三角函数精品课件.ppt
合集下载
三角函数的应用ppt课件

D 系,在转动一周的过程中,H 关于 t 的函数解析式为( )
A.
H
55
sin
π 15
t
π 2
,
x 0, 30
C.
H
55
sin
π 15
t
π 2
55 ,
x 0, 30
B.H
55
sin
π 15
t
π 2
,
x 0, 30
D.H
55
sin
π 15
t
π 2
65,
x 0, 30
解析:因为游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min ,所 以游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要15min , 又因为摩天轮最高点距离地面高度为120m ,所以t 15 时, H 120 ,
i
Asin
t
来刻画,其中
2π
表示频率,A
表示振幅,
表示初相.
解:
(1)由图可知,电流最大值 5A,因此 A=5;电流变化的周期为 1 s,频率为 50Hz, 50
即 50 ,解 得 100π ;再 由初始状 态( t=0)的 电流约为 4.33A,可 得
2π
sin
0.866
,因此
约为
π 3
.所以电流 i
解析:设角速度
k
sin (k
0)
,故旋转一周所用的时间t
k
2
sin
.当
90
2
时,
t
24
,故
k
12
,所以
t
24
sin
.故当“傅科摆”处于北纬
40
时,
A.
H
55
sin
π 15
t
π 2
,
x 0, 30
C.
H
55
sin
π 15
t
π 2
55 ,
x 0, 30
B.H
55
sin
π 15
t
π 2
,
x 0, 30
D.H
55
sin
π 15
t
π 2
65,
x 0, 30
解析:因为游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min ,所 以游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要15min , 又因为摩天轮最高点距离地面高度为120m ,所以t 15 时, H 120 ,
i
Asin
t
来刻画,其中
2π
表示频率,A
表示振幅,
表示初相.
解:
(1)由图可知,电流最大值 5A,因此 A=5;电流变化的周期为 1 s,频率为 50Hz, 50
即 50 ,解 得 100π ;再 由初始状 态( t=0)的 电流约为 4.33A,可 得
2π
sin
0.866
,因此
约为
π 3
.所以电流 i
解析:设角速度
k
sin (k
0)
,故旋转一周所用的时间t
k
2
sin
.当
90
2
时,
t
24
,故
k
12
,所以
t
24
sin
.故当“傅科摆”处于北纬
40
时,
三角函数认识ppt课件

辅助角公式
总结词
用于将三角函数式化为单一三角函数的形式。
详细描述
辅助角公式是三角函数中常用的化简工具,它可以将复杂的三角函数式化为单一三角函数的形式,便于计算和理 解。具体公式如下:sin(x+y)=sinxcosy+cosxsiny,cos(x+y)=cosxcosy-sinxsiny, tan(x+y)=(tanx+tany)/(1-tanxtany)。
三角函数认识ppt课件
目录
• 三角函数的定义 • 三角函数的图像与性质 • 三角函数的应用 • 三角函数的变换公式 • 三角函数的特殊值
01
三角函数的定义
角度与弧度的关系
角度制
以度(°)为单位,规定一周为 360度,每度分为60分,每分为 60秒。
弧度制
以弧度(rad)为单位,规定圆的 周长为2π弧度。角度与弧度的转 换公式为:1° = π/180 rad。
三角函数的基本恒等式
正弦、余弦、正切之间的基本恒等式。
利用这些恒等式,可以方便地进行三角函数的转换和化简,对于解决三角函数问 题非常有用。
THANK YOU
积的和差公式
总结词
用于计算两个角的三角函数值的乘积之和或之差。
详细描述
积的和差公式也是三角函数中常用的公式之一,它可以计算两个角的三角函数值 的乘积之和或之差。具体公式如下:sin(x-y)=sinxcosy-cosxsiny,cos(xy)=cosxcosy+sinxsiny,tan(x-y)=(tanx-tany)/(1+tanxtany)。
详细描述
和差角公式是三角函数中非常重要的公式之一,它可以将两个角的三角函数值 相加或相减,得到新的三角函数值。具体公式如下: sin(x+y)=sinxcosy+cosxsiny,cos(x+y)=cosxcosy-sinxsiny, tan(x+y)=(tanx+tany)/(1-tanxtany)。
《三角函数》课件

斜边
b
= c ;
∠A的对边
(3)∠A的正切:tan A= ∠A的邻边 =
a
b .
