第五章矩阵的特征值与特征向量习题

合集下载

(完整版)线性代数第五章特征值、特征向量试题及答案

(完整版)线性代数第五章特征值、特征向量试题及答案

第五章 特征值和特征向量一、特征值与特征向量定义1:设A 是n 阶矩阵,λ为一个数,若存在非零向量α,使λαα=A ,则称数λ为矩阵A 的特征值,非零向量α为矩阵A 的对应于特征值λ的特征向量。

定义2:()E A f λλ-=,称为矩阵A 的特征多项式,)(λf =0E A λ-=,称为矩阵A 的特征方程,特征方程的根称为矩阵A 的特征根 矩阵E A λ-称为矩阵A 的特征矩阵齐次方程组(0)=-X E A λ称为矩阵A 的特征方程组。

性质1:对等式λαα=A 作恒等变形,得(0)=-αλE A ,于是特征向量α是齐次方程组(0)=-X E A λ的非零解向量,由齐次线性方程组有非零解的充要条件知其系数行列式为零,即0=-E A λ,说明A 的特征值λ为0E A λ-=的根。

由此得到对特征向量和特征值的另一种认识:(1)λ是A 的特征值⇔0=-E A λ,即(λE -A )不可逆.(2)α是属于λ的特征向量⇔α是齐次方程组(0)=-X E A λ的非零解.计算特征值和特征向量的具体步骤为: (1)计算A 的特征多项式,()E A f λλ-=(2)求特征方程)(λf =0E A λ-=的全部根,他们就是A 的全部特征值;(3)然后对每个特征值λ,求齐次方程组(0)=-X E A λ的非零解,即属于λ的特征向量.性质2:n 阶矩阵A 的相异特征值m λλλ 21,所对应的特征向量21,ξξ……ξ线性无关性质3:设λ1,λ2,…,λn 是A 的全体特征值,则从特征多项式的结构可得到:(1)λ1+λ2+…+λ n =tr(A )( A 的迹数,即主对角线上元素之和). (2)λ1λ2…λn =|A |.性质4:如果λ是A 的特征值,则(1)f(λ)是A 的多项式f(A )的特征值.(2)如果A 可逆,则1/λ是A -1的特征值; |A |/λ是A *的特征值. 即: 如果A 的特征值是λ1,λ2,…,λn ,则 (1)f(A )的特征值是f(λ1),f(λ2),…,f(λn ).(2)如果A 可逆,则A -1的特征值是1/λ1,1/λ2,…,1/λn ; 因为A AA =*,A *的特征值是|A |/λ1,|A |/λ2,…,|A |/λn .性质5:如果α是A 的特征向量,特征值为λ,即λαα=A 则(1)α也是A 的任何多项式f(A )的特征向量,特征值为f(λ);(2)如果A 可逆,则α也是A -1的特征向量,特征值为1/λ;α也是A *的特征向量,特征值为|A |/λ 。

线性代数第五章习题课

线性代数第五章习题课
习 题 课
1. 求下列矩阵的特征值与特征向量. 求下列矩阵的特征值与特征向量.
0 2 2 (1) A = 2 4 2 ; 2 2 0

4 10 0 (2) A = 1 3 0 . 3 6 1

2. 判定下列矩阵是否相似于对角矩阵, 若 判定下列矩阵是否相似于对角矩阵, 相似, 相似, 则求出可逆矩阵 P , 使 P-1AP 是对角矩阵. 是对角矩阵.

(2) x1 x2 + x2 x3 + x3 x4 + x4 x1 2 12 x3 +
12 x1 x2 24 x1 x3 + 8 x2 x3 .
13. 判断下列二次型是否正定. 判断下列二次型是否正定.
二次型的正定性的常用判定法
2 2 (1) 3 x12 + 4 x2 + 5 x3 + 4 x1 x2 4 x2 x3 ;

5. 设三阶方阵 A 的特征值为
λ1 =1, λ2 = 2, λ3 = 3,
对应的特征向量依次为
1 1 1 p1 = 1, p2 = 2, p3 = 3 , 1 4 9
又向量 b= (1 , 1 , 3)T . (1) 求 A; (2) 将 b 用 p1, p2, p3 线性表示; 线性表示; (3) 求 Anb;(4)求 A100 . ;(4


0 0 1 3. 设 A = x 1 y 相似于对角矩阵, 相似于对角矩阵, 1 0 0
求 x 与 y 应满足的条件. 应满足的条件.

