锻造知识

锻造知识
锻造知识

一、锻造过程质量控制

1,锻造

◆什么叫做锻造:

□在加压设备及工(模具)的作用下,使坯料产生局

部或全部的塑性变形,以获得一定的几何形状,形

状和质量的锻件的加工方法称为锻造.

◆锻造的分类:

□自由锻造

只用简单的通用性工具,或在锻造设备上、下砧间直

接使坯料变形而获得所需的几何形状及内部质量的锻

件.

模锻

利用模具使毛坯变形而获得锻件的锻造方法.

□自由锻造的方法

镦粗:使毛坯高度减小,横断面积增大的锻造工序.

局部镦粗:在坯料上某一部分进行的镦粗.

镦粗的过程控制:

1.为了防止镦粗时产生纵向弯曲,圆柱体坯料的高度与直径之比不应超过

2.5-3,且镦粗前坯料端面应平整,并与轴心线垂直. 镦粗时要把坯料围绕着轴心线不断转动坯料发生弯曲时必须立即矫正。

芯棒拔长:

它是在空心毛坯中加芯棒进行拔长以减小空心处径(壁厚)而增加其长度的锻造工序,用于锻造长筒类锻件.

芯棒拔长的过程控制:

1.芯棒拔长都应以六角形为主要变形阶段

即圆→六角→圆,芯棒拔长应尽可能在V

型下砧或110°下槽中进行.

2.翻转角度要准确,打击量在均匀,发现有壁

厚不均匀及两端面过度歪斜现象,应及时

把芯棒抽出,用矫正镦粗法矫正毛坯.

3.芯棒加工应有1/100~2/100日锥度.

拔长:使毛坯横断面积减小,长度增加的

锻造工序.

拔长锻造工艺参数的选择就是要在保证质量的前提下提高效率

1. 每次锤击的压下量应小于坯料塑性所允许的数值,并避免产生折叠,因此每次压缩后的锻件宽度与高度之比应小于2~

2.5,b/h<2~2.5,否则翻转90°再锻造时容易产生弯曲和折叠。

2.每次送进量与单次压下量之比应大于1~1.5,即L/△h/2>1~1.5生产中一般采用L=(0.6~0.8)

h (h为坯料高度)。如图

3. 为保证得到平滑的表面质量,每次送进量应小于(0.75~0.8)B(B为砧宽)要避免在锻件的同一变形位置反复锤击。

4.方形坯料的对角线倒棱形锤击时,应打击得轻一些可加大送进量(和砧宽相等)减小

压下量。避免中心部位产生裂纹。

5.防止端部产生内凹和夹层,拔长坯料端部时,坯料端部应留出足够的长度或锻成圆

鼓形。如图

园形断面方形断面当B/H >1.5时,

A > 0.4B

当B/H﹤1.5时,A > 0.5B

A>0.3D

6.为了提高生产率和保证锻件质量,拨长过程应以方形断面为主,如果坯料原始截面

为圆形,最终断面也是圆形,应按圆形→方形→八角形→圆形的顺序进行拨长,并以方形拨长为主要变形阶段。也可采用型砧拨长,生产效率更高.

7.上下砧的边缘应作出适当圆角,防止表面夹层.

8. 对长坯料应从中间向面端拨长,可将疏松和偏折区挤到顶部去。短坯料可从一端开始拨长,向前推进.

9.为保证锻件质量,避免出现折纹,每次送进后的打击压下量不能太大,应使单边压下量△H/2小于送进量L即2L/△H>1

如图》》

冲孔:在坯料上冲出透孔或不透孔的锻造工

序。

冲孔要求:

1.实心冲子冲孔,冲孔坯料尺寸应符合以下条件,以避免冲孔发生“走样”、裂纹和孔冲偏等质量问题。如图所示:

?当Do/d1≥5时,可取Ho=H

?当Do/d1<5时,应取Ho=(1.1-1.2)H

2.冲孔前坯料必须镦粗,使端面平整、高度减小直径增大.

3.冲子必须放正,打击方向应和冲头端面垂直.

4.在冲子的冲孔内应撒上煤末或木炭粉,以便取出冲头.

5.在冲孔过程中要不断地移动冲头并且让坯料绕轴心线传动,以避免孔位置偏斜

6.冲头要经常在水中冷却.

扩孔:减小空心毛坯壁厚而增加其内、外径

的锻造工序。

冲头扩孔:是利用冲头锥面引起的径向分力

而进行扩孔的一种方法。

?冲头扩孔应注意以下几方面

1.冲头扩孔时,由于坯料切向受拉应力,容

易胀裂,每次扩孔量不宜太大。

如图:

2.冲孔扩孔时坯料的高度尺寸:H1=1.05H (H1为扩孔前坯料H为扩孔后高度).

3.为防止内孔胀裂,每次扩孔量不宜太大每次冲孔后允许扩孔1~2次一般取20~40mm 当需要多次扩孔时应中间加热,每次加热一次允许扩孔2~3次.

4.马架扩孔时,芯轴应随孔径的扩大而逐步更换,芯轴直径应尽量可能选大.

二、锻件缺陷分类

?为了保证质量,对于金属锻件,必须进行质量检验。对检验出有缺陷的锻件,根据使用要求(检验标准)和缺陷的程度,确定其合格、报废或经过修补后使用。

?锻件缺陷分类的方法很多,下面介绍比较实用的两种分类方法:

1,锻件缺陷表现形式分类

?锻件的缺陷如按其表现形状来区分,可分为外部的、内部的、和性能的三种。

?外部缺陷如几何尺寸和形状不符合要求,表面裂纹,折迭、缺肉、错差、模锻不足、表面麻坑、表面气泡和桔皮状表面。这类缺陷显露在锻件的外表面上,比较容易发现或观察到。

?内部缺陷又可以细分为低倍缺陷和显微缺陷两类。前者如内裂、缩孔、疏松、白点、锻造流纹紊乱、偏析、粗晶、石状断口、异金属夹杂等;后者如脱碳、增碳、带状组织、铸造组织残留和碳化物偏析不符合要求等,内部缺陷存在于锻件的内部,原因复杂,不易辨认,常常给生产造成较大的困难。

?反映在性能方面的缺陷,如温室强度、塑性、韧性或疲劳性能等不符合;或者高温瞬时强度,持久强度、持久塑性、蠕变强度不符合要求等。性能方面的缺陷,只有在进行了性能试验之后,才能确切知道。

?值得注意的是,外部、内部和性能方面的缺陷这三者之间,常常有不可分割的联系。

例如,过热和过烧表现于外部为裂纹的形式;表现于内部则为晶粒粗大或脱碳,表现的性能方面则为塑性和韧性和降低。因此,为了准确确定锻件缺陷的原因,除了必须辨明它们的形态和特征之外,还应注意拭出它们之间的内在联系。

按生产缺陷的工序或过程分类

?锻件缺陷按其产生于那个过程来区分,可分为:原材料生产过程产生的缺陷、锻造过程产生的缺陷和热处理过程产生的缺陷。按照锻造过程中各工序的顺序,还可将锻造过程中产生的缺陷,细分为以下几类:由下料产生的缺陷;由加热产生的缺陷;

由锻造产生的缺陷;由冷却产生的缺陷和由清理产生缺陷等。不同的工序可以产生形式的缺陷,但是,同一种形式的缺陷也可以来自不同的工序。由于产生锻件缺陷的原因往往与原材料生产过程和锻造热处理过程有关。

三、引发锻件缺陷的主要原因造

一、原材料的主要缺陷及其引起的锻件缺陷

锻造用的原材料为铸锭、轧材、挤材及锻坯。而轧材、挤材及锻坯分别是铸锭经轧制、挤压及锻造加工成的半成品。一般情况下,铸锭的内部缺陷或表面缺陷的出现有时是不可避免的。例如,内部的成分与组织偏析等。原材料存在的各种缺陷,不仅会影响锻件的成形,而且将影响锻件的最终质量。