2. 特殊角的三角函数
1
sin30°= 2 ,sin45°=
3
cos30°= 2 ,cos45°=
3
tan30°= 3 ,tan45°=
2
2 ,sin60°=
2
2 ,cos60°=
3
2 ;
1
2 ;
1 ,tan60°=
3.
C.cos58°<sin58°<cos28°
D.sin58°<cos58°<cos28°
cos32°
对于 cosα,角度越大,函数值越小
3
5
2.在 Rt△ABC 中,∠C=90°,sin B= ,则 sin A 的值是( B )
A.
3
5
B.B互余
D.
5
4
sin2A+sin2B=1
《三角函数》
知识梳理
正弦
三
角
函
数
的
定
义
sin A =
∠A的对边
斜边
∠A的邻边
(0<sinA<1)
余弦
cos A =
正切
∠A的对边
tan A =
(tanA>0)
∠A的邻边
斜边
(0<cosA<1)
锐
角
三
角
函
数
的
计
算
由定义求锐角三角
函数值
由角的度数求锐角
三角函数值
一般锐角的三角
函数值:利用计
算器求解
特殊角的三角函
三角函数的应用PPT省公开课获奖课件市赛课比赛一等奖课件

B
┌ C D C
经过本节课旳学习你又增长了哪些知 识?
• 我们发觉以上几种问题旳处理措施,都是 首先构建直角三角形,在两个直角三角形 中利用边角关系分步处理。此类题型需要 大家冷静分析,仔细解答。
从已知旳 边和角
表达
未知旳边和 角
求出 答案
A 6m D
1350 8m
┌
┐
F 30m E C
100m
由梯形面积公式S AD BCAF 得,
2 S 36 4 2 72 2.
2
V 100S 100 72 2 10182.34 m3 .
答:修建这个大坝共需土石方约10182.34m3.
1 如图,有一斜坡AB长40m,坡顶离地面旳
AD
┌ C
AB
BC sin 350
BD sin 450 sin 350
4 0.6428 0.5736
4.48m.
AB BD 4.48 4 0.48m.
答:调整后旳楼梯会加长约0.48m.
成功在于坚持
解:如图,根据题意可知,∠A=350,∠BDC=400,DB=4m.
求(2) AD旳长. tan 400 BC ,
E
怎么做?
2m
C
400
D
5m B
我快乐,我会做
解:如图,根据题意可知,∠CDB=400,EC=2m,DB=5m.求
DE旳长. tan 400 BC , BC BD tan 400.
E
BD
BE BC 2 BD tan 400 2 6.1955(m). tan BDE BE 5 tan 400 2 1.24.
2m
C
BD
5
∴∠BDE≈51.12°.