4. 已知矩阵
2 0 0 A = 0 0 1 0 1 x
与矩阵
2 0 0 相似. B = 0 y 0 相似 0 0 1

线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题

线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题

第五章 矩阵的特征值与特征向量§1矩阵的特征值与特征向量一、矩阵的特征值与特征向量定义1:设A 是n 阶方阵,如果有数λ和n 维非零列向量x 使得x Ax λ=,则称数λ为A 的特征值,非零向量x 称为A 的对于特征值λ的特征向量.由x Ax λ=得0)(=-x E A λ,此方程有非零解的充分必要条件是系数行列式0=-E A λ,此式称为A 的特征方程,其左端是关于λ的n 次多项式,记作)(λf ,称为方阵A 特征多项式.设n 阶方阵)(ij a A =的特征值为n λλλ,,,21 ,由特征方程的根与系数之间的关系,易知:nn n a a a i +++=+++ 221121)(λλλA ii n =λλλ 21)(例1 设3阶矩阵A 的特征值为2,3,λ.若行列式482-=A ,求λ. 解:482-=A 64823-=∴-=∴A Aλ⨯⨯=32A 又 1-=∴λ例2 设3阶矩阵A 的特征值互不相同,若行列式0=A , 求矩阵A 的秩.解:因为0=A 所以A 的特征值中有一个为0,其余的均不为零.所以A 与)0,,(21λλdiag 相似.所以A 的秩为2.定理1对应于方阵A 的特征值λ的特征向量t ξξξ,,,21 ,t ξξξ,,,21 的任意非零线性组合仍是A 对应于特征值λ的特征向量.证明 设存在一组不全为零的数t k k k ,,,21 且存在一个非零的线性组合为t t k k k ξξξ+++ 2211,因为t ξξξ,,,21 为对应于方阵A 的特征值λ的特征向量。

则有),,2,1(1t i k Ak i i i ==ξλξ所以)()(22112211t t t t k k k k k k A ξξξλξξξ+++=+++ 所以t t k k k ξξξ+++ 2211是A 对应于特征值λ的特征向量. 求n 阶方阵A 的特征值与特征向量的方法:第一步:写出矩阵A 的特征多项式,即写出行列式E A λ-.第二步:解出特征方程0=-E A λ的根n λλλ,,,21 就是矩阵A 的特征值.第三步:解齐次线性方程组0)(=-x E A i λ,它的非零解都是特征值i λ的特征向量.例3 求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=201034011A 的特征值和特征向量.解 A 的特征多项式为2)1)(2(201034011λλλλλλ--=-----=-E A 所以,A 的特征值为1,2321===λλλ. 当21=λ时,解方程组0)2(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000010001~2010340112E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1001p ,所以特征值21=λ的全部特征向量为11p k ,其中1k 为任意非零数.当132==λλ时,解方程组0)(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000210101~101024012E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛--=1212p ,所以特征值132==λλ的全部特征向量为22p k ,其中2k 为任意非零数. 二、特征值与特征向量的性质与定理性质1 n 阶方阵A 可逆的充分必要条件是矩阵A 的所有特征值均非零. 此性质读者可利用A n =λλλ 21可证明.定理 2 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,则21,p p 线性无关.证明 假设设有一组数21,x x 使得02211=+p x p x (1)成立. 以2λ乘等式(1)两端,得0222121=+p x p x λλ (2) 以矩阵A 左乘式(1)两端,得0222111=+p x p x λλ (3) (3)式减(2)式得0)(1211=-p x λλ 因为21,λλ不相等,01≠p ,所以01=x .因此(1)式变成022=p x . 因为02≠p ,所以只有02=x . 这就证明了21,p p 线性无关.性质2 设)(A f 是方阵A 的特征多项式,若λ是A 的特征值.对应于λ的特征向量为ξ,则)(λf 是)(A f 的特征值,而ξ是)(A f 的对应于)(λf 的特征向量,而且若O A f =)(,则A 的特征值λ满足0)(=λf ,但要注意,反过来0)(=λf 的根未必都是A 的特征值.例4 若λ是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量,证明:1-λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量,证明 λ 是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量λξξ=∴A ξξλ11--=∴Aξξλ11--=∴A A A ξξλ*1A A =∴-1-∴λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量, 1-λA 是*A 的特征值,ξ是*A 对应于特征值1-λA 的特征向量.例5 设3阶矩阵A 的特征值1,2,2,求E A --14.解:A 的特征值为1,2,2,,所以1-A 的特征值为1,12,12, 所以E A--14的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以311341=⨯⨯=--E A .例6 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,证明21p p +一定不是A 的特征向量.证明 假设21p p +是矩阵A 的特征向量,对应的特征值为.λ根据特征值定义可知:)()(2121p p p p A +=+λ …………………(1) 21,λλ 又是n 阶方阵A 的特征值,对应的特征向量分别为21,p p .,111p Ap λ=∴ 222p Ap λ= (2)将(2)带入(1)式整理得:0)()(2211=-+-p p λλλλ因为21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p 线性无关.所以21λλλ==.与21,λλ是n 阶方阵A 的两互不相等的特征值矛盾. 所以假设不成立.例7 若A 为正交矩阵,则1±=A ,证明,当1-=A 时,A 必有特征值1-;当1=A 时,且A 为奇数阶时,则A 必有特征值1.证明 当1-=A 时.TT T A E A A E A AA A E A +=+=+=+)(A E A E T +-=+-=,所以 .0=+A E `所以1-是A 的一个特征值反证法:因为正交阵特征值的行列式的值为1,且复特征值成对出现,所以若1不是A 的特征值,那么A 的特征值只有-1,以及成对出现的复特征值。