由于原材料的缺陷造成的锻件缺陷通常有

1.表面裂纹

表面裂纹多发生在轧制棒材和锻制棒材上,一般呈直线形状,和轧制或锻造的主变形方向一致。造成这种缺陷的原因很多,例如钢锭内的皮下气泡在轧制时一面沿变形方向伸长,一面暴露到表面上和向内部深处发展。又如在轧制时,坯料的表面如被划伤,冷却时将造成应力集中,从而可能沿划痕开裂等等。这种裂纹若在锻造前不去掉,锻造时便可能扩展引起锻件裂纹。

2.折叠

折叠形成的原因是当金属坯料在轧制过程中,由于轧辊上的型槽定径不正确,或因型槽磨损面产生的毛刺在轧制时被卷入,形成和材料表面成一定倾角的折缝。对钢材,折缝内有氧化铁夹杂,四周有脱碳。折叠若在锻造前不去掉,可能引起锻件折叠或开裂。

3.结疤

结疤是在轧材表面局部区域的一层可剥落的薄膜。

结疤的形成是由于浇铸时钢液飞溅而凝结在钢锭表面,轧制时被压成薄膜,贴附在轧材的表面,即为结疤。锻后锻件经酸洗清理,薄膜将会剥落而成为锻件表面缺陷。

4.层状断口

层状断口的特征是其断口或断面与折断了的石板、树皮很相似。

层状断口多发生在合金钢(铬镍钢、铬镍钨钢等),碳钢中也有发现。这种缺陷的产生是由于钢中存在的非金属夹杂物、枝晶偏析以及气孔疏松等缺陷,在锻、轧过程中沿轧制方向被拉长,使钢材呈片层状。如果杂质过多,锻造就有分层破裂的危险。层状断口越严重,钢的塑性、韧性越差,尤其是横向力学性能很低,所以钢材如具有明显的层片状缺陷是不合格的。

5.亮线(亮区)

亮线是在纵向断口上呈现结晶发亮的有反射能力的细条线,多数贯穿整个断口,大多数产生

在轴心部分。

亮线主要是由于合金偏析造成的。

轻微的亮线对力学性能影响不大,严重的亮线将明显降低材料的塑性和韧性。

6.非金属夹杂

非金属夹杂物主要是熔炼或浇铸的钢水冷却过程中由于成分之间或金属与炉气、容器之间的化学反应形成的。另外,在金属熔炼和浇铸时,由于耐火材料落入钢液中,也能形成夹杂物,这种夹杂物统称夹渣。在锻件的横断面上,非金属夹杂可以呈点状、片状、链状或团块状分布。严重的夹杂物容易引起锻件开裂或降低材料的使用性能。

7.碳化物偏析

碳化物偏析经常在含碳高的合金钢中出现。其特征是在局部区域有较多的碳化物聚集。它主要是钢中的莱氏体共晶碳化物和二次网状碳化物,在开坯和轧制时未被打碎和均匀分布造成的。碳化物偏析将降低钢的锻造变形性能,易引起锻件开裂。锻件热处理淬火时容易局部过热、过烧和淬裂。制成的刀具使用时刃口易崩裂。

加热工艺不当常产生的缺陷

1.脱碳

脱碳是指金属在高温下表层的碳被氧化,使得表层的含碳量较内部有明显降低的现象。

脱碳层的深度与钢的成分、炉气的成分、温度和在此温度下的保温时间有关。采用氧化性气氛加热易发生脱碳,高碳钢易脱碳,含硅量多的钢也易脱碳。

脱碳使零件的强度和疲劳性能下降,磨损抗力减弱。

2.增碳

经油炉加热的锻件,常常在表面或部分表面发生增碳现象。有时增碳层厚度达1.5~1.6mm,增碳层的含碳量达1%(质量分数)左右,局部点含碳量甚至超过2%(质量分数),出现莱氏体组织。

这主要是在油炉加热的情况下,当坯料的位置靠近油炉喷嘴或者就在两个喷嘴交叉喷射燃油的区域内时,由于油和空气混合得不太好,因而燃烧不完全,结果在坯料的表面形成还原性的渗碳气氛,从而产生表面增碳的效果。

增碳使锻件的机械加工性能变坏,切削时易打刀。

3.过热

过热是指金属坯料的加热温度过高,或在规定的锻造与热处理温度范围内停留时间太长,或由于热效应使温升过高而引起的晶粒粗大现象。

碳钢(亚共析或过共析钢)过热之后往往出现魏氏组织。马氏体钢过热之后,往往出现晶内织构,工模具钢往往以一次碳化物角状化为特征判定过热组织。钛合金过热后,出现明显的β相晶界和平直细长的魏氏组织。合金钢过热后的断口会出现石状断口或条状断口。过热组织,由于晶粒粗大,将引起力学性能降低,尤其是冲击韧度。

一般过热的结构钢经过正常热处理(正火、淬火)之后,组织可以改善,性能也随之恢复,这种过热常被称之为不稳定过热;而合金结构钢的严重过热经一般的正火(包括高温正火)、退火或淬火处理后,过热组织不能完全消除,这种过热常被称之为稳定过热。

4.过烧

过烧是指金属坯料的加热温度过高或在高温加热区停留时间过长,炉中的氧及其它氧化性气体渗透到金属晶粒间的空隙,并与铁、硫、碳等氧化,形成了易熔的氧化物的共晶体,破坏了晶粒间的联系,使材料的塑性急剧降低。过烧严重的金属,撤粗时轻轻一击就裂,拔长时将在过烧处出现横向裂纹。

过烧与过热没有严格的温度界线。一般以晶粒出现氧化及熔化为特征来判断过烧。对碳钢来说,过烧时晶界熔化、严重氧化工模具钢(高速钢、Cr12型钢等)过烧时,晶界因熔化而

出现鱼骨状莱氏体。铝合金过烧时出现晶界熔化三角区和复熔球等。锻件过烧后,往往无法挽救,只好报废。

5.加热裂纹

在加热截面尺寸大的大钢锭和导热性差的高合金钢和高温合金坯料时,如果低温阶段加热速度过快,则坯料因内外温差较大而产生很大的热应力。加之此时坯料由于温度低而塑性较差,若热应力的数值超过坯料的强度极限,就会产生由中心向四周呈辐射状的加热裂纹,使整个断面裂开。

锻造工艺不当常产生的缺陷

1.大晶粒

大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒

晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。

2.晶粒不均匀

晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。耐热钢及高温合金对晶粒不均匀特别敏感。晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。

3.冷硬现象

变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。严重的冷硬现象可能引起锻裂。

4.裂纹

裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在撤粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂

5.龟裂

龟裂是在锻件表面呈现较浅的龟状裂纹。在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。③燃料含硫量过高,有硫渗人钢料表面。

6.飞边裂纹

飞边裂纹是模锻及切边时在分模面处产生的裂纹。飞边裂纹产生的原因可能是:①在模锻操作中由于重击使金属强烈流动产生穿筋现象。②镁合金模锻件切边温度过低;铜合金模锻件切边温度过高。

7.分模面裂纹

分模面裂纹是指沿锻件分模面产生的裂纹。原材料非金属夹杂多,模锻时向分模面流动与集中或缩管残余在模锻时挤人飞边后常形成分模面裂纹。

8.折叠

折叠是金属变形过程中已氧化过的表层金属汇合到一起而形成的。它可以是由两股(或多股)金属对流汇合而形成;也可以是由一股金属的急速大量流动将邻近部分的表层金属带着流动,两者汇合而形成的;也可以是由于变形金属发生弯曲、回流而形成;还可以是部分金属局部变形,被压人另一部分金属内而形成。折叠与原材料和坯料的形状、模具的设计、成形

工序的安排、润滑情况及锻造的实际操作等有关。

折叠不仅减少了零件的承载面积,而且工作时由于此处的应力集中往往成为疲劳源。9.局部充填不足

局部充填不足主要发生在筋肋、凸角、转角、圆角部位,尺寸不符合图样要求。产生的原因可能是:①锻造温度低,金属流动性差;②设备吨位不够或锤击力不足;③制坯模设计不合理,坯料体积或截面尺寸不合格;④模膛中堆积氧化皮或焊合变形金属。