高中数学课件三角函数ppt课件完整版

2024/1/26
单调性
在各象限内,正弦、余弦 函数的单调性及其变化规 律。
最值问题
利用三角函数的性质求最 值,如振幅、周期等参导公式与恒等 式
REPORTING
2024/1/26
7
诱导公式及其应用
01
诱导公式的基本形式
通过角度的加减、倍角、半角等关系,将任意角的三角函数值转化为基
8
恒等式及其证明方法
2024/1/26
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变 量取何值,等式都成立。
恒等式的证明方法
通常采用代数法、几何法或三角法等方法进行证明。其中,代数法是通过代数运算和变换 来证明恒等式;几何法是通过几何图形的性质和关系来证明恒等式;三角法是通过三角函 数的性质和关系来证明恒等式。
化简为简单的形式。
12
三角函数的乘除运算规则
乘积化和差公式
通过乘积化和差公式,可以将两 个三角函数的乘积转化为和差的
形式,从而简化运算。
商的化简
利用同角三角函数的基本关系, 可以将三角函数的商转化为简单
的三角函数运算。
倍角公式
通过倍角公式,可以将三角函数 的乘方运算转化为简单的三角函
数运算。
2024/1/26
建立三角函数与数列、概率统计相关 的数学模型
结合计算机编程和数学软件,实现模 型的数值模拟和可视化
2024/1/26
利用数学分析、高等代数等方法求解 模型
22
PART 06
总结回顾与拓展延伸
REPORTING
2024/1/26
23
本章节知识点总结回顾
三角函数图像
正弦、余弦、正切函数的图像 及其周期性、奇偶性等性质。
单调性
在各象限内,正弦、余弦 函数的单调性及其变化规 律。
最值问题
利用三角函数的性质求最 值,如振幅、周期等参导公式与恒等 式
REPORTING
2024/1/26
7
诱导公式及其应用
01
诱导公式的基本形式
通过角度的加减、倍角、半角等关系,将任意角的三角函数值转化为基
8
恒等式及其证明方法
2024/1/26
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变 量取何值,等式都成立。
恒等式的证明方法
通常采用代数法、几何法或三角法等方法进行证明。其中,代数法是通过代数运算和变换 来证明恒等式;几何法是通过几何图形的性质和关系来证明恒等式;三角法是通过三角函 数的性质和关系来证明恒等式。
化简为简单的形式。
12
三角函数的乘除运算规则
乘积化和差公式
通过乘积化和差公式,可以将两 个三角函数的乘积转化为和差的
形式,从而简化运算。
商的化简
利用同角三角函数的基本关系, 可以将三角函数的商转化为简单
的三角函数运算。
倍角公式
通过倍角公式,可以将三角函数 的乘方运算转化为简单的三角函
数运算。
2024/1/26
建立三角函数与数列、概率统计相关 的数学模型
结合计算机编程和数学软件,实现模 型的数值模拟和可视化
2024/1/26
利用数学分析、高等代数等方法求解 模型
22
PART 06
总结回顾与拓展延伸
REPORTING
2024/1/26
23
本章节知识点总结回顾
三角函数图像
正弦、余弦、正切函数的图像 及其周期性、奇偶性等性质。
第五章 第四节 三角函数的图象与性质 课件(共63张PPT)

,解
得 ω=32 .
法二:由题意,得 f(x)max=fπ3
2.(必修 4P35 例 2 改编)若函数 y=2sin 2x-1 的最小正周期为 T,最大
值为 A,则( )
A.T=π,A=1
B.T=2π,A=1
C.T=π,A=2
D.T=2π,A=2
A [T=22π =π,A=2-1=1.]
3.(必修 4P40 练习 T4 改编)下列关于函数 y=4cos x,x∈[-π,π]的单 调性的叙述,正确的是( )
求三角函数单调区间的两种方法 (1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个 角 u(或 t),利用复合函数的单调性列不等式求解.(如本例(1)) (2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间. [注意] 要注意求函数 y=A sin (ωx+φ)的单调区间时 ω 的符号,若 ω<0, 那么一定先借助诱导公式将 ω 化为正数.同时切莫漏掉考虑函数自身的定义 域.
又当 x∈[0,π2
]时,f(x)∈[-
2 2
,1],所以π2
≤ω2π
-π4
≤5π4
,解得
3 2
≤ω≤3,故选 B.
π
π
π
优解:当 ω=2 时,f(x)=sin (2x- 4 ).因为 x∈[0,2 ],所以 2x- 4 ∈
π [- 4
,3π4
π ],所以 sin (2x- 4
)∈[-
2 2
,1],满足题意,故排除 A,C,
B.[kπ,kπ+π2 ](k∈Z)
C.[kπ+π6 ,kπ+23π ](k∈Z)
D.[kπ-π2 ,kπ](k∈Z)
(2)函数 y=tan x 在-π2,32π 上的单调减区间为__________.
三角函数的概念 课件(39张)

tan cos = × +1× = .