第五章 矩阵的特征值和特征向量

第五章 矩阵的特征值和特征向量

x3
x3
0 1
6. 因

A 2 3A,令AX X,因为A2 X 2 X,所以有(2 3)X 0而X 0,故A 的 特
征值为 0 或者 3,因为 1 2 3 trA , ,所以1 3,2 3 0
7. 因为 AX=0 有非零解,所以 r(A)<n,故 0 为矩阵 A 的特征值,a1,a2
(A)1 3 (B) 33 1 (C)1 22 33 (D) 21 32 8. 设,为四维非零列向量,且 ,令A T,则 A 的线性无关特征向
量个数为()
(A)1 (B)2 (3)3 (D)4
9. 设 A,B 为正定矩阵,C 是可逆矩阵,下列矩阵不是正定矩阵的是()
(A) CT AC (B) A1 B1 (C) A* B* (D) A B
21. (1) 若A可逆且A ~ B,证明:A* ~ B*;
(2)若 A ~ B,证明:存在可逆矩阵P,使得AP ~ BP.
22.设方程组
2
x1 x1
(a 2)x2
x2
(a 1)x3
x3
1
a 3 有无穷多个解,
x 1
2x2
ax3 3
1
a
0
1
a

2
1
,,3
0
为矩阵A的分别属于特征值
为特征值 0 所对应的线性无关的特征向量,显然特征值 0 为二重特征
值,若 a1+a3 为属于特征值 0 的特征向量,则有 A(a1+a3)= 0 (a1+a3), 注意到 A(a1+a3)=0a1-2a3)=-2a3,故-2a3= 0 (a1+a3)或 0 a1+( 0 +2)a3=0,

