第六讲 图形与变换

合集下载

第六讲二维及三维空间的变换概念及其矩阵表示-精品

第六讲二维及三维空间的变换概念及其矩阵表示-精品
20133152013315?几何变换二维变换齐次坐标系和二维变换的矩阵表示二维变换的复合窗口到视口的变换效率问题三维变换的矩阵表示三维变换的复合坐标系的变换二维及三维空间的变换概念矩阵表示三维视图二维三维空间的变换概念及其矩阵表示2013315几何变换本讲介绍计算机图形学经常用到的基本的二维和三维几何变换其中的平移变换比例变换和旋转变换对很多图形应用程序来说极其重要
现在考虑绕任意一点P1旋转物体的问题。 1)将P1点平移到原点; 2)旋转; 3)平移还原P1点。
2019/11/20
二维变换的复合(例二)
关于任意 点P1比例 变换一个 物体。
2019/11/20
二维变换的复合(小结)
假设我们想要使图中的房子以任意点P1为中心进行旋转、平移和缩放(比例)变换 。这时具体步骤与上述类似:先将点P1平移到原点,待完成比例变换和旋转变换后 再将房子从坐标原点平移到新的位置P2,因此记录变换的数据结构可以是包含比例 变换因子、旋转角、平移量和变换顺序的数据结构,或者只是简单地记录复合变换
过除以W)而得到形式为(x,y,1)的
坐标,因此,齐次化的点就形成
平面
了(x,y,W)空间中的一个平面,由等
式W=1定义。图中示出了这种联 系,注意:无穷远点没表示在该 平面中。
XYW齐次坐标系,其中示有W=1的平面和投影 到该平面上的点P(X,Y,W)
2019/11/20
二维变换的矩阵表示
平移变换
0, 10
1
绕x旋转
Rx()
0 0
0
cos sin
0
sin cos
0 0. 0
Байду номын сангаас
0 0 0 01
0 0