10.欠压

欠压指垂直于分模面方向的尺寸普遍增大,产生的原因可能是:①锻造温度低。②设备吨位不足,锤击力不足或锤击次数不足。

11.错移

错移是锻件沿分模面的上半部相对于下半部产生位移。产生的原因可能是:①滑块(锤头)与导轨之间的间隙过大;②锻模设计不合理,缺少消除错移力的锁口或导柱;③模具安装不良。

17.轴线弯曲

锻件轴线弯曲,与平面的几何位置有误差。产生的原因可能是:①锻件出模时不注意;②切边时受力不均;③锻件冷却时各部分降温速度不一;④清理与热处理不当。

锻件缺陷的主要特征及产生原因

1.偏心

主要特征:

对多台阶齿轴锻件表现为各直径段中心不一致,对齿轮类锻件表现为内外孔中心偏移产生原因:

? 1.加热温度不匀

? 2.锻造工艺或操作不当

? 3.冲孔前冲子没放正

2.弯曲

主要特征:

齿轴锻件的中心线弯曲变形

产生原因:

? 1.锻造矫直不当

? 2.热处理操作不当

3.端面不平

主要特征:

圈类及饼类锻件端面变形

产生原因:

? 1.锻造工艺或操作不当

? 2.热处理操作不当

4.折叠

主要特征:

在外观上与裂纹相似,实际上是金属流线产弯曲

产生原因:

? 1.砧子圆角不合适

? 2..送进量小于压下量

5.表面横向裂纹

主要特征:

横向较浅裂纹

产生原因:

? 1.钢锭皮下气泡暴露于表面不能焊合

? 2.拔长时相对送进量过大

6.表面纵向裂纹

主要特征:

第一和拔长时或镦粗时出现的沿钢锭纵向出现的裂纹

产生原因:

? 1.钢锭模内壁有缺陷,新钢锭模使用前热处理不当

? 2.钢水浇铸操作不当

? 3.钢锭脱模后冷却不当

? 4.倒棱时压下量过大

7.表面龟裂

主要特征:

锻件表面出现龟甲状较浅裂纹

产生原因:

? 1.钢中铜、锡、砷、碳含量过高

? 2.始锻温度过高

8.内部裂纹

主要特征:

裂纹出现于锻件中心区域

产生原因:

? 1.加热未烧透,内部温度过低

? 2.在平砧上拔长圆形件

? 3.V型砧角度过大

9.缩孔残余

主要特征:

在低被试片上呈不规则褶皱状缝隙,为深褐色或灰白色

产生原因:

1.锭模设计不合理,浇铸过程控制不当

2.锻造时切头不足

10.过热、过烧与温度不均匀

加热温度过高或高温停留时间过长时易引起过热、过烧。过热使材料的塑性与冲击韧性显著降低。过烧时材料的晶界剧烈氧化或者熔化,完全失去变形能力。

当加热温度分布严重不均匀,表现为锻坯内外、正反面、沿长度温差过大,在锻造时引起不均变形,偏心锻造等缺陷,亦称欠热。

过热

过烧

图片(1)是钢锻坯过热组织,因加热温度太高引起的过热特征。试样用10%(体积分数)硝酸水溶液和10%(体积分数)硫酸水溶液腐蚀,金相显微镜(LM)观察,晶粒粗大,晶界呈黑色,基体灰白色,显示为过热特征。

图片(2)所示为轴承钢GCr15SiMn锻件过烧引起的裂纹,晶界上有熔化痕迹及低熔点剧相,裂纹沿晶界扩展。试样用4%(体积分数)硝酸酒精溶液侵蚀后呈黑色晶界,明显烧坏,锻坯过烧报废采取措施

l)严格执行正确的加热规范;

2)注意装炉方式,防止局部加热;

3)调准测温仪表,精心加热操作,控制炉温、炉气流动,防止不均匀加热。

11.疏松

主要特征:

沿钢锭中心的疏松组织未锻合,多与非金属夹杂等并存

产生原因:

? 1.锭型选择不当

? 2.锻造比不合适,变形方案不当

? 3.相对送给量过小

? 4.工具形状不合适

12.白点

主要特征:

白点是锻件在锻后冷却过程中产生的一种内部缺陷。其形貌在横向低倍试片上为细发丝状锐角裂纹,断口为银白色斑点。照片6-13为Cr-Ni-Mo钢锻件纵向断口上的白点。其形状不规则,大小悬殊,最小长轴尺寸仅2mm,最大的为24mm。

白点

上图片宏观断口上的白点形貌白点实质是一种脆性锐边裂纹,具有极大的危害性,是马氏体和珠光体钢中十分危险的缺陷。

白点成因是钢中氢在应力作用下向拉应力区富集,使钢产生所谓氢脆,发生脆性断裂,所以氢和附加应力联合作用是白点产生的原因。

*防止白点的对策主要是:

1)降低钢中氢含量,如注意烘烤炉料,冶炼时充分沸腾,真空除气,炉外精炼脱气等。2)采用消除白点的热处理,主要任务是扩散钢中氢,消除应力,如扩氢退火热处理等。

3)控制锻后冷却

13.非金属夹杂物

主要特征:

在锻件内部呈被拉长状或已被破碎的金属夹杂物

产生原因:

炼钢过程中的生成物或耐火材料沙子等落入钢液

14.组织性能不均匀

大型锻件因其尺寸大,工序多,周期长,工艺过程中不均匀,不稳定因素多,所以常常造成组织性能严重不均匀,以致在力学性能试验,金相组织检查和无损探伤时不能通过。由于钢锭中化学成分偏析,夹杂物聚集,各种孔隙性缺陷的影响;加热时温度变化缓慢,分布不均,内应力大,缺陷较多;高温长时间锻造,局部受力局部变形,塑流状况、压实程度、变形分布差别较大;冷却时扩散过程缓慢,组织转变复杂,附加应力大。以上诸因素都可能导致组织性能严重不均匀,质量不合格。

提高锻件均匀性的措施:

1)采用先进的冶铸技术,提高钢锭的冶金质量;

2)采用控制锻造,控制冷却技术,优化工艺过程,提高大锻件生产的技术经济水平。

锻造基本知识

锻造知识太汇总 锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 1. 变形温度 钢的开始再结晶温度约为727 ℃,但普遍采用800 ℃作为划分线,高于800℃ 的是热锻;在300 ~800 ℃之间称为温锻或半热锻,在室温下进行锻造的称为冷锻。用于大多数行业的锻件都是热锻,温锻和冷锻主要用于汽车、通用机械等零件的锻造,温锻和冷锻可以有效的节材。 2. 锻造类别 上面提到,根据锻造温度,可以分为热锻、温锻和冷锻。 根据成形机理,锻造可分为自由锻、模锻、碾环、特殊锻造。 1)自由锻。指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。采用自由锻方法生产的锻件称为自由锻件。自由锻都是以生产批量不大的锻件为主,采用锻锤、液压机等锻造设备对坯料进行成形加工,获得合格锻件。自由锻的基本工序包括镦粗、拔

长、冲孔、切割、弯曲、扭转、错移及锻接等。自由锻采取的都是热锻方式。 2)模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,模锻一般用于生产重量不大、批量较大的零件。模锻可分为热模锻、温锻和冷锻。温锻和冷锻是模锻的未来发展方向,也代表了锻造技术水平的高低。 按照材料分,模锻还可分为黑色金属模锻、有色金属模锻和粉末制品成形。顾名思义,就是材料分别是碳钢等黑色金属、铜铝等有色金属和粉末冶金材料。 挤压应归属于模锻,可以分为重金属挤压和轻金属挤压。 闭式模锻和闭式镦锻属于模锻的两种先进工艺,由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。 3)碾环。碾环是指通过专用设备碾环机生产不同直径的环形零件,也用来生产汽车轮毂、火车车轮等轮形零件。 4)特种锻造。特种锻造包括辊锻、楔横轧、径向锻造、液态模锻等锻造方式,这些方式都比较适用于生产某些特殊形状的零件。例如,辊锻可以作为有效的预成形工艺,大幅降低后续的成形压力;楔横轧可以生产钢球、传动轴等零件;径向锻造则可以生产大型的炮筒、台阶轴等锻件。 5)锻模