《线性代数考研资料》第五章特征值与特征向量

《线性代数考研资料》第五章特征值与特征向量
4.(99,十题,8分)设矩阵,其行列式,又A的伴随矩阵有一个特征 值,属于的一个特征向量为,求和的值 【分析】利用,把转化为是本题的关键 【详解】根据题设有, 又于是即 也即 由此可得
解此方程组,得 又由,有 故因此
5.(03,九题,10分)设矩阵,,,求B+2E的特征值与特征向量,其 中为A的伴随矩阵,E为3阶单位矩阵 【分析】可先求出,进而确定及B+2E,再按通常方法确定其特征值和 特征向量;或先求出A的特征值与特征向量,再相应地确定的特征值与 特征向量,最终根据B+2E与相似求出其特征值与特征向量。 【详解1】 经计算可得
第五章 特征值与特征向量
一、特征值与特征向量 1.(95,八题,7分)设三阶实对称矩阵A的特征值为,对应于的特征 向量为,求A 【分析】解本题的关键是注意A为实对称矩阵,在已知A的三个特征值和 三个线性无关特征向量后,由公式
可解出 【详解】设对应于的特征向量为,根据A为实对称矩阵的假设知,即, 解得
3-r(-E-A)=1个,故A不可对角化
2.(00,十一题,8分)某试验性生产线每年一月份进行熟练工与非熟 练工的人数统计,然后将熟练工支援其它生产部门,其缺额由招收新的 非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练 工,设第n年一月份统计的熟练工和非熟练工所占百分比分别为和,记 成向量 (1)求与的关系式并写成矩阵形成:; (2)验证式A的两个线性无关的特征向量,并求出相应的特征值; (3)当时,求 【分析】本题是线性代数部分的综合应用题,第一步要求根据题意建立 递推关系的数学模型;第二步用行列式检验两个二维向量线性无关;第 三步相当于求矩阵的n次幂,可利用对角化得到 【详解】(1)由题意,得
所以0是A的一个特征值,是对应的两个特征向量,又线性无关,故特征 值0的代数重数至少是2 已知A各行元素之和均为3,取,则,说明3是A的另一个特征值,是对应 的特征向量,且特征值3的代数重数至少为1 因为矩阵A的互异特征值的台属重数之和等于A的阶数,且已知A是3阶方 阵,故0是A的2重特征值,其对应的特征向量为(为不全为零的任意实 数);3是A的1重特征值,其对应的特征向量为(为任意非零实数) (Ⅱ)令 则是A的标准正交的特征向量,取正交矩阵Q和对角矩阵

第五章 特征值和特征向量、矩阵的对角化 扩展例题及求解

第五章 特征值和特征向量、矩阵的对角化 扩展例题及求解

的一个特征向量为


1
,求
a,
b,
c

的值。
1
[分析]当 A 是抽象的方阵时,求 A 的特征值、特征向量通常需要考虑特征值、特征向量的定
义或等价定义。本题主要考察 A* 和 A 的特征值之间的关系,以及它们有共同的特征向量。
[解]由于 A* , AA* A E E , 对 A* 两边同时左乘 A ,即有:
1 2 3 2 2 0 fA() | E A | 1 4 3 1 4 3
1 a 5 1 a 5
10 0 ( 2) 1 3 3 ( 2)(2 8 18 3a)
1 a 1 5
[例
9]设
A


1
4
3 的特征方程有一个二重根,求 a 的值,并讨论 A 是否可相似对角化。
1 a 5
[分析]本题主要考察可对角化的条件:n 阶方阵 A 可对角化的充要条件是 A 有 n 个线性无关
的特征向量,即 k 重特征值有 k 个线性无关的特征向量。
[解]先求特征方程。
(1)如果 2 是特征方程的二重根,则 2 满足方程 2 8 18 3a 0 ,故
a 2 .
1 2 3
当 a 2 时,
A
的特征值为
2,2,6,矩阵
2E

A


1
2
3

的秩为
1,故


2
对应有两
1 2 3
个线性无关的特征向量,从而 A 可以相似对角化。
[证]设 是 AmnBnm 对应于特征值 的特征向量,则

第五章方阵的特征值与特征向量自测题答案

第五章方阵的特征值与特征向量自测题答案

《线性代数》单元自测题答案第五章 方阵的特征值与特征向量一、 填空题:1.0; 2.36-; 3.6,111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭; 4.4-; 5.ξ1-p . 二、 单选题:1.B ; 2.A ; 3.D ; 4.D ; 5.D .三、计算题1.解:因A 的特征多项式22)1)(1()1)(1(0101010-+=--=---=-λλλλλλλλA E 所以A 的特征值为11-=λ,132==λλ当11-=λ时,解方程组0)(=--X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----000101020101321x x x得基础解系⎪⎪⎪⎭⎫ ⎝⎛-=1011ξ,则属于11-=λ的全体特征向量为11ξk )0(1≠k 。

