模糊控制原理f

合集下载

模糊控制的基本原理

模糊控制的基本原理

.模糊控制的基本原理模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础的控制,它是模糊数学在控制系统中的应用,是一种非线性智能控制。

if条模糊控制是利用人的知识对控制对象进行控制的一种方法,通常用“then结果”的形式来表现,所以又通俗地称为语言控制。

一般用于无法以件,的经验和知识来很好熟练专家严密的数学表示的控制对象模型,即可利用人() 地控制。

因此,利用人的智力,模糊地进行系统控制的方法就是模糊控制。

模糊控制的基本原理如图所示:模糊控制系统原理框图它的核心部分为模糊控制器。

模糊控制器的控制规律由计算机的程序实现,然后将此量微机采样获取被控制量的精确值,实现一步模糊控制算法的过程是:作为模糊控制器的一个输入量,E;一般选误差信号E与给定值比较得到误差信号的模糊量可用相应的模糊语言EE的精确量进行模糊量化变成模糊量,误差把); 实际上是一个模糊向量的模糊语言集合的一个子集e(e表示;从而得到误差E再由e和模糊控制规则R(模糊关系)根据推理的合成规则进行模糊决策,得到模糊控制量u为:式中u为一个模糊量;为了对被控对象施加精确的控制,还需要将模糊量u进行非模糊化处理转换为精确量:得到精确数字量后,经数模转换变为精确的模拟量送给执行机构,对被控对象进行一步控制;然后,进行第二次采样,完成第二步控制……。

这样循环下去,就实现了被控对象的模糊控制。

模糊控制(Fuzzy Control)是以模糊集合理论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制。

模糊控制同常规的控制方案相比,主要特点有:(1)模糊控制只要求掌握现场操作人员或有关专家的经验、知识或操作数据,不需要建立过程的数学模型,所以适用于不易获得精确数学模型的被控过程,或结构参数不很清楚等场合。

(2)模糊控制是一种语言变量控制器,其控制规则只用语言变量的形式定性的表达,不用传递函数与状态方程,只要对人们的经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。