锻造基础知识大汇集

forming1950专注锻造、冲压、钣金成形行业,汇聚作者与读者、用户与装配商、行业与市场最新动态,通过行业市场类、技术交互类、技术文章类题材为锻压行业打造一流的交流学习、技术传播、信息服务平台。锻造工艺(Forging Process)是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。 变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。 坯料 根据坯料的移动方式,锻造可分为自由锻、镦粗、挤压、模锻、闭式模锻、闭式镦锻。 1、自由锻。利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需锻件,主要有手工锻造和机械锻造两种。 2、模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,又可分为冷镦、辊锻、径向锻造和挤压等等。 3、闭式模锻和闭式镦锻由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。 锻模 根据锻模的运动方式,锻造又可分为摆辗、摆旋锻、辊锻、楔横轧、辗环和斜轧等方式。摆辗、摆旋锻和辗环也可用精锻加工。为了提高材料的利用率,辊锻和横轧可用作细长材料的前道工序加工。与自由锻一样的旋转锻造也是局部成形的,它的优点是与锻件尺寸相比,锻造力较小情况下也可实现形成。包括自由锻在内的这种锻造方式,加工时材料从模具面附近向自由表面扩展,因此,很难保证精度,所以,将锻模的运动方向和旋锻工序用计算机控制,就可用较低的锻造力获得形状复杂、精度高的产品,例如生产品种多、尺寸大的汽轮机叶片等锻件。锻造设备的模具运动与自由度是不一致的,根据下死点变形限制特点,锻造设备可分为下述四种形式: 1、限制锻造力形式:油压直接驱动滑块的油压机。 2、准冲程限制方式:油压驱动曲柄连杆机构的油压机。 3、冲程限制方式:曲柄、连杆和楔机构驱动滑块的机械式压力机。 4、能量限制方式:利用螺旋机构的螺旋和磨擦压力机。 重型航空模锻液压机进行热试为了获得高的精度应注意防止下死点处过载,控制速度和模具位置。因为这些都会对锻件公差、形状精度和锻模寿命有影响。另外,为了保持精度,还应注意调整滑块导轨间隙、保证刚度,调整下死点和利用补助传动装置等措施。 滑块 还有滑块垂直和水平运动(用于细长件的锻造、润滑冷却和高速生产的零件锻造)方式之分,利用补偿装置可

锻造基础知识大汇集

2015-06-08锻压世界锻压世界 forming1950专注锻造、冲压、钣金成形行业,汇聚作者与读者、用户与装配商、行业与市场最新动态,通过行业市场类、技术交互类、技术文章类题材为锻压行业打造一流的交流学习、技术传播、信息服务平台。锻造工艺(Forging Process)是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。 变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。 坯料 根据坯料的移动方式,锻造可分为自由锻、镦粗、挤压、模锻、闭式模锻、闭式镦锻。 1、自由锻。利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需锻件,主要有手工锻造和机械锻造两种。 2、模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,又可分为冷镦、辊锻、径向锻造和挤压等等。 3、闭式模锻和闭式镦锻由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。 锻模 根据锻模的运动方式,锻造又可分为摆辗、摆旋锻、辊锻、楔横轧、辗环和斜轧等方式。摆辗、摆旋锻和辗环也可用精锻加工。为了提高材料的利用率,辊锻和横轧可用作细长材料的前道工序加工。与自由锻一样的旋转锻造也是局部成形的,它的优点是与锻件尺寸相比,锻造力较小情况下也可实现形成。包括自由锻在内的这种锻造方式,加工时材料从模具面附近向自由表面扩展,因此,很难保证精度,所以,将锻模的运动方向和旋锻工序用计算机控制,就可用较低的锻造力获得形状复杂、精度高的产品,例如生产品种多、尺寸大的汽轮机叶片等锻件。锻造设备的模具运动与自由度是不一致的,根据下死点变形限制特点,锻造设备可分为下述四种形式: 1、限制锻造力形式:油压直接驱动滑块的油压机。 2、准冲程限制方式:油压驱动曲柄连杆机构的油压机。 3、冲程限制方式:曲柄、连杆和楔机构驱动滑块的机械式压力机。 4、能量限制方式:利用螺旋机构的螺旋和磨擦压力机。

锻造基础知识讲座

锻造基础知识讲座 (一)锻造的基本概念。 锻造是锻压工艺的一部分,锻压包括锻造和冲压两部分。 锻造的根本目的:是获得所需形状和尺寸,同时要求其性能和组织符合一定的技术要求的毛坯。 锻造按温度来分有:热锻、温锻和冷锻。不同的锻造温度对锻件的组织和性能的影响也是不同的。 下面介绍的内容主要是热锻部分知识。 锻造分自由锻和模锻两部分。 自由锻是自由锻造的简称,自由锻包括胎模锻,适用于单件小批生产。 模锻适用于批量生产和大批量生产,如汽车制造行业。 自由锻和模锻是锻造工艺的主要支柱。 发达国家的模锻件占锻件总重量的70%以上;我国在50年 代模锻件占锻件总重量不到20%,现在有进步,但模锻件总重乃比自由锻件少。 自由锻又分手工锻和机器锻。 手工锻在现在工厂用得很少,只在工具修理部门有,农村的铁匠炉基本上还是用手工锻。 机器锻又分锤上自由锻和水压机上自由锻,前者用来生产大、中、小锻件;后者用来生产大型和特大型锻件。 自由锻特点: 1.所用工具简单,通用性强,灵活性大。 2.靠工人的手工操作来控制锻件的形状和尺寸,因此,锻件的 精度差,工人的劳动强度大,生产率低。 锻件的主要缺陷有: 1.裂纹:有横向、纵向裂纹及其它各种裂纹。 2.过烧。 3.白点(锻件内部银白色、灰白色圆形的裂纹) 4.折叠。 5.疏松、非金属夹杂物。 6.机械性能达不到要求(锻比不够)。 7.弯曲、变形。 产生以上缺陷的原因很多,有铸锭缺陷引起的,有锻造加热不当引起的,有锻造本身的原因,也有锻后冷却和热 处理不当引起的。总之,原因很多。所以当锻件的缺陷发现 后,需要综合起来进行分析,并要掌握在不同情况下产生缺

铸造工艺基础要点

铸造工艺基础知识 一、铸造方法 常见的铸造方法有以下几种: 1、砂型铸造:砂型铸造是将原砂和粘结剂、辅助材料按一定比例混 制好以后,用模型造出砂型,浇入液体金属而形成铸 件的一种方法。砂型铸造是应用最普遍的一种铸造方 法。 2、熔模铸造:熔模铸造又称“失蜡铸造”,通常是在蜡模表面涂上数 层耐火材料,待其硬化干燥后,将其中的蜡模熔去而 制成型壳,再经过焙烧,然后进行浇注,而获得铸件 的一种方法。由于获得的铸件具有较高的尺寸精度和 表面粗糙度,所以又称“熔模精密铸造”。 3、金属型铸造:金属型铸造又称硬模铸造,它是将液体金属用重力 浇注法浇入金属铸型,以获得铸件的一种铸造方法。 所以又称“重力铸造”。 4、低压铸造:低压铸造是液体金属在压力作用下由下而上的充填型 腔,以形成铸件的一种方法。由于所用的压力较低, 所以叫低压铸造。 5、压力铸造:压力铸造简称压铸,是在高压作用下,使液态或半液 态金属以较高的速度充填压铸型型腔,并在压力作用 下凝固而获得铸件的一种方法。