当132==λλ时,解方程组0)(=-X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000101000101321x x x得基础解系⎪⎪⎪⎭⎫ ⎝⎛=0102ξ,⎪⎪⎪⎭⎫ ⎝⎛=1013ξ,则属于132==λλ的全体特征向量为3322ξξk k + (2k ,3k 不同时为0)。

2. 解 因A 的特征多项式)1()1()1)(1(32401022322-+=-+=+--+--=-λλλλλλλλA E所以A 的特征值为,121-==λλ13=λ.对于121-==λλ,解方程组0)(=--X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----000224000224321x x x 得基础解系 ⎪⎪⎪⎭⎫ ⎝⎛-=0211ξ,⎪⎪⎪⎭⎫ ⎝⎛=2012ξ,由于二重特征根121-==λλ的代数重数等于几何重数,故知A 可对角化.对于13=λ,解方程组0)(=-X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----000424020222321x x x 得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1013ξ,取()⎪⎪⎪⎭⎫ ⎝⎛-==120002111321ξξξP ,则有⎪⎪⎪⎭⎫ ⎝⎛--=Λ=-1000100011AP P .因此P 为所求的相似变换矩阵,Λ即为所求的对角矩阵.3.解:(1)由已知得4,,5-y 是A 的特征根,于是有 05242424254=----=--x A E , 解得4=x . 从而有 )4()5(1242424212+-=---=-λλλλλλA E ,故可得5=y .(2)当521==λλ时,解0)5(=-X A E ,得基础解系()()T T 101,02121-=-=ξξ.当43-=λ时,解0)4(=--X A E ,得基础解系()T 2123=ξ. 取()⎪⎪⎪⎭⎫ ⎝⎛--==210102211,,321ξξξP , 则Λ=-AP P 1。

线性代数第五章课后习题及解答

线性代数第五章课后习题及解答

第五章课后习题及解答1. 求下列矩阵的特征值和特征向量:(1) ;1332⎪⎪⎭⎫⎝⎛-- 解:,07313322=--=--=-λλλλλA I2373,237321-=+=λλ ,001336371237121371⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T-因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T,001336371237123712⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T+因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T(2) ;211102113⎪⎪⎪⎭⎫ ⎝⎛--解:2)2)(1(21112113--==------=-λλλλλλ A I所以,特征值为:11=λ(单根),22=λ(二重根)⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛------=-0001100011111121121 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛-----=-0001000110111221112 A I λ所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T(3) ;311111002⎪⎪⎪⎭⎫ ⎝⎛-解:3)2(31111102-==------=-λλλλλ A I所以,特征值为:21=λ(三重根)⎪⎪⎪⎭⎫⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛----=-0000001111111110001 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,0,1(,)0,1,1(TT -因此,A 的属于1λ的所有特征向量为:TT k k )1,0,1()0,1,1(21-+(21,k k 为不全为零的任 意常数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数
第五章矩阵的特征值与特征向量习题1试用施密特法把下列向量组正交化
111
(1)(a1,a2,a3)124
139
111
(2)(a1,a2,a3) 0
1
1
1
1 110
2设x为n维列向量x
T x1令HE2xx T证明H是对称的正交阵
3求下列矩阵的特征值和特征向量:
212
(1)533;
102
123
(2)213.
336
T与A的特征值相同4设A为n阶矩阵证明A
5设0是m阶矩阵AmnB nm的特征值证明也是n阶矩阵BA的特征值.
6已知3阶矩阵A的特征值为123求|A
35A27A|
7已知3阶矩阵A的特征值为123求|A*3A2E|
201
8设矩阵A31x可相似对角化求x
405
212
T是矩阵
9已知p(111)
A5a3的一个特征向量
1b2
1
线性代数
(1)求参数ab及特征向量p所对应的特征值
(2)问A能不能相似对角化?并说明理由
220 10试求一个正交的相似变换矩阵,将对称阵212化为对角阵.
020
1245
11设矩阵A2x2与4相似求xy并求一个
421y
正交阵P使P 1AP
12设3阶方阵A的特征值为122231对应的特征向量依次为
p1(011)T p2(111)T p3(110)T求A.
13设3阶对称矩阵A的特征值162333与特征值16对应的特
T
征向量为p1(111)
求A.
142
14设
100
A034求A
043
2。

相关文档
最新文档