六年级下册数学《图形的变换》教案

六年级下册数学《图形的变换》教案

六年级下册数学《图形的变换》教案一、教学目标知识与技能1. 学生能够理解平移、旋转的概念,并能够用这些概念来描述物体的运动。

2. 学生能够通过实际操作,理解平移、旋转对图形的影响。

3. 学生能够运用平移、旋转的知识,解决实际问题。

过程与方法1. 学生通过实际操作,培养观察、思考、动手的能力。

2. 学生通过小组合作,培养团队协作的能力。

情感态度价值观1. 学生培养对数学的兴趣,感受数学与生活的联系。

2. 学生在解决实际问题的过程中,培养解决问题的能力,增强自信心。

二、教学重难点重点1. 学生能够理解平移、旋转的概念,并能够用这些概念来描述物体的运动。

2. 学生能够通过实际操作,理解平移、旋转对图形的影响。

难点1. 学生能够运用平移、旋转的知识,解决实际问题。

三、教学准备1. 教学课件2. 实物模型3. 练习题四、教学过程1. 导入通过一个简单的谜语,引发学生对图形变换的思考,为新课的学习做好铺垫。

2. 新课导入1. 介绍平移的概念,并通过实际操作,让学生感受平移的效果。

2. 介绍旋转的概念,并通过实际操作,让学生感受旋转的效果。

3. 课堂练习1. 学生独立完成课本上的练习题,巩固所学知识。

2. 学生之间互相检查,老师进行讲解。

4. 小组活动1. 学生分组,每组选择一个图形,进行平移、旋转的实际操作。

2. 每组派代表分享他们的操作过程和结果。

5. 解决问题1. 老师提出一个实际问题,让学生运用平移、旋转的知识来解决。

2. 学生进行思考,老师进行讲解。

6. 小结对本节课的主要内容进行总结,强调平移、旋转的概念和实际应用。

7. 作业布置布置一些有关平移、旋转的练习题,让学生巩固所学知识。

五、教学反思教师在课后要对课堂进行反思,看学生是否掌握了平移、旋转的概念和实际应用,看教学方法是否适合学生,并做出相应的调整。

中考数学复习 第六章图形与变换 第35课 用坐标表示图形变换课件

中考数学复习 第六章图形与变换 第35课 用坐标表示图形变换课件
2.图形变换前后的关系 比较变化后的图形与原图形的关系,一般是从橫、纵坐标的
关系着手,尤其要抓住关键点的横、纵坐标的变化.
基础自测
1.(2011·河南)如图,将一朵小花放置在平面直角坐标系中第三象
限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它
向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对
探究提高 在平面直角坐标系或网格中求面积,有一定的规律,常以
填空或选择题的形式出现,一般的做法是将难以求解的图形 分割成易求解面积的图形,即构图法.
知能迁移4 已知点A(-1,4),B(2,2),C(4,-1),则△ABC的 面积是___2_.5___.
解析:如图:S△ABC=5×5- 1×2×3=25-22.5=2.5
显然,点P的极坐标与它的坐标存在一一对应关系.例如:
点P的坐标为(1,1),则其极坐标为 [ , 45°]. 2
若点Q的极坐标为[4,60°],则点Q的坐标为( A )
A.(2, 2 3 )
B.(2,-2 3)
C.(2 3 , 2 )
D.(2,2)
题型三 求轴对称、旋转对称对应点的坐标
【例 3】 如图,在边长为1的正方形网格中,将△ABC向右平移两
12×2a、×2a-
1 2
a×、42a=3a2.
(m>0,
n>0且m≠n),试运用构图m法2+求1出6n这2 三9m角2+形4的n2 面积.m2+n2
解:构造△ABC如图(3)所示(未在试卷上画出相应图形 不1×扣2分m)×,2Sn△=AB1C2=mn3m-×2m4nn--312×mnm-×24mnn-=125×m3nm. ×2n- 2
探究提高 本题利用数形结合的方法确定点P的坐标,在阅读理解的