6、离心铸造:离心铸造是将液体金属浇入旋转的铸型中,使液体金 属在离心力的作用下充填铸型和凝固成形的一种铸造 方法。 7、连续铸造:连续铸造是将熔融的金属不断浇入一种叫做结晶器的 特殊金属型中,凝固了的铸件连续不断的从结晶器的 另一端拉出,从而获得任意长度或特定长度铸件的一 种方法。 8、消失模铸造:消失模铸造是采用泡沫气化模造型,浇注前不用取 出模型,直接往模型上浇注金属液,模型在高温下 气化,腾出空间由金属液充填成型的一种铸造方法。 也叫“实型铸造”。 二、零件结构的铸造工艺性分析 零件结构的铸造工艺性通常指的是零件的本身结构应符合铸造生产的要求,既便于整个铸造工艺过程的进行,又利于保证产品质量。 对产品零件图进行分析有两方面的作用:第一,审查零件结构是否符合铸造生产的工艺要求。因为零件的设计者往往不完全了解铸造工艺。如发现结构设计有不合理的地方,就要与有关方面进行研究,在不影响使用要求的前提下,予以改进。这对简化工艺过程、保证质量及降低成本均有极大作用。第二,在既定的零件结构条件下,考虑在铸造过程中可能出现的主要缺陷,在工艺设计中采取相应工艺措施予以避免。 (一)从避免缺陷方面审查铸件结构的合理性

锻造基本知识

锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 1.变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻,在室温下进行锻造的称为冷锻。用于大多数行业的锻件都是热锻,温锻和冷锻主要用于汽车、通用机械等零件的锻造,温锻和冷锻可以有效的节材。 2.锻造类别 上面提到,根据锻造温度,可以分为热锻、温锻和冷锻。 根据成形机理,锻造可分为自由锻、模锻、碾环、特殊锻造。 1)自由锻。指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。采用自由锻方法生产的锻件称为自由锻件。自由锻都是以生产批量不大的锻件为主,采用锻锤、液压机等锻造设备对坯料进行成形加工,获得合格锻件。自由锻的基本工序包括镦粗、拔长、冲孔、切割、弯曲、扭转、错移及锻接等。自由锻采取的都是热锻方式。 2)模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,模锻一般用于生产重量不大、批量较大的零件。模锻可分为热模锻、温锻和冷锻。温锻和冷锻是模锻的未来发展方向,也代表了锻造技术水平的高低。 按照材料分,模锻还可分为黑色金属模锻、有色金属模锻和粉末制品成形。顾名思义,就是材料分别是碳钢等黑色金属、铜铝等有色金属和粉末冶金材料。 挤压应归属于模锻,可以分为重金属挤压和轻金属挤压。 闭式模锻和闭式镦锻属于模锻的两种先进工艺,由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。

大型自由锻造基础知识汇编

大型自由锻造 基础知识汇编 内容提要: 1、大型锻件质量控制举例 2、世界大型自由锻和模锻液压机装备数量分布 3、大型锻件质量控制举例

锻压行业在国民经济生产和国防建设中的作用在国民经济生产和国防建设中,锻压行业是不可缺少的重要部分,它为各种机械产品和军工装备生产各种重要基础零件。一台机械产品或军工装备,如汽车、火车、采矿机械、轧钢机、发电设备、石油化工设备、工程机械、农业机械、舰船、飞机、装甲车辆、导弹、火箭、火炮、弹药……等等,都是用各种材料(如金属、塑料、陶瓷、玻璃、木材、碳纤维、皮革……)进行不同的加工之后才能组装成机器设备或产品。其中凡是负载大的受力件和传递动力的运动件,在高温、高压下工作的重要零件,都是采用金属材料经压力加工成形的锻件。 锻件的质量直接决定主机的性能、整机质量、使用寿命、安全性和可靠性。 锻件是利用金属材料的可塑性,在冷态(常温)或热态(300~1250℃)时借助锻压设备所产生的力,使金属材料变形,获得机械零件毛坯所需形状和尺寸。锻压件分自由锻件、模锻件、挤压件、冲压件、旋压件、粉锻件、封头成形件等。 锻件广泛用于各种机械设备、军工装备和日常生活中,如果设有锻件,就设有这个多彩的世界。在当代,凡锻造工业实力强大的国家,必然在机械工业和军工装备生产的实力都很强大。所以在工业发达国家,都把锻件生产放在非常重要的地位,从一个国家所拥有的锻压设备数量、品种、等级和锻件产量,就可衡量其工业水平和国防实力。

一、我国锻压行业的发展历程 世界上锻压件的生产历史起源何时无法考证,但从我国出土的文物考证已有4000多年的历史,早就用金、银、铜、铁、锡,采用热锻、冷锻、拉拔、旋压、锤薄等工艺制造武器、工具、日用品和工艺品。我国的锻压工业虽然历史悠久,但真正形成我国现代锻压工业的时间,还是近50多年的事。在1949年以前,我国仅生产少量小型机械设备,最大锻锤仅3吨,年产锻件可能数千吨。 1949年10月1日中华人民共和国成立之日,就是我国现代锻压工业发展的起点。当回顾我国锻压工业经过50多年成长发展到现在的历程时,也经过一段艰难曲折的道路。随着国民经济各部门的发展,我国的锻压工业经过恢复、创业和大发展,现在己拥有一个门类比较齐全,生产能力比较雄厚的锻压工业,在装备我国机械制造业和军事工业中发挥巨大的作用 目前我国锻压设备品种、等级和数量,随着发展需要,在开发自制新型锻压设备的同时,还进口一些高、精、尖、大的锻压设备,在品种和数量上,作为发展中国家来说,已名列前茅,可与先进工业国相媲美。椐不完全统计,我国现有各种锻压设备40000万台,其中1.自由锻设备总量约:34000台,其中 自由锻液压机约150台,公称压力8~20MN(800~2000吨)100台,25MN~150MN(2500~15000吨)50台;在2008年还有160MN、165MN、185MN三台自由锻液压机要投产。 这些设备主要为发电(火电、水电、核电)、轧钢、采矿、石化、

铸造工培训计划及培训大纲

铸造工培训计划 一、培训目标 1、总体目标 培养具备以下条件的人员:具有创新精神和较强实践能力,掌握必要的文化基础知识和专业知识,掌握现代金属材料铸造等专业知识,有较强的实际操作能力,能适应社会主义市场经济的生产、建设、服务、管理等一线需要的技术应用性专门人才。 学员应掌握较宽的基本理论知识和较扎实的基本技能。具有分析、解决铸造生产技术问题的能力。具有应用现代铸造技术的能力和自学能力。2、理论知识培训目标 依据《铸造工国家职业标准》中对铸造工的理论知识要求,通过培训,使培训对象掌握本专业培养目标所必需的技术基础知识,机械制图基本知识,公差与配合、常用金属材料与热处理知识;掌握铸造工艺与工装设计及铸件质量检测方面的专业知识;了解铸造新技术的发展现状及基本原理。 3、操作技能培训目标 依据《铸造工国家职业标准》中对铸造工的操作技能要求,通过培训,使培训对象具备铸造工艺的编制与实施的基本能力;具有铸造工装的设计与制造的基本能力;具有材料检验及管理的基本能力;具备运用所学知识,

分析、解决铸造车间现场技术问题的能力;具备良好的文字表达能力和用普通话进行社交的能力。 二、教学要求 2.1理论知识要求 2.1.1职业道德、职业守则、安全文明生产与环境保护知识 2.1.2专业基础知识 2.1.3加工准备知识 2.2操作技能要求 2.2.1 加工准备 2.2.2钳工、车工、铣工、磨工、焊接的基本过程、工艺范围及其应用 2.2.3了解各工种的操作方法 2.2.4 铸造工装的设计与制造 三、教学计划安排 总课时数:400课时。 理论知识授课:110课时。 理论知识复习:25课时。 操作技能授课:50课时。 操作技能练习:190课时。 机动课时:25课时。

