式:42242x x y y -+= 。
13. 如图,菱形ABCD 中,60DAB ∠=︒,DF AB ⊥于点E , 且DF DC =,连接FC ,则ACF ∠的度数为 _______度。
ABCD E OF第13题OBAC D第5题图Q BC DAP第8题14.函数y=x 2-2x-2的图象如右图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是______________________15.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是 .(结果保留π)14题 15题 16.对非负实数x“四舍五入”到个位的值记为(x ).即当n 为非负整数时,若n-12≤x<n+12,则(x )=n .如(0.46)=0,(3.67)=4.给出下列关于(x )的结论:①(1.493)=1; ②(2x )=2(x );③若(12x-1)=4,则实数x 的取值范围是9≤x<11;④当x≥0,m 为非负整数时,有(m+2013x )=m+(2013x ); ⑤(x+y )=(x )+(y );其中,正确的结论有_____________.(填写所有正确的序号).三、解答题(本题共30分,每小题5分)17. 计算:011(21)272cos30()2---+︒+18. 解不等式组3(1)72113x x x x --<⎧⎪-⎨≤+⎪⎩.并求出它的所有非负整数解。
19.如图,在△ABC 中,AB=CB ,∠ABC=90º,D 为AB 延长线 上一点,点E 在BC 边上,且BE=BD ,连结AE 、DE 、DC . (1) 求证:△ABE ≌△CBD ;(2) 若∠CAE=30º,求∠BCD 的度数.20. 已知:0832=-+x x ,求代数式21144212+--++-⋅-x x x x x x 的值.21. 列方程(组)解应用题:2009年12月联合国气候会议在哥本哈根召开.从某地到哥本哈根,若乘飞机需要3小时,若乘汽车需要9小时.这两种交通工具平均每小时二氧化碳的排放量之和为70千克,飞机全程二氧化碳的排放总量比汽车的多54千克,分别求飞机和汽车平均每小时二氧化碳的排放量.22.已知一次函数(0)y kx b k =+≠和反比例函数2ky x=的图象交于点A(1,1) ⑴求两个函数的解析式;⑵若点B (4,0),请在第一象限找一点M ,使△ABM 是以AB 为腰的等腰直角三角形。
直接写出M 点的坐标。
四、解答题(本题共20分,每小题5分)23.如图,梯形ABCD 中,AD ∥BC ,90A ∠=︒,BC=2,15ABD ∠=︒,60C ∠=︒.(1) 求∠BDC 的度数; (2) 求AB 的长.24. 为了了解北京市的绿化进程,小红同学查询了首都园林绿化政务网,根据网站发布的近几年北京市城市绿化资源情况的相关数据,绘制了如下统计图(不完整):(1)请根据以上信息解答下列问题:① 2010年北京市人均公共绿地面积是多少平方米(精确到0.1)? ② 补全条形统计图;(2)小红同学还了解到自己身边的许多同学都树立起了绿色文明理念,从自身做起,多种树,为提高北京市人均公共绿地面积做贡献. 她对所在班级的40名同学2011年参与植树的情种树棵数(棵)0 1 2 3 4 5 人数1056946如果按照小红的统计数据,请你通过计算估计,她所在学校的300名同学在2011年共植树多少棵.25. 如图,△ABC 中,以BC 为直径的⊙O 交AB 于点D ,CA 是⊙O 的切线, AE 平分∠BA C 交BC 于点E ,交CD 于点F . (1)求证:CE =CF ; (2)若sin B =35,求DF ∶CF 的值.2.03.46.67.95.010北京市2007-2011年人均公共绿地面积年增长率统计图北京市2007-2011年 人均公共绿地面积统计图15.314.513.612.6人均公共绿地面积(m 2963026. 已知△ABC 的面积为a ,O 、D 分别是边AC 、BC 的中点.(1)画图:在图1中将点D 绕点O 旋转180︒得到点E , 连接AE 、CE . 填空:四边形ADCE 的面积为 ;(2)在(1)的条件下,若F 1是AB 的中点,F 2是AF 1的中点, F 3是AF 2的中点,…,F n 是AF n -1的中点 (n 为大于1的整数), 则△F 2CE 的面积为 ; △F n CE 的面积为 .解: (1)画图:图1填空(1):四边形ADCE 的面积为 .(2)△F 2CE 的面积为 ; △F n CE 的面积为 .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. 已知关于x 的方程03)13(2=+++x k kx .(1)求证:无论k 取任何实数时,方程总有实数根;(2)若二次函数3)13(2+++=x k kx y 的图象与x 轴两个交点的横坐标均为整数,且k 为正整数,求k 值;(3)在(2)的条件下,设抛物线的顶点为M ,直线y=-2x +9与y 轴交于点C ,与直线OM 交于点D .现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线CD (含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围.28.在Rt △ABC 中,∠ACB =90°,tan ∠BAC =12. 点D 在边AC 上(不与A ,C 重合),连结BD ,F 为BD 中点.(1)若过点D 作DE ⊥AB 于E ,连结CF 、EF 、CE ,如图1. 设CF kEF ,则k = ; (2)若将图1中的△ADE 绕点A 旋转,使得D 、E 、B 三点共线,点F 仍为BD 中点,如图2所示.求证:BE -DE =2CF ;(3)若BC =6,点D 在边AC 的三等分点处,将线段AD 绕点A 旋转,点F 始终为BD 中点,求线段CF 长度的最大值.B CADE FB DEA FCBAC1图2图备图29.出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的。
在出租车几何学中,点还是形如()y x ,的有序实数对,直线还是满足0=++c by ax 的所有()y x ,组成的图形,角度大小的定义也和原来一样。
直角坐标系内任意两点()()2211,,,y x B y x A 定义它们之间的一种“距离”:2121y y x x AB -+-=,请解决以下问题:1、求线段2=+y x )0,0(≥≥y x 上一点()y x M ,的距离到原点()0,0O 的“距离”;2、定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆周”上的所有点到点()b a Q , 的“距离”均为 r 的“圆”方程; 3、点()3,1A 、()9,6B ,写出线段AB 的垂直平分线的轨迹方程并画出大致图像.草稿纸。