初中数学图与图形的变换精讲

初中数学图与图形的变换精讲

图形与图形的变换1.图形的初步认识①掌握画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型.②了解直棱柱、圆锥的侧面展开图,能根据展开图判断立体模型.③了解几何体与其三视图、展开图(球除外)之间的关系.④掌握比较角的大小,估计一个角的大小,计算角度的和与差,进行度、分、秒简单换算.⑤了解角平分线及其性质,了解补角、余角、对顶角;理解等角的余角相等、等角的补角相等、对顶角相等.⑥了解两点之间,线段最短;了解经过两点有一条直线,并且只有一条直线.⑦了解垂线、垂线段等概念,垂线段最短的性质,点到直线距离的意义;了解过一点有且仅有一条直线垂直于已知直线.⑧掌握用三角尺或量角器过一点画一条直线的垂线;了解线段垂直平分线及其性质.⑨理解平行线的特征和平行线的识别;了解过直线外一点有且仅有一条直线平行于已知直线;掌握用三角尺和直尺过已知直线外一点画这条直线的平行线.⑩理解平行线之间距离的意义;掌握度量两条平行线之间的距离的方法.2.轴对称①认识轴对称.②理解对应点所连的线段被对称轴垂直平分的性质.③掌握能按要求作简单平面图形经过一次或两次轴对称后的图形.④掌握简单图形之间的轴对称关系,并指出对称轴.⑤掌握基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及相关性质.⑥掌握利用轴对称进行图案的设计.3.平移和旋转①认识平移,理解对应点连线平行且相等的性质;掌握按要求作简单平面图形平移后的图形;掌握选用平移进行图案设计.②认识旋转(含中心对称);理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.③了解平行四边形、圆是中心对称图形.④掌握按要求作简单平面图形旋转后的图形.⑤掌握图形之间的轴对称、平移、旋转及其组合四种关系形式.⑥掌握运用轴对称、平移和旋转的组合进行图案设计.⑦在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,培养学生的数学说理的习惯与能力.【课时分布】图形与图形的变换在第一轮复习时大约需要3个课时,下表为内容及课时安排(仅供参考)课时数内容1基本图形的认识1轴对称与轴对称图形1平移与旋转1图形与图形的变换单元测试与评析【知识回顾】1.知识脉络图形的初步认识立体图形平面图形视图平面展开图点和线角相交线平行线图形之间的变换关系轴对称平移旋转旋转对称中心对称2.基础知识(1)两点之间线段最短;连结直线外一点与直线上各点的所有线段中,垂线段最短.(2)视图有正视图、俯视图、侧视图(左视图、右视图).(3)平行线间的距离处处相等.(4)平移是由移动的方向和距离决定的.(5)平移的特征:①对应线段平行(或共线)且相等;连结对应的线段平行(或共线)且相等;②对应角分别相等;③平移后的图形与原图形全等.(6)图形的旋转由旋转中心、旋转角度和旋转方向决定.(7)旋转的特征:①对应点与旋转中心的距离相等;对应线段相等,对应角相等;②每一点都绕旋转中心旋转了相同的角度;③旋转后的图形与原图形全等.3、能力要求例1选择、填空题(1)如图6-1,小军将一个直角三角板绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是·····································A.B.C .D .【分析】图形的旋转与展开.【解】D .(2)如图6-2,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为()A .4πcmB .3πcmC .2πcmD .πcm【分析】图形的旋转与圆弧问题结合.【解】C .(3)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45 ,第1次旋转后得到图①,第2次旋转后得到图②……,则第10次旋转后得到的图形与图①~图④中相同的是()A .图①B .图②C .图③D .图④【分析】图形的旋转与操作.【解】B .(4)如图6-3,在Rt △ABC 中,∠C =90°,AC =8,BC =6,ABCD 图6-3C’图①图②图③图④图6-2ABCDO图6-1(5)按图中所示方法将△BCD 沿BD 折叠,使点C 落在边AB 上的点C ′处,则折痕BD的长为__________.【分析】图形的折叠与勾股定理应用.【解】35.(5)如图6-4,在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移个单位长度.【分析】图形平移、圆的位置关系与发散思维结合【解】4或6(6)如图6-5所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别是边AB 、AC 上,将ABC△沿着DE 折叠压平,A 与'A 重合,若=70A ︒∠,则1+2∠∠=()A.140︒B.130︒C.110︒D.70︒【分析】图形折叠、三角形内角和与平角的结合【解】A(7)如图6-6-1和6-6-2,四边形ABCD 是边长为1的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F →H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是()图6-4图6-5图图【分析】图形的平移、动点问题及函数图像【解】B【说明】由于概念、性质比较多,复习时可以通过基本练习题的训练,使学生熟练掌握图形与图形变换的基本知识、基本方法和基本技能.重视平移、旋转、折叠、展开过程中学生思维的训练,重视平移、旋转、折叠、展开的操作过程,提高学生的分解、组合图形的能力和动手能力。