锻造基本知识教学提纲

锻造基本知识

锻造知识太汇总 锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 1.变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻,在室温下进行锻造的称为冷锻。用于大多数行业的锻件都是热锻,温锻和冷锻主要用于汽车、通用机械等零件的锻造,温锻和冷锻可以有效的节材。 2.锻造类别 上面提到,根据锻造温度,可以分为热锻、温锻和冷锻。 根据成形机理,锻造可分为自由锻、模锻、碾环、特殊锻造。 1)自由锻。指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。采用自由锻方法生产的锻件称为自由锻件。自由锻都是以生产批量不

大的锻件为主,采用锻锤、液压机等锻造设备对坯料进行成形加工,获得合格锻件。自由锻的基本工序包括镦粗、拔长、冲孔、切割、弯曲、扭转、错移及锻接等。自由锻采取的都是热锻方式。 2)模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,模锻一般用于生产重量不大、批量较大的零件。模锻可分为热模锻、温锻和冷锻。温锻和冷锻是模锻的未来发展方向,也代表了锻造技术水平的高低。 按照材料分,模锻还可分为黑色金属模锻、有色金属模锻和粉末制品成形。顾名思义,就是材料分别是碳钢等黑色金属、铜铝等有色金属和粉末冶金材料。 挤压应归属于模锻,可以分为重金属挤压和轻金属挤压。 闭式模锻和闭式镦锻属于模锻的两种先进工艺,由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。 3)碾环。碾环是指通过专用设备碾环机生产不同直径的环形零件,也用来生产汽车轮毂、火车车轮等轮形零件。

铸造工艺标准设计基础学习知识

铸造工艺设计基础 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 §1-1 零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。

每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1)壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1~表7-5 表1-2 熔模铸件的最小壁厚(单位:㎜)

锻造基础知识

锻压就是对坯料施加外力,使其产生塑性变形,改变其尺寸、形状,用于制造机械零件或毛坯成形方法。是锻造和冲压的总称。锻压的方法主要有自由锻、胎模锻、锤上模锻、特种锻和冲压等。 锻压加工的优点: 1、能改善金属组织,提高力学性能这是因为锻压可以将坯料中的疏松处压合,提高金属的致密度;可以使粗大的晶粒细化;可以使高合金工具钢中的碳化物被击碎,并且均匀地分布。 2、锻压件的形状和尺寸接近于零件与直接切削钢材的成形方法相比较,不但可以节省金属材料的消耗,而且也节省切削加工工时。 3、生产率高锻压成形,特别是模锻成形的生产效率。比切削加工成形高得多。例如,生产内六角螺钉,用模锻成形的生产率是切削加工的50倍。若采用冷镦工艺制造时,其生产效率是切削加工成形的400倍以上。 4、锻压加工在生产中有较强的适应性锻压加工既可以制造形状简单的锻件(如圆轴),也可以制造形状比较复杂,不需要或只需要进行少量切削加工的锻件(如精锻齿轮)。锻件的重量可以小到不足一克,大到几百吨。锻件既可以单件小批生产,也可以大批大量生产。 缺点:常用的自由锻件精度比较低;胎模锻和模锻的模具费用较高;与铸造生产相比,难以生产既有复杂外形又有复杂内腔的毛坯。 机床制造业中,主轴、传动轴、齿轮等重要零件以及切削刃具等,都是用锻压方法成形的。

锻造工艺基础 手工锻造是用手锻工具,依靠人力在铁砧上进行的。这种方法简陋,仅用于修理性质和小批量生产的场合。 机器锻造是靠各种锻造设备提供作用力的锻造方法,是现代锻造的主要形式。 一、自由锻 只用简单的通用性工具,或在锻造设备上、下砧间直接使坯料变形而获得所需的几何形状及内部质量的锻件,称为自由锻。 1、基本工序可分为拔长、镦粗、冲孔、弯曲等。 拔长:也称为延伸,它是使坯料横断面积减小、长度增加的锻造工序。 镦粗:是使毛坯高度减小,横断面积增大的锻造工序。 冲孔:是利用冲头在镦粗后的坯料上冲出透也或不透孔的锻造方法。 弯曲:采用一定的工模具将毛坯弯成所规定的外形的锻造工序。 2、自由锻的特点及应用 特点:工艺灵活性较大,生产准备的时间较短; 生产率低,锻件精度不高,不能锻造形状复杂的锻件。 应用:自由锻是大型锻件的主要生产方法。这是因为自由锻可以击碎钢锭中粗大的铸造组织,锻合钢锭内部气孔、缩松等空洞,并使流线状组织沿锻件外形合理分布。

铸造基础知识.pdf

铸造部分 目录 第一节 铸造基础知识 (3) 一、铸造生产概述 (3) 二、铸造生产常规工艺流程 (3) 第二节 砂型铸造工艺 (4) 一、型砂和芯砂的制备 (4) 二、型砂的性能 (4) 三、铸型的组成 (5) 四、浇冒口系统 (5) 五、模样和芯盒的制造 (6) 第三节 合金的熔炼 (8) 一、铝合金的熔炼 (8) 二、铸铁的熔炼 (9) 第四节 造 型 (11) 一、手工造型 (11) 二、制芯 (14) 三、合型 (15) 四、造型的基本操作 (15) 五、合金的浇注 (17) 六、机器造型 (18) 第五节 铸造工艺设计 (20) 一、分型面 (20) 二、型芯 (21) 三、铸造工艺参数 (21) 四、模样的结构特点 (21) 第六节 铸件常见缺陷的分析 (23) 铸工实习安全技术守则 (24) 第七节 铸工概论 (25) 一、铸造的辉煌历史 (25) 二、铸造的分类 (25) 第八节 特种铸造 (26) 一、压力铸造 (26)

二、实型铸造 (27) 三、离心铸造 (27) 四、低压铸造 (28) 五、熔模铸造 (29) 六、垂直分型无箱射压造型 (30) 七、金属型铸造 (30) 八、多触头高压造型 (31) 九、真空密封造型 (32) 第九节 铸造工艺图的绘制 (33) 一、铸造工艺图 (33) 二、浇注位置 (33) 三、分型面 (33) 四、机械加工余量和铸孔 (33) 五、拔模斜度 (34) 六、铸造圆角 (34) 七、型芯、芯头及芯座 (34) 八、铸造收缩率 (34) 九、铸造工艺图的绘制 (34) 十、模样图的绘制 (34) 十一、铸型装配图的绘制 (35) 十二、铸件图的绘制 (36) 十三、模样、型腔、铸件和零件之间的尺寸与空间的关系 (36) 十四、铸造技术的发展趋势 (36)

锻造安全培训知识

行业资料:________ 锻造安全培训知识 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共9 页

锻造安全培训知识 一、锻造车间受伤性质及产生原因 锻造车间人体受伤的性质主要有机械损伤、热损伤和电损伤三种。属于机械损伤的有:挫伤、轧伤、压伤、割伤、刺伤、擦伤、骨折、扭伤、切断伤等。属于热损伤的有:热辐射损伤、化学性灼伤、烧伤、烫伤、中暑等。电损伤主要指由于触电而引起的电伤。 人体受伤主要是由不安全状态和不安全行为所致。 1. 锻造车间可能存在的不安全状态 不安全状态是导致物质发生的物质条件,它包括机械、物质与环境诸方面。 1)防护、保险、信号等装置缺乏或有缺陷。如无防护罩、无安全保险装置、无安全标志、无护栏或护栏损坏、电气未接地、绝缘不良等。 2)设备、设施、工具、附件有缺陷。如设计不当,结构不符合安全要求;制动装置有缺陷;安全间距不够;工件上有锋利毛刺、飞边;机械强度不够;绝缘强度不够;起吊重物的绳索不符合安全要求;设备超负荷运转;设备失修;地面不平;保养不当、设备失灵等。 3)个人防护用品用具缺少或有缺陷。如无个人防护用品、用具;所用防护用品、用具不符合安全要求等。 4)生产现场环境不良。如照明光线不良;通风不良;作业场所狭窄;交通线路的配置不安全;操作工序设计或配置不安全;地面打滑等。 2. 锻造车间可能存在的不安全行为 第 2 页共 9 页