数学
方法总结
诱导公式一的实质是:终边相同的角,其同名三角函数的值相等.因为这些
角的终边都是同一条射线,根据三角函数的定义可知这些角的三角函数值
相等.其作用是可以把任意角转化为0°~360°之间的角.
因为 a<0,所以 a=- ,所以 P 点的坐标为( ,- ),
所以 sin α=- ,cos α= ,
所以 sin α+2cos α=- +2× = .
数学
[变式训练1-1] 若将本例中“a<0”删掉,其他条件不变,结果又是什么?
解:因为点 P 在单位圆上,则|OP|=1,即 (-) + () =1,解得 a=± .
②若 a<0,则 r=-5a,且 sin α=
-
-
-
=- ,cos α=
所以 sin α+2cos α=- +2× = .
= .
数学
方法总结
由角α终边上任意一点的坐标求其三角函数值
(1)已知角α的终边在直线上时,常用的解题方法有以下两种:
①先利用直线与单位圆相交,求出交点坐标,然后再利用正弦函数、余
弦函数、正切函数的定义求出相应三角函数值.
②在α的终边上任选一点 P(x,y),P 到原点的距离为 r(r>0),则 sin α= ,
三角函数的定义ppt课件

(2) 熟 记 几 组 常 用 的 勾 股 数 组 , 如 (3,4,5) , (5,12,13) , (7,24,25),(8,15,17),(9,40,41)等,会给我们解题带来很多方便.
(3)若角 α 已经给定,不论点 P 选择在 α 的终边上的什么 位置,角 α 的三角函数值都是确定的;另一方面,如果角 α 终 边上一点坐标已经确定,那么根据三角函数定义,角 α 的三角 函数值也都是确定的.
∴角 2α 的终边在第一或第二象限或 y 轴的非负半轴上. (2)在(0,π)内终边在直线 y= 3x 上的角是π3, ∴终边在直线 y= 3x 上的角的集合为 α|α=π3+kπ,k∈Z.
(3)∵θ=67π+2kπ(k∈Z),∴θ3=27π+2k3π(k∈Z). 依题意 0≤27π+2k3π<2π(k∈Z)⇒-37≤k<178(k∈Z). ∴k=0,1,2,即在[0,2π)内终边与θ3角的终边相同的角为27π, 2201π,3241π.
1.了解任意角的概念和弧度制,能进行弧度与角度的互 化.
2.理解任意角的三角函数(正弦、余弦、正切)的含义. 3.借助单位圆中理解三角函数线。
一.角及有关概念
1.角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到
另一个位置所成的图形.旋转开始时的射线 OA 叫做角的 始边 ,旋转终止时的射线 OB 叫做角的终边 ,按逆 时针 方向旋转所形成的角叫做正角,按顺 时针方向旋转所形成的 角叫做负角.若一条射线没作任何旋转,称它形成了一个零
(2)若 θ 是第二象限角,则csoinsscions2θθ的符号是什么? [分析] (1)由点 P 所在的象限,知道 sinθ·cosθ,2cosθ 的 符号,从而可求 sinθ 与 cosθ 的符号. (2)由 θ 是第二象限角,可求 cosθ,sin2θ 的范围,进而把 cosθ,sin2θ 看作一个用弧度制的形式表示的角,并判断其所在 的象限,从而 sin(cosθ),cos(sin2θ)的符号可定.
(3)若角 α 已经给定,不论点 P 选择在 α 的终边上的什么 位置,角 α 的三角函数值都是确定的;另一方面,如果角 α 终 边上一点坐标已经确定,那么根据三角函数定义,角 α 的三角 函数值也都是确定的.
∴角 2α 的终边在第一或第二象限或 y 轴的非负半轴上. (2)在(0,π)内终边在直线 y= 3x 上的角是π3, ∴终边在直线 y= 3x 上的角的集合为 α|α=π3+kπ,k∈Z.