六年级下册数学《图形的变换》教案

六年级下册数学《图形的变换》教案

六年级下册数学《图形的变换》教案教学目标- 了解图形的平移、旋转和翻转变换。

- 掌握进行平移、旋转和翻转变换的方法。

- 能够通过变换判断两个图形是否相同。

教学准备- 教师准备:教案、黑板、彩色粉笔、实物图形、PPT等。

- 学生准备:课本、笔、练习册等。

教学步骤1. 导入新知:通过展示一些实物图形,引发学生对图形变换的兴趣,让学生猜测实物在不同变换下的效果,并与他们的伙伴分享。

2. 引入平移变换:通过教师示范和学生模仿的方式,介绍平移变换的概念和方法。

让学生在纸上练习进行平移变换,并互相检查。

3. 引入旋转变换:通过教师示范和学生模仿的方式,介绍旋转变换的概念和方法。

让学生在纸上练习进行旋转变换,并互相检查。

4. 引入翻转变换:通过教师示范和学生模仿的方式,介绍翻转变换的概念和方法。

让学生在纸上练习进行翻转变换,并互相检查。

5. 综合练习:出示一些图形,并要求学生进行平移、旋转和翻转变换,判断变换后的图形是否与原图相同。

6. 总结归纳:帮助学生总结平移、旋转和翻转变换的特点和方法,并解答学生提出的问题。

7. 作业布置:要求学生完成课后练习册上的相关练习,巩固所学内容。

8. 展示成果:鼓励学生在下节课时展示他们完成的变换作品,并进行点评和讨论。

教学评价- 教师观察学生在课堂上的练习情况,及时给予指导和帮助。

- 检查学生课后练习册上的完成情况,评价学生的掌握程度。

- 对学生的作品进行评价,鼓励他们的努力和创造力。

参考资料- 《小学数学六年级下册》教材- 《小学数学六年级下册》练习册。

北师大版数学六年级上册《图形的变换》PPT

北师大版数学六年级上册《图形的变换》PPT

D
C
B
A
(4)
平移和旋转的方法: C三角形绕最上面的顶点顺时针旋转90°; A三角形绕最下面的顶点逆时针旋转90°; B三角形先向右平移2格,再向上平移2格; D三角形先向右平移2格,再向下平移2格。
平移
平移 旋转 相结 合
平移
平移和旋转相结合
利用平移、旋 转或轴对称的方法 可以将图形经过变 换得到新的图形。
观察方格纸中图形的变换,并与同学进行交流。
A
B向右平移8格来自观察方格纸中图形的变换,并与同学进行交流。
A
BC
顺时针旋转900
A
B


O
M
O’
N
C
A
B
进行平移
C
D
三角形AOB 经过怎样的变换得到三角形0A′ B′ 的?
A
B
O
A′
B′
谢谢
欣 赏
a
三角形a向右平移三格 注:描述图形的平移现象时,要突 出说明,图形向什么方向平移,平 移几格。
aa
三角形a绕最上面的顶点逆时针旋转90°
注:描述图形的旋转现象时,要突出说明, 图形绕哪个顶点,是顺时针还是逆时针方向 旋转、旋转多少度。
(1)旋转 (1)平移
(2)对称 (2)平移
(3)平移 (4)旋转
A
B
(1)
C
D
请观察这两副图,思考: (1)四个三角形A、B、C、D如何变换得到“风车”图形?
A
B
(1)
C
D
平移的方法: A三角形向右平移2格; C三角形向上平移2格; D三角形向左平移2格; B三角形向下平移2格。
A
B

北师大版六年级下册数学《图形与变换》 (共9张PPT)

北师大版六年级下册数学《图形与变换》 (共9张PPT)