不安全行为指造成事故的人为错误,主要有: 1)操作错误,忽视安全,忽视警告。如未经许可开动或关停机器;开动或关停机器未给信号;忘记关闭设备;忽视警告标志、警告信号等。 2)造成安全装置失败。如拆除了安全装置;安全装置失去作等。 3)使用不安全装置。如使用无安全装置的设备等。 4)手代替工具操作。如用手清除氧化物;用手代替工具送料等。 5)物体存放不当,如成品半成品、材料、工具、模具等未按指定地点存放。 6)在起吊物下作业、停留。 7)机器运转时进行加油、修理、检查、调整等项工作。 8)注意力不集中。 9)未按规定穿戴防护用品。 10)进入危险场所。 二、锻造车间安全生产的主要对策 为防止工伤事故的发生,实现安全生产,按照“安全第一,预防为主”的原则,必须采取三项重要对策,即安全技术、安全教育、安全管理。 安全技术是实现安全生产的基础;安全教育和安全管理是实现安全生产的保证,三项对策必须兼顾,缺一不可。 1. 安全技术 如前所述,这是为了防止生产中所引起的工伤事故和对工人健康有害的影响,以及为消除这些现象的发生而采取的各种技术措施。 2. 安全教育 第 3 页共 9 页

铸造基础知识总结

铸造——将液体金属浇注到具有与零件形状相应的铸型型腔中,待其冷却凝固后获得铸件的方法。 作为一种成型工艺,熔铸的基本优点在于液态金属的抗剪应力很小,易于成型。 优点: 1、原材料来源广,价格低廉,如废钢、废件、切屑等;生产成本低,与其它成形工艺相比,铸造具有明显的优势。 2、铸造是金属液态成形,因此可生产形状十分复杂,尤其是具有复杂内腔的各种尺寸规格的毛坯或零件。 3、铸件的形状尺寸与零件非常接近,减少了切削量,属于无切削加工; 4、铸件的大小、重量及生产批量不受限制,可生产多种金属或合金的产品,比较灵活。 5、应用广泛,农业机械中40%~70%、机床中70%~80%的重量都是铸件。 缺点: 1、铸件的力学性能不如相同化学成分的锻件好 2、铸件质量不够稳定,工序多,影响因素复杂,工艺过程较难控制。 3、制品中有各种缺陷与不足。微观组织随位置变化,化学成分随位置变化。如铸件内部常 存在气孔、缩孔、缩松、夹杂、砂眼和裂纹等缺陷。 4、尺寸精度较低。 5、铸造生产的劳动条件较差。砂型铸造中,单件、小批量生产,工人劳动强度大 砂型铸造——是以砂为主要造型材料制备铸型的一种铸造方法。 主要工序为:制作模样及型芯盒,配制型砂、芯砂,造型、造芯及合箱,熔化与浇注,铸件的清理与检查等。 简述砂型铸造的基本工艺过程。 (1)造型:用型砂及模样等工艺设备制造铸型。通常分为手工造型和机器造型。 造芯、涂料、开设浇注系统、合型。 (2)熔炼与浇注 熔炼:使金属由固态转变为熔融状态。 浇注:将熔融金属从浇包注入铸型。 (3)落砂与清理 落砂:用手工或机械使铸件与型砂、砂箱分开。 清理:落砂后在铸件上清理表面粘砂、型砂、表面金属等。 金属型铸造——将液态金属浇入金属材料制成的铸型中以获得铸件的方法。 优点:

锻造的基本知识点

第二篇金属压力加工 一.压力加工:利用金属在外力作用下产生的塑性变形来获得具有一定形状和力学性能的原 材料,毛坯或零件的生产方法,叫压力加工 二.加工途径:扎制、拉拔、挤压、冲压 2-1-1金属塑性变形 弹性变形的原因:金属所受外力<屈服强度 塑性变形的原因:金属所受外力>屈服强度 塑性变形的实质:晶体内部间产生了滑移的结果 2-1-2金属塑性变形对金属组织性能的影响 一.组织:1.晶粒沿最大变形方向伸长2.晶粒与晶格发生扭曲,产生内应力3.晶粒间产生碎晶 二.性能:1.强度硬度增高,韧性塑性下降,叫冷变形硬化 2.有回复性(回复温度=0.25-0.3熔点) 3.强化金属材料的重要途径,利用金属的冷变形实现的 三.金属变形中的冷变形与热变形 冷变形:TT(再结晶)——热变形——细化晶粒,恢复塑性韧性 三.纤维组织: 铸铁在压力加工中,沿变形方向被拉长成纤维状的组织 影响:1.纤维组织越明显,金属在纵向(平行纤维的方向)上,塑性与韧性提高,在横向上塑性下降 2.纤维组织的明显程度与金属的变形程度有关,变形程度越大,纤维程度月明显 3.金属组织的纤维组织稳定性好,不可用热处理方法加以消除,但可用锻压的方法使金属重新变形,才能改变形状与方向 2-1-3金属的可锻性 1.概念:金属的可锻性是衡量材料经受压力加工时,获得优质制品难易程度的工艺性能,可 锻性好,适合压力加工;反之,不适合压力加工,,可锻性常用金属塑性与变形抗力来综合衡量,其塑性越好,变形抗力就越小,可锻性就越好,反之则差。 2.可锻性取决于:A.化学成分,成分不同,可锻性不同,纯金属可锻性比合金好,碳钢含C 量越底,可锻性越好,当钢中含能形成碳化物的元素多,则可锻性差 B.金属组织:纯金属含固熔体(镍氏体或单一体)可锻性好,含碳化物则 差。铸态组织和粗晶结构不如晶粒细小又均匀的组织可锻性好。 3.加工条件: 1.变形温度:(T外在T结晶以上) 2变形速度: 3.在三个方向上的应力,其中压应力越多,金属塑性越好,拉应 力越多则金属塑性越差 同号应力状态下引起的变形拉力>异号应力产拉力 2-2锻造 概念:利用冲压力或压力使金属在抵御或锻造中变形从而获得所需形状或尺寸的零件,这类工艺方法叫锻造 二.锻造方法: 自由锻造——大件模锻——复杂件胎膜锻 三.冲压 1.热冲压:8mm—10mm 2.冷冲压:6mm以下 1