模糊控制原理与应用

模糊控制原理与应用

模糊控制原理与应用
模糊控制是一种基于模糊逻辑的控制方法,它可以处理那些难以用传
统控制方法精确描述的系统。

模糊控制的基本思想是将输入和输出之
间的关系用模糊集合来描述,然后通过模糊推理来确定控制规则,最
终实现对系统的控制。

模糊控制的优点在于它可以处理那些难以用传统控制方法精确描述的
系统,例如非线性系统、模糊系统、多变量系统等。

此外,模糊控制
还具有较好的鲁棒性和适应性,能够在一定程度上克服系统参数变化
和外部干扰的影响。

模糊控制的应用非常广泛,例如在工业控制、交通控制、机器人控制、医疗诊断等领域都有着广泛的应用。

在工业控制中,模糊控制可以用
于控制温度、湿度、压力等参数,以及控制机器人的运动轨迹和速度。

在交通控制中,模糊控制可以用于控制交通信号灯的时序和周期,以
及优化交通流量。

在医疗诊断中,模糊控制可以用于对患者的病情进
行评估和诊断。

在模糊控制的实现过程中,需要进行模糊化、模糊推理和去模糊化等
步骤。

其中,模糊化是将输入和输出之间的关系用模糊集合来描述,
模糊推理是根据模糊规则进行推理,得出控制结果,去模糊化是将模
糊结果转化为具体的控制量。

总之,模糊控制是一种基于模糊逻辑的控制方法,它可以处理那些难以用传统控制方法精确描述的系统。

模糊控制具有广泛的应用前景,在工业控制、交通控制、机器人控制、医疗诊断等领域都有着广泛的应用。

在模糊控制的实现过程中,需要进行模糊化、模糊推理和去模糊化等步骤。

模糊控制基本原理

模糊控制基本原理

模糊控制基本原理
模糊控制是一种基于模糊逻辑的控制方法,它的基本原理是将模糊逻辑应用于控制系统中。

传统的控制方法通常是基于精确的数学模型,而模糊控制则可以处理系统的不确定性和复杂性。

模糊控制系统通常包括模糊化、模糊推理和解模糊三个主要步骤。

模糊化是将输入和输出量进行模糊化处理,使用模糊集合来描述变量的不确定性程度。

模糊推理是基于模糊规则对输入和输出变量进行推理,得到模糊输出。

解模糊是将模糊输出转换为精确的输出,通常使用去模糊化方法来实现。

在模糊控制中,模糊规则是关键的组成部分。

模糊规则由若干个条件和一个结论组成,用于描述输入和输出变量之间的关系。

通过对输入变量的模糊化和对模糊规则的推理,可以得到模糊输出,然后通过解模糊化将其转换为精确的输出。

模糊控制的优势在于可以处理非线性和模糊性系统,而传统的控制方法往往不能有效应对这些问题。

模糊控制还具有较好的鲁棒性,对系统参数的变化和外部扰动具有一定的容忍度。

总的来说,模糊控制的基本原理是基于模糊逻辑,通过模糊化、模糊推理和解模糊化等步骤,实现对复杂和不确定系统的控制。

它可以应用于各种领域,如机器人控制、交通控制、工业过程控制等。

模糊控制原理

模糊控制原理

模糊控制原理
模糊控制原理是一种基于模糊逻辑理论的控制方法。

模糊控制通过模糊化输入变量和输出变量,建立模糊规则库,并通过模糊推理得到模糊控制输出。

模糊控制的主要目标是实现对非线性、模糊、不确定或不精确系统的控制。

通过引入模糊因素,模糊控制可以在不准确或不确定的情况下,对系统进行稳定、鲁棒的控制。

模糊控制的核心思想是将控制问题转化为一系列的模糊规则,其中每个规则都包含了一组模糊化的输入和输出。

模糊规则的编写通常需要基于领域专家的经验和知识。

通过对输入变量和输出变量的模糊化,可以将问题的精确描述转化为模糊集合。

模糊推理使用了一系列的逻辑规则来描述输入模糊集合与输出模糊集合之间的关系,以得到模糊控制输出。

最后,通过解模糊过程将模糊输出转化为具体的控制信号,以实现对系统的控制。

模糊控制具有很强的鲁棒性和适应性,能够处理非线性、时变和多变量的系统。

它还可以处理模糊和不准确的信息,适用于实际系统中存在的各种不确定性和复杂性。

此外,模糊控制还具有良好的可解释性,可以用于解释控制决策的原因和依据。

总之,模糊控制原理是一种基于模糊逻辑理论的控制方法,通过模糊化变量、建立模糊规则库和进行模糊推理,实现对非线性、模糊、不确定或不精确系统的稳定控制。

模糊控制具有鲁棒性、适应性和可解释性等特点,在实际系统中有广泛的应用。

模糊控制算法原理

模糊控制算法原理

模糊控制算法原理
模糊控制是一种基于经验的控制方法,它可以处理不确定性、模糊性和复杂性等问题,因此在工业控制、自动化、机器人等领域得到了广泛应用。

模糊控制算法的基本原理是将输入变量和输出变量映射成模糊集合,通过模糊推理来得到控制输出。