11、人总是珍惜为得到。21.6.3008:04: 3508:0 4Jun-2 130-Jun -21

12、人乱于心,不宽余请。08:04:3508:04:3508:04Wednesday, June 30, 2021

13、生气是拿别人做错的事来惩罚自 己。21.6.3021.6.3008:04:3508:04:35J une 30, 2021

11、人总是珍惜为得到。21.6.3008:04: 3508:0 4Jun-2 130-Jun -21

12、人乱于心,不宽余请。08:04:3508:04:3508:04Wednesday, June 30, 2021

13、生气是拿别人做错的事来惩罚自 己。21.6.3021.6.3008:04:3508:04:35J une 30, 2021

17、一个人即使已登上顶峰,也仍要 自强不 息。上 午8时4分35秒 上午8时 4分08:04:3521.6.30

9、 人的价值,在招收诱惑的一瞬间被决定 。21.6.3021.6.30Wednesday, June 30, 2021

10、低头要有勇气,抬头要有低气。08:04:3508:04:3508:046/30/2021 8:04:35 AM

11、人总是珍惜为得到。21.6.3008:04: 3508:0 4Jun-2 130-Jun -21

12、人乱于心,不宽余请。08:04:3508:04:3508:04Wednesday, June 30, 2021

13、生气是拿别人做错的事来惩罚自 己。21.6.3021.6.3008:04:3508:04:35J une 30, 2021

2013年中考数学复习 第六章图形与变换 第34课 图形的相似课件

2013年中考数学复习 第六章图形与变换 第34课 图形的相似课件
交的直线,所截得的三角形的三边与原三角形三边对应成比例. 4.相似三角形的定义:对应角相等、对应边成比例的三角形叫做 相似三角形 . 相似比:相似三角形的对应边的比,叫做两个相似三角形的 相似比 .
5.相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交, 所截得的三角形与原三角形相似; (2)两角对应相等; (3)两边对应成比例且夹角相等; (4)三边对应成比例; (5)直角三角形中,斜边和一条直角边对应成比例; (6)直角三角形中被斜边上的高分成的两个三角形都与原三角 形相似. 6.相似三角形性质:对应角相等,对应边成比例,对应高、对应 中线、对应角平分线的比都等于相似比,周长比等于相似比, 面积比等于相似比的平方.
探究提高
本题主要考查相似三角形的判定、性质,相似三角形性质
的应用等.
知能迁移2
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,
E是AB的中点,且CE⊥DE. (1)请你判断△ADE与△BEC是否相似,并说明理由;
(2)若AD=1,BC=2,求AB的长.
解:(1)相似,理由如下: ∵AD∥BC,∠B=90°,
求证:△ADE∽△EFC. 证明: ∵DE∥BC,EF∥AB, ∴∠AED=∠C,∠A=∠CEF, ∴△ADE∽△EFC.
题型二
相似三角形的性质
【例 2】 如图,在梯形ABCD中,AD∥BC,∠B=∠ACD. (1)请再写出图中另外一对相等的角;
(2)若AC=6,BC=9,试求梯形ABCD的
中位线的长度.
∴∠A+∠B=180°,∴∠A=∠B=90°.
∴∠ADE+∠AED=90°. ∵CE⊥DE,
∴∠CED=90°,∠AED+∠BEC=90°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“图形与变换”练习
1.请仔细观察下列轴对称图形的构成,然后在横线上画出恰当的图形.
2.如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是对角线上的一动点,的最小值为_ __________
(第2题图) (第3题图) (第4题图)
3.如图,已知梯形ABCD 中,AD ∥BC ,∠B = 90°,AD = 3,BC = 5,AB = 1,把线段CD 绕点D 逆时针旋转90 °到DE 位置,连结AE ,则AE 的长为 . 4.如图,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC=900,则∠A 度数为( ) A.45° B.55° C.65° D.75°
5.上右图是万花筒的一个图案,图中所有小三角形均是全等三角形,其中把菱形ABCD 以A 为中心旋转多少度后可得图中另一阴影的菱形( )
A.顺时针旋转60°
B. 顺时针旋转120°
C.逆时针旋转60°
D. 逆时针旋转120°
6.已知:如图,(42)E -,,(11)F --,,以O 为位似中心,
按比例尺1:2,把EFO △缩小,则点E 的对应点E '的坐标 为( )
A .(21)-,或(21)-,
B .(84)-,或(84)-,
C .(21)-,
D .(84)-,
7.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0) ①画出△ABC 关于x 轴对称的△A 1B 1C 1,
②画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2,
③△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴; ④△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对
A
B C D E
x
y
E
F
O
_ N
_ M
_ D
_ C _ B _ A
称中心的坐标.
8.在平面内,先将一个多边形以点O 为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k ,并且原多边形上的任一点P ,它的对应点P '在线段
OP 或其延长线上;接着将所得多边形以点O 为旋转中心,逆时针旋转一个角度
θ,这种经过和旋转的图形变换叫做旋转相似变换,记为()O k θ,,其中点O 叫
做旋转相似中心,k 叫做相似比,θ叫做旋转角. (1)填空:
①如图1,将ABC △以点A 为旋转相似中心,放大为原来的2倍,再逆时针旋转60,得到ADE △,这个旋转相似变换记为A ( ,
);
②如图2,ABC △是边长为1cm
的等边三角形,将它作旋转相似变换
)A ,得到ADE △,则线段BD 的长为
cm ;
(2)如图3,分别以锐角三角形ABC 的三边AB ,BC ,CA 为边向外作正方形
ADEB ,BFGC ,CHIA ,点1O ,2O ,3O 分别是这三个正方形的对角线交点,
试分别利用12AO O △与ABI △,CIB △与2CAO △之间的关系,运用旋转相似变
换的知识说明线段12O O 与2AO 之间的关系.