(3)∵θ=67π+2kπ(k∈Z),∴θ3=27π+2k3π(k∈Z). 依题意 0≤27π+2k3π<2π(k∈Z)⇒-37≤k<178(k∈Z). ∴k=0,1,2,即在[0,2π)内终边与θ3角的终边相同的角为27π, 2201π,3241π.
1.了解任意角的概念和弧度制,能进行弧度与角度的互 化.
2.理解任意角的三角函数(正弦、余弦、正切)的含义. 3.借助单位圆中理解三角函数线。
一.角及有关概念
1.角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到
另一个位置所成的图形.旋转开始时的射线 OA 叫做角的 始边 ,旋转终止时的射线 OB 叫做角的终边 ,按逆 时针 方向旋转所形成的角叫做正角,按顺 时针方向旋转所形成的 角叫做负角.若一条射线没作任何旋转,称它形成了一个零
(2)若 θ 是第二象限角,则csoinsscions2θθ的符号是什么? [分析] (1)由点 P 所在的象限,知道 sinθ·cosθ,2cosθ 的 符号,从而可求 sinθ 与 cosθ 的符号. (2)由 θ 是第二象限角,可求 cosθ,sin2θ 的范围,进而把 cosθ,sin2θ 看作一个用弧度制的形式表示的角,并判断其所在 的象限,从而 sin(cosθ),cos(sin2θ)的符号可定.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
育達商職
8
銳角的三角函數(2)
解答篇:
(1) sin 30 1 2
(2) cos 30 3 2
(3) tan 45 1
(4) sin 60 3 2
(5) cos 60 1
育達商職
2
9
任意角的三角函數
第一象限內的角
練習:
(1) sin 150。=
第二象限內的角
(2) cos 210。=
第三象限內的角
sin,cos,tan, cot,sec,csc 函數之介紹。
直角三角形 ABC, C為直角
育達商職
7
銳角的三角函數(2)
特別角
練習:
30。, 45。, 60。求法。 (1) sin 30。=
– 練習題
(2) cos 30。= (3) tan 45。=
(4) sin 60。=
(5) cos 60。=
解答篇:
(1) sin( 30) 1 2
(2) cos(60) 1 2
(3) tan( 45) 1
(4) sec(30) 2 3
育達商職
14
化任意角三角函數為銳角三角函數
-象限角的三角函數
0。
90。
180。
பைடு நூலகம்270。
Sin
0
1
0
-1
Cos
1
0
-1
0
Tan
0
0
Cot
0
0
Sec
1
-1
Csc
1
-1
三角函數
育達商職 林玲帆製作
內容介紹
有向角及其度量
銳角的三角函數
任意角的三角函數
化任意角三角函數為銳角三角函數
育達商職
2
有向角及其度量(1)
扇形弧長求法
–例題
例題:設一圓的半徑為 24公分,一圓弧所對 應的圓心角為60。, 試求此圓弧之弧長。
育達商職
3
有向角及其度量(1)
解答篇:
60
11
化任意角三角函數為銳角三角函數
負角的轉換 象限角的三角函數
育達商職
12
化任意角三角函數為銳角三角函數
※ 練習:
負角的轉換
(1) sin ( -30。)=
(2) cos( -60。)=
(3) tan ( -45。)=
(4) sec ( -30。 )=
育達商職
13
化任意角三角函數為銳角三角函數
180
3
S
r
24
3
8
( 公分 )
育達商職
4
有向角及其度量(2)
扇形面積求法
–例題
例題:設一扇形的半徑 為3公分,圓心角為 30。,試求此扇形之 面積。
育達商職
5
有向角及其度量(2)
解答篇:
30
180
6
A 1 r2
2
1 32
2
6
3
4
( 平方公分 )
育達商職
6
銳角的三角函數(1)
育達商職
15
謝謝觀賞!!
育達商職
16
(3) tan 135。=
第四象限內的角
(4) sin 300。=
育達商職 (5) cos 120。=
10
任意角的三角函數
解答篇:
(1) sin 150 1 2
(2) cos 210 3 2
(3) tan 135 1
(4) sin 300 3 2
(5) cos 120 1
2
育達商職