在这个过程中,需要使用模糊逻辑运算和模糊推理规则进行计算,最终得到模糊输出,再通过去模糊化转换为实际控制信号。

模糊控制算法的关键是如何构建模糊规则库。

规则库是由一系列模糊规则组成的,每个模糊规则包括一个前提和一个结论。

前提是由输入变量的模糊集合组成的,结论是由输出变量的模糊集合组成的。

在构建规则库时,需要依据专家经验或实验数据来确定模糊集合和模糊规则。

模糊控制算法的实现过程包括模糊化、模糊推理和去模糊化三个步骤。

模糊化是将输入变量映射成模糊集合的过程,它可以通过隶属度函数将输入变量的值转换为对应的隶属度值,表示它属于各个模糊集合的程度。

模糊推理是根据模糊规则库进行推理的过程,它可以通过模糊逻辑运算来计算各个规则的置信度,进而得到模糊输出。

去模糊化是将模糊输出转换为实际控制信号的过程,它可以通过一些去模糊化方法来实现,比如最大隶属度法、平均值法等。

模糊控制算法的优点是可以处理不确定性和模糊性,适用于复杂系统的控制;缺点是需要依赖专家经验或实验数据来构建规则库,而且计算复杂度较高,运算速度较慢。

因此,在实际应用中需要根据具体情况来选择控制算法。

模糊控制算法是一种基于经验的控制方法,可以处理不确定性、模糊性和复杂性等问题,在工业控制、自动化、机器人等领域得到了广泛应用。

在实际应用中,需要根据具体情况来选择控制算法,以保证控制效果和运算速度的平衡。

模糊控制系统的工作原理

模糊控制系统的工作原理

模糊控制系统的工作原理模糊控制系统是一种常用于处理复杂控制问题的方法,其原理是通过模糊化输入变量和输出变量,建立模糊规则库,从而实现对非精确系统的控制。

本文将详细介绍模糊控制系统的工作原理。

一、模糊化输入变量模糊化输入变量是模糊控制系统的第一步,其目的是将非精确的输入变量转化为可处理的模糊语言变量。

这一步骤一般包括两个主要的过程:隶属函数的选择和输入变量的模糊化。

对于每一个输入变量,需要选择合适的隶属函数来表示其模糊化程度。

常用的隶属函数包括三角形隶属函数、梯形隶属函数、高斯隶属函数等。

通过调整隶属函数的参数,可以控制输入变量的隶属度,进而确定输入变量的模糊程度。

在选择隶属函数之后,需要对输入变量进行模糊化处理。

这是通过将输入变量与相应的隶属函数进行匹配,确定输入变量在每个隶属函数上的隶属度。

通常采用的方法是使用模糊集合表示输入变量的模糊程度,例如“高度模糊”、“中度模糊”等。

二、建立模糊规则库建立模糊规则库是模糊控制系统的核心部分,其目的是将模糊化后的输入变量与模糊化后的输出变量之间的关系进行建模。

模糊规则库一般由若干个模糊规则组成,每个模糊规则由一个或多个模糊条件和一个模糊结论组成。

模糊条件是对输入变量进行约束的条件,而模糊结论则是对输出变量进行控制的结果。

在建立模糊规则库时,需要根据具体控制问题的特点和实际需求,确定合适的模糊规则。

一般情况下,通过专家经验或者实验数据来确定模糊规则,以得到最佳的控制效果。

三、推理机制推理机制是模糊控制系统的关键环节,其目的是通过将输入变量的模糊程度与模糊规则库进行匹配,得到对输出变量的模糊控制。

推理机制一般包括模糊匹配和模糊推理两个步骤。

在模糊匹配的过程中,根据输入变量的模糊程度和模糊规则的条件,计算每个模糊规则的激活度。

激活度是输入变量满足模糊规则条件的程度,可以通过模糊逻辑运算进行计算。

在模糊推理的过程中,根据模糊匹配的结果和模糊规则库中的模糊结论,使用模糊逻辑运算得到对输出变量的模糊控制。

模糊逻辑与模糊控制的基本原理

模糊逻辑与模糊控制的基本原理

模糊逻辑与模糊控制的基本原理在现代智能控制领域中,模糊逻辑与模糊控制是研究的热点之一。

模糊逻辑可以应用于形式化描述那些非常复杂,无法准确或完全定义的问题,例如语音识别、图像处理、模式识别等。

而模糊控制可以通过模糊逻辑的方法来设计控制系统,对那些难以表达精确数学模型的问题进行控制,主要用于不确定的、非线性的、运动系统模型的控制。

本文主要介绍模糊逻辑和模糊控制的基本原理。

一、模糊逻辑的基本原理模糊逻辑是对布尔逻辑的延伸,在模糊逻辑中,各种概念之间的相互关系不再是严格的,而是模糊的。

模糊逻辑的基本要素是模糊集合,模糊集合是一个值域在0和1之间的函数,它描述了一个物体属于某个事物的程度。

以温度为例,一般人将15℃以下的温度视为冷,20至30℃为暖,30℃以上为热。