D
E
图1

B

D
E
图2








3O
1O
2O
图3
9. 如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°
【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角...板.DEF ...绕点..E .旋转..
,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q 【探究一】在旋转过程中, (1) 如图2,当CE
1EA
=时,EP 与EQ 满足怎样的数量关系?并给出证明. (2) 如图3,当
CE
2EA
=时EP 与EQ 满足怎样的数量关系?,并说明理由. (3) 根据你对(1)、(2)的探究结果,试写出当
CE
EA
=m 时,EP 与EQ 满足的数量关系式为_________,其中m 的取值范围是_______(直接写出结论,不必证明)
【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中: (1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,
说明理由.
(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值
范围.
F
C(E)
A(D)
Q P
D
E
F
C
B
A Q
P
D
E
F
C
B
A
10.如图,在直角梯形纸片ABCD 中,AB DC ∥,90A ∠=,CD AD >,将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E 处,折痕为DF .连接EF 并展开纸片.
(1)求证:四边形ADEF 是正方形;
(2)取线段AF 的中点G ,连接EG ,如果BG CD =,试说明四边形GBCE 是等腰梯形.
E
C
B
D
A G F
答案:
1.略 2.10 3.52 4.C 5.D 6.A 7. 解:如下图所示,(4)对称中心是(0,0) 8. 解:(1)①2,60; ②2;
(2)12AO O △
经过旋转相似变换)A ,得到ABI △,此时,线段12O O 变为线段BI ;CIB △
经过旋转相似变换452C ⎛⎫
⎪ ⎪⎝⎭
,得到2CAO △,此时,线段BI 变为线段1AO .
2
212

=,454590+=,122
O O AO ∴=,122
O O AO ⊥.
[][].
1,755.6250.2,5.62505.62,105)2(.75,310.
50,210.
310210,4
14121,)1(6
20,1)3(21
,
2
1
.∽90,,2
1
,,2
1
,.32,
3
1
.∽,//,90,)2(.
,,≌,90,,,,.,,90,90,,)1(:.92
22220000
0个有对应时或当个有对应时故当时当取得最大值时当取得最小值时当其中则设探究二综上不重合若点显然重合若点同理于点作于点作综上不重合若点显然重合若点的平分线为连接于点作于点作探究一解EPQ S S EPQ S cm S EB x cm S cm EN x cm S cm EN x x x EQ EQ EP S x EQ m m
EQ EM EQ EP EN EM EQ EP ENQ Rt MEP Rt PEN NEQ MEP P M EN EM EQ EP P M EN EM BC AB AB EN AC AE BC EM ABC AME BC EM ABC N BC EN M AB EM EQ EP EQ EP ENQ Rt EPM Rt PEN NEQ MEP P M EQ
EP P M EN EM ABC BE EA CE BC AB MEN ABC BE N BC EN M AB EM EPQ EPQ EPQ EPQ ∆≤<=∆≤<=======∴≤≤==⋅==+≤<====∴∆∆∴∠-=∠=∠=
==∴=∴===∴∆∆∴∴=∠⊥⊥==∴∆∆∴∠-=∠=∠==∴∠∴===∠∴=∠⊥⊥∆∆∆∆ 10.
证明:(1)90A ∠=,AB DC ∥,90ADE ∴∠=.
由沿DF 折叠后DAF △与DEF △重合,知AD DE =,90DEF ∠=.
∴四边形ADEF 是矩形,且邻边AD AE ,相等. ∴四边形ADEF 是正方形.
(2)CE BG ∥,且CE BG ≠,∴四边形GBCE 是梯形.
四边形ADEF 是正方形,AD FE ∴=,90A GFE ∠=∠=. 又点G 为AF 的中点,AG FG ∴=.连接DG .
在AGD △与FGE △中,AD FE =,A GFE ∠=∠,AG FG =, AGD FGE ∴△≌△,DGA EGB ∴∠=∠.
BG CD =,BG CD ∥,∴四边形BCDG 是平行四边形. DG CD ∴∥.DGA B ∴∠=∠.EGB B ∴∠=∠. ∴四边形GBCE 是等腰梯形.
注:第(2)小题也可过点C 作CH AB ⊥,垂足为点H ,证EGF CBH △≌△.
E
C
B
D
A
G F。

相关文档
最新文档