锻造基础知识

锻造基础知识.txt昨天是作废的支票;明天是尚未兑现的期票;只有今天才是现金,才能随时兑现一切。人总爱欺骗自己,因为那比欺骗别人更容易。锻造基础知识对金属坯料(不含板材)施加外力,使其产生塑性变形、改变尺寸、形状及改善性能,用以制造机械零件、工件、工具或毛坯的成形加工方法。锻造的种类和特点当温度超过300-400℃(钢的蓝脆区),达到700-800℃时,变形阻力将急剧减小,变形能力也得到很大改善。根据在不同的温度区域进行的锻造,针对锻件质量和锻造工艺要求的不同,可分为冷锻、温锻、热锻三个成型温度区域。原本这种温度区域的划分并无严格的界限,一般地讲,在有再结晶的温度区域的锻造叫热锻,不加热在室温下的锻造叫冷锻。在低温锻造时,锻件的尺寸变化很小。在700℃以下锻造,氧化皮形成少,而且表面无脱碳现象。因此,只要变形能在成形能范围内,冷锻容易得到很好的尺寸精度和表面光洁度。只要控制好温度和润滑冷却,700℃以下的温锻也可以获得很好的精度。热锻时,由于变形能和变形阻力都很小,可以锻造形状复杂的大锻件。要得到高尺寸精度的锻件,可在900-1000℃温度域内用热锻加工。另外,要注意改善热锻的工作环境。锻模寿命(热锻2-5千个,温锻1-2万个,冷锻2-5万个)与其它温度域的锻造相比是较短的,但它的自由度大,成本低。坯料在冷锻时要产生变形和加工硬化,使锻模承受高的荷载,因此,需要使用高强度的锻模和采用防止磨损和粘结的硬质润滑膜处理方法。另外,为防止坯料裂纹,需要时进行中间退火以保证需要的变形能力。为保持良好的润滑状态,可对坯料进行磷化处理。在用棒料和盘条进行连续加工时,目前对断面还不能作润滑处理,正在研究使用磷化润滑方法的可能。 根据坯料的移动方式,锻造可分为自由锻、镦粗、挤压、模锻、闭式模锻、闭式镦锻。闭式模锻和闭式镦锻由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。根据锻模的运动方式,锻造又可分为摆辗、摆旋锻、辊锻、楔横轧、辗环和斜轧等方式。摆辗、摆旋锻和辗环也可用精锻加工。为了提高材料的利用率,辊锻和横轧可用作细长材料的前道工序加工。与自由锻一样的旋转锻造也是局部成形的,它的优点是与锻件尺寸相比,锻造力较小情况下也可实现形成。包括自由锻在内的这种锻造方式,加工时材料从模具面附近向自由表面扩展,因此,很难保证精度,所以,将锻模的运动方向和旋锻工序用计算机控制,就可用较低的锻造力获得形状复杂、精度高的产品。例如生产品种多、尺寸大的汽轮机叶片等锻件。锻造设备的模具运动与自由度是不一致的,根据下死点变形限制特点,锻造设备可分为下述四种形式:·限制锻造力形式:油压直接驱动滑块的油压机。·准冲程限制方式:油压驱动曲柄连杆机构的油压机。·冲程限制方式:曲柄、连杆和楔机构驱动滑块的机械式压力机。·能量限制方式:利用螺旋机构的螺旋和磨擦压力机。 为了获得高的精度应注意防止下死点处过载,控制速度和模具位置。因为这些都会对锻件公差、形状精度和锻模寿命有影响。另外,为了保持精度,还应注意调整滑块导轨间隙、保证刚度,调整下死点和利用补助传动装置等措施。此外,根据滑块运动方式还有滑块垂直和水平运动(用于细长件的锻造、润滑冷却和高速生产的零件锻造)方式之分,利用补偿装置可以增加其它方向的运动。上述方式不同,所需的锻造力、工序、材料的利用率、产量、尺寸公差和润滑冷却方式都不一样,这些因素也是影响自动化水平的因素。锻件与铸件相比有什么特点金属经过锻造加工后能改善其组织结构和力学性能。铸造组织经过锻造方法热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。一般说来,铸件的力学性能低于同材质的锻件力学性能。此外,锻造加工能保证金属纤维组织的连续性,使锻件的纤维组织与锻

金属锻造成形的基本知识

金属锻造成形的基本知识 锻造的根本目的:获得所需形状和尺寸的锻件,同时要求性能和组织符合一定的技术要求。锻造的特点是利用金属的塑性流动来成形的,(借助于外力的作用产生塑性变形,获得所需形状、尺寸)在成形过程中不仅坯料的重量基本是不变的,而且体积也是基本不变,只有组织和性能发生变化。优点是锻件内部致密且组织比较均匀,性能高于铸件和焊接件,缺点是需要较大的变形力。 锻造的分类: 按工具和模具安置情况分为自由锻和模锻;按温度分为热锻、温锻、冷锻。 钢的加热规范: 指钢料从装炉开始到出炉前(始锻温度)的整个过程,对炉温和料温随时间变化的关系所作的规定。 火焰加热是利用燃料(煤、油、气)燃烧所产生的热能直接加热金属的方法。优点:炉子修造容易,费用低,加热适应性强;缺点:劳动条件差,加热质量难控制。 电加热是利用电能转换为热能来加热金属的方法。优缺点与上相反,但铝合金由于熔点低必须电加热。 锻造温度范围的确定: 是指始锻温度和终锻温度间的一段温度间隔,在锻造温度范围内金属应具有良好的可锻性(足够的塑性,低的变形抗力)和合适的金相组织,为了减少火次,都力求扩大温度范围。

始锻温度:一般低于Fe-C液相图150~250℃,首先保证无过烧现象。 一般低碳1300℃,中碳1230℃,高碳1150℃。 终端温度:在结束锻造之前,金属还应有足够的塑性,以锻后能获得再结晶组织,没有加工硬化现象为原则。过高的终锻温度会使锻件晶粒在冷却过程中继续长大,从而降低机械性能;过低终锻温度,由于塑性极低造成加工硬化现象,甚至产生裂纹。 锻造比:是表示金属变形程度大小的指标,它关系着铸造粗大晶粒的破碎,内部缺陷的锻合,是保证锻件内部质量和满足性能要求的重要依据。 1、镦粗比的计算:镦粗的目的是为了增大横截面积,打碎金属内 部粗大晶粒结构,获得较好的内部质量。Y镦=(S后/S前截面积)(H ) 前/H后高度 2、拔长锻造比的计算:拔长目的在于减小截面尺寸,增大长度尺 寸。Y拔=(S前/S后)(L后/L前长度) 3、有镦粗和拔长,两者叠加。 锻造比的选择:由于标志金属变形程度的大小。 钢锭作为锻造坯料时:碳素钢Y≥3;合金钢Y≈3~4。 轧材或锻坯作坯料时:Y≥1.5。 镦粗前坯料的高度与直径之比,应控制2~2.5,最大不超过3。 工艺: 1、热锻:是目前应用最广的一种锻造工艺。经过热锻,内部组织发

锻造基础知识大汇集

锻造基础知识大汇集 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

forming1950专注锻造、冲压、钣金成形行业,汇聚作者与读者、用户与装配商、行业与市场最新动态,通过行业市场类、技术交互类、技术文章类题材为锻压行业打造一流的交流学习、技术传播、信息服务平台。锻造工艺(Forging Process)是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。 变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。 坯料 根据坯料的移动方式,锻造可分为自由锻、镦粗、挤压、模锻、闭式模锻、闭式镦锻。 1、自由锻。利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需锻件,主要有手工锻造和机械锻造两种。 2、模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,又可分为冷镦、辊锻、径向锻造和挤压等等。 3、闭式模锻和闭式镦锻由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。

锻模 根据锻模的运动方式,锻造又可分为摆辗、摆旋锻、辊锻、楔横轧、辗环和斜轧等方式。摆辗、摆旋锻和辗环也可用精锻加工。为了提高材料的利用率,辊锻和横轧可用作细长材料的前道工序加工。与自由锻一样的旋转锻造也是局部成形的,它的优点是与锻件尺寸相比,锻造力较小情况下也可实现形成。包括自由锻在内的这种锻造方式,加工时材料从模具面附近向自由表面扩展,因此,很难保证精度,所以,将锻模的运动方向和旋锻工序用计算机控制,就可用较低的锻造力获得形状复杂、精度高的产品,例如生产品种多、尺寸大的汽轮机叶片等锻件。锻造设备的模具运动与自由度是不一致的,根据下死点变形限制特点,锻造设备可分为下述四种形式: 1、限制锻造力形式:油压直接驱动滑块的油压机。 2、准冲程限制方式:油压驱动曲柄连杆机构的油压机。 3、冲程限制方式:曲柄、连杆和楔机构驱动滑块的机械式压力机。 4、能量限制方式:利用螺旋机构的螺旋和磨擦压力机。 重型航空模锻液压机进行热试为了获得高的精度应注意防止下死点处过载,控制速度和模具位置。因为这些都会对锻件公差、形状精度和锻模寿命有影响。另外,为了保持精度,还应注意调整滑块导轨间隙、保证刚度,调整下死点和利用补助传动装置等措施。 滑块 还有滑块垂直和水平运动(用于细长件的锻造、润滑冷却和高速生产的零件锻造)方式之分,利用补偿装置可

相关文档
最新文档