但是在模糊逻辑中,这些概念并不是非黑即白,而可能有一些模糊的层次,如18℃可能既不是冷又不是暖,但是更接近于暖。

因此,设180℃该点的温度为x,则可以用一个图形来描述该温度与“暖”这个概念之间的关系,这个图形称为“隶属函数”或者“成员函数”图。

一个隶属函数是一个可数的、从0到1变化的单峰实函数。

它描述了一个物体与一类对象之间的相似程度。

对于温度为18℃的这个例子,可以用一个隶属函数来表示其与“暖”这一概念之间的关系。

这个隶属函数,可以用三角形或者梯形函数来表示。

模糊逻辑还引入了模糊关系和模糊推理的概念。

模糊关系是对不确定或模糊概念间关系的粗略表示,模糊推理是指通过推理机来对模糊逻辑问题进行判断和决策。

二、模糊控制的基本原理在控制系统中,通常采用PID控制或者其他经典控制方法来控制系统,但对于一些非线性控制系统,这些方法越发显得力不从心。

模糊控制是一种强大的、在处理非线性系统方面表现出色的控制方法。

它通过对遥测信号进行模糊化处理,并将模糊集合控制规则与一系列的控制规则相关联起来以实现控制。

模糊控制的基本组成部分主要包括模糊化、模糊推理、去模糊化等三个步骤。

人工智能控制技术课件:模糊控制

人工智能控制技术课件:模糊控制
直接输出精确控制,不再反模糊化。
模糊集合


模糊控制是以模糊集合论作为数学基础。经典集合一般指具有某种属性的、确定的、
彼此间可以区别的事物的全体。事物的含义是广泛的,可以是具体元素也可以是抽象
概念。在经典集合论中,一个事物要么属于该集合,要么不属于该集合,两者必居其一,
没有模棱两可的情况。这表明经典集合论所表达概念的内涵和外延都必须是明确的。
1000
1000
9992
9820
的隶属度 1 =
= 1,其余为: 2 =
= 0.9992, 3 =
=
1000
1000
1000
9980
9910
0.982, 4 =
= 0.998, 5 =
= 0.991,整体模糊集可表示为:
1000
1000
1
0.9992
0.982
0.998
《人工智能控制技术》
模糊控制
模糊空基本原理
模糊控制是建立在模糊数学的基础上,模糊数学是研究和处理模糊性现
象的一种数学理论和方法。在生产实践、科学实验以及日常生活中,人
们经常会遇到模糊概念(或现象)。例如,大与小、轻与重、快与慢、动与
静、深与浅、美与丑等都包含着一定的模糊概念。随着科学技术的发展,
度是2 ,依此类推,式中“+”不是常规意义的加号,在模糊集中
一般表示“与”的关系。连续模糊集合的表达式为:A =
‫)( ׬‬/其中“‫” ׬‬和“/”符号也不是一般意义的数学符号,
在模糊集中表示“构成”和“隶属”。
模糊集合
假设论域U = {管段1,管段2,管段3,管段4,管段5},传感器采
1+|
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊化运算是将输入空间的观测量映射为输入论域上的 模糊集合。首先需要对输入变量进行尺度变换,将其变化 到相应的论域范围,然后将其模糊化,得到相应的模糊集 合。
论域变换 模糊化
模糊控制原理f
2.1 模糊化运算(Fuzzification)
论域变换
若实际的输入量为x0*,其变化范围(基本论域)为[xmin*, xmax*],要求的论域范围为[xmin,xmax],采用线性变换,则
C ' 0 .3 0 .8 11 0 .8 0 .3 0 .1 4 3 2 1 0 1 2
根据mom法,得
z0( 21 )/2 1.5 模糊控制原理f
2.2 清晰化计算 Defuzzification 1.解模糊
(2)最大隶属度取最小值法(som) smallest (absolute) value of maximum
尺度变换,将输入变量由基本论域变换到各自的论域范围。 变量作为精确量时,其实际变化范围称为基本论域;作为模 糊语言变量时,变量范围称为模糊集论域。
2)模糊处理 将变换后的输入量进行模糊化,使精确的输入量变成模糊量, 并用相应的模糊集来表示。
模糊控制原理f
1.2 模糊控制器的结构
知识库
数据库
数据库主要包括各语言变量的隶属函 数,尺度变换因子及模糊空间的分级 数等。
1
A(x) 10
xx0 xx0
2)三角形模糊集合
0
x0-σ x0 x0+σ
x
若输入量数据存在随机测量噪声,则此时的模糊化运算相
当于将随机量变换为模糊量,对于这种情况,可以取模糊量
的隶属度函数为等于三角形。三角形的顶点对应于该随机数
的均值,底边的长度等于2倍的随机数据的标准差。另外可
以取正态分布的函数。 模糊控制原理f
(-3.5, -2.5]
(-2.5, -1.5]
(-1.5, -0.5]
(-0.5, 0.5]
(0.5, 1.5]
(1.5, 2.5]
(2.5, 3.5]
(3.5, 4.5]
(4.5, 5.5]
>5.5
模糊控制原理f
模糊化
1)单点模糊集合
若输入量数据x0是准确的,则通常将其模糊化为单点模糊
集合。设该集合用A′表示,则有
2.2 清晰化计算 Defuzzification
1.解模糊 模糊推理结果为输出论域上的一个模糊集,通过某种解模
糊算法,可得到论域上的精确值。 (1)平均最大隶属度法(mom)mean value of maximum
取模糊集中具有最大隶属度的所有点平均值作为去 模糊化的结果。
例如:已知输出量z的模糊集为
z0
C(z) zdz C (z)d z
对于论域为离散的情况,有
n
C(zi) zi
z0
i 1 n
C(zi)
i 1
模糊控制原理f
2.2 清晰化计算Defuzzification
2.论域反变换
论域上的精确量还需经过尺度变换变为实际的控制量。
若z0的论域范围为[zmin,zmax],实际的控制量的变化范围 为[umin,umax],采用线性变换,则
x0xm i2nxmaxk(x0 *xm * i2nxm * a )x
k
xmax xm* ax
xmin xm* in
比例 因子
若论域是离散的,则需要将连续的论域离散化或量化。
量化等 级 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
变化范 围
≤-5.5
(-5.5, -4.5]
(-4.5, -3.5]
(3)最大隶属度取最大值法(lom) largest (absolute) value of maximum
(4)面积平分法(bisector)bisector of area
z0
b
C(z)dz C(z)dz
a
z0
模糊控制原理f
2.2 清晰化计算Defuzzification
1.解模糊
(5)加权平均法(重心法 centroid) centroid of area
uum 2 in uma x k(z0zm 2 inzm)ax
k umax umin xmax xmin
式中,k为比例因子。
模糊控制原理f
2.3 数据库data base
存储着有关模糊化、模糊推理、解模糊的一切知识,如模糊 化中论域变换方法、输入变量隶属函数的定义、模糊推理算法、 解模糊算法、输出变量各模糊集的隶属函数定义等。 输入输出空间的模糊分割
模糊控制规则中,前提的语言变量构成模糊输入空间,结 论的语言变量构成模糊输出空间。每个语言变量的取值为一 组模糊语言名称,每个模糊语言名称对应一个模糊集合。对 于每个语言变量,其取值的模糊集合具有相同的论域。
规则库
规则库包括了用模糊语言变量表示的 一系列控制规则。它们反映了控制专 家的经验和知识。
糊推理 模糊推理是模糊控制器的核心,它具有模拟人的基于模糊 概念的推理能力。
清晰化 作用:将模糊推理得到的模糊控制量变换为实际用于控制 的清晰量。包括: 1) 将模糊量经清晰化变换成论域范围的清晰量。 2) 将清晰量经尺度变换变化成实际的控制量。
模糊控制原理f
第二节 模糊控制系统的基本原理
2.1 模糊化运算(Fuzzification) 2.2 清晰化计算 (Defuzzification) 2.3 数据库(Data base) 2.4 规则库(Rule base) 2.4 模糊推理 (Fuzzy Inference)
模糊控制原理f
2.1 模糊化运算(Fuzzification)
模糊控制原理f
第一部分 模糊控制
第2讲 模糊控制原理
模糊控制原理f
第一节 模糊控制(推理)系统的基本结构
1.1 模糊控制系统的组成
给定值
FC 模糊化
知识库
模糊推理
解模糊
模糊控制器
被控对象
1.2 模糊控制器(推理)的结构
模糊控制原理f
1.2 模糊控制器的结构
模糊化 模糊化的作用是将输入的精确量转换成模糊量。具体过程为: 1)尺度变换
模糊控制原理f
1.3 模糊控制器的维数
模糊控制器输入变量的个数称为模糊控制器的维数。对 于单输入单输出的控制系统,一般有以下三种情况:
➢ 一维模糊控制器 一个输入:误差;输出为控制量或控制量的变化。
➢ 二维模糊控制 二个输入:误差及误差的变化。
➢ 三维模糊控制器 三个输入为输入:误差、误差的变化、误差变化的速率。
相关文档
最新文档