第11章反常积分答案

合集下载

数学分析 反常积分习题解答

数学分析  反常积分习题解答

b
b
使 f (x)g(x)dx g(b) f (x)dx;
a
(2)若g(x) 在 [a,b]单调减少, 且 g(b) 0,
则 [a,b],
b
使 f (x)g(x)dx g(a) f (x)dx.
a
a
..
Abel 判别法:
定 理
设积分 f (x)dx收敛 , g(x) 在 [a,b] 上单调有界, a
则积分 f (x)g(x)dx 收敛. a
1
e dx
例 讨论积分
的敛散性.
0 x p ln x
例 证明积分
1
0
1 xp
sin
1 x
dx

p 2 时收敛.
例 判别积分的收敛性: (ⅰ) 1 ln x dx ; (ⅱ) 2 x dx
0x
1 ln x
例 讨论反常积分 ( ) x 1 dx 的敛散性.
例 讨论积分 sin x dx 的敛散性. 1x

讨论积分
sin x
1
arctan x dx x
的敛散性.
四. 无界函数反常积分收敛判敛法: 无穷区间反常积分的结论都可以平行地用于无界函数的反
常积分. 以只有一个奇点 x b 为例, 列出相应的结果如下:
定理8.2.1’ (Cauchy收敛原则)
8
则积分 f (x)g(x)dx 收敛. a
2
Dirichlet 判别法:
5
设F ( A) A f (x)dx在区间 [ a , ) 上有界, a
g(x)

[a,b]
上单调有界且
lim
x
g
(
x)
0

十一章反常积分

十一章反常积分
y= 1 x2
0
1
b
x
二、两类反常积分的定义. 两类反常积分的定义
定义1: 定义 设函数 f (x)定义在区间[a, +∞)上, 且在任何 有限区间[a, u]上可积,如果存在极限
u →+∞ a
lim
∫ f ( x )dx = J
u
则称此极限为函数 f (x)在无穷区间[a, +∞)上 (x) [a, +∞) 的无穷限反常积分, 记作
u2
u 1
f (x)d <ε. x
2,比较原则
设定义在[ a,+∞)上的两个函数f和g都在任何有限区间上可积,
且满足
f (x ≤g(x x∈ a+ ) ) ), [, ∞
定理11.2(比较原则) (比较原则) 定理
设定义在[ a,+∞)上的两个函数f和g都在任何有限区间上可积,
[, ∞ 且满足 f (x) ≤g(x), x∈ a+ ) 则
若 g(x d 收 ,则 ∫ )x 敛 ∫
a
+ ∞
+ ∞
a
f (x d 收 ; ) x 敛
若 ∫
例1 : 讨论 ∫
+∞ 0
+ ∞
a
f (x d 发 ,则 g(x d 发 . ) x 散 ∫ )x 散
a
+ ∞
sin x dx的收敛性. 2 1+ x
a sin x x +b
3 2
例 2 : 讨论 ∫
+∞
a
+∞
a +∞
[k1 f1 ( x) + k 2 f 2 ( x)]dx也收敛, 且 [k1 f1 ( x) + k 2 f 2 ( x)]dx = k1 ∫

高等数学 课后习题答案第十一章

高等数学 课后习题答案第十一章

习题十一1.设L 为xOy 面内直线x =a 上的一段,证明:(),d 0L P x y x =⎰其中P (x ,y )在L 上连续. 证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段,则 L :12x ab t b y t =⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故()()()221d ,d d 0d 0d b b L b b a P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰2.设L 为xOy 面内x 轴上从点(a ,0)到点(b ,0)的一段直线,证明:()(),d 0d bLaP x y x P x,x=⎰⎰,其中P (x ,y )在L 上连续.证:L :0x xa xb y =⎧≤≤⎨=⎩,起点参数为x =a ,终点参数为x =b .故()(),d ,0d bL a P x y x P x x=⎰⎰3.计算下列对坐标的曲线积分:(1)()22d -⎰Lx y x,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧;(2)d L xy x ⎰其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d L y x x y +⎰,其中L 为圆周x =R cos t ,y =R sin t 上对应t 从0到π2的一段弧; (4)()()22d d Lx y x x y yx y +--+⎰,其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);(5)2d d d x x z y y z Γ+-⎰,其中Γ为曲线x =kθ,y =a cos θ,z =a sin θ上对应θ从0到π的一段弧; (6)()322d 3d ++-⎰x x zy x y z Γ,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线;(7)d d d L x y y z -+⎰,其中Γ为有向闭拆线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1);(8)()()222d 2d L x xy x y xy y-+-⎰,其中L 是抛物线y =x 2上从点(-1,1)到点(1,1)的段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩ L 2的方程为y =0(0≤x ≤2a )故()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t tRt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π.故 ()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t a a t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π22π3220π3320332d d d sin sin cos cos d d 131ππ3x x z y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰(6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()032210314127334292d 87d 1874874t t t t t tt tt ⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x =⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()122421123541222d 224d 1415x x x x x x x xxx x x x--⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰4.计算()()d d Lx y x y x y ++-⎰,其中L 是(1)抛物线y 2=x 上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4)曲线x =2t 2+t +1,y =t 2+1上从点(1,1)到点(4,2)的一段弧.解:(1)L :2x y y y ⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343L x y x y x yy y y y y yy y y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰(2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2故()()()()()2121221d d 32332d 104d 5411L x y x y x y y y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰(3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且L 1:1x y y =⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰ 从而()()()()()12d d d d 1271422LL L x y x y x y x y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()122132014320d d 32412d 10592d 10592432323L x y x y x y t t t tt t tt t t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰ 5.设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a ,0)沿椭圆移动到B (0,b ),求力所做的功.解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t =⎧⎨=⎩,t :0→π2()()()()π2022π20π222022d d cos sin sin cos d sin 2d 2cos 2222LW kx x ky yka t t kb t b t t k b a t tk b a t k b a =+=-+⋅⎡⎤⎣⎦-=--⎡⎤=⎢⎥⎣⎦-=⎰⎰⎰(其中k 为比例系数)6.计算对坐标的曲线积分:(1)d Lxyz z⎰,Γ为x 2+y 2+z 2=1与y =z 相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅲ、Ⅳ封限;(2)()()()222222d d d Lyz x z x y x y z-+-+-⎰,Γ为x 2+y 2+z 2=1在第Ⅰ封限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos 2sin 22sin 2x t y t z t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π故:2π2π2202π202π0222d cos sin sin cos d 2222sin cos d 42sin 2d 1621cos 4d 1622π16xyz z t t t t t t t t t t ttΓ=⋅⋅⋅==-==⎰⎰⎰⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x t y t z =⎧⎪=⎨⎪=⎩ t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233yz x z x y x y zt t t t tt t tt tΓ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y zy z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰7.应用格林公式计算下列积分:(1)()()d d 24356+-++-⎰x y x y x y Γ, 其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界;(2)()()222d d cos 2sin e sin 2e x x L x yx y x xy x y x x y ++--⎰,其中L 为正向星形线()2223330x y a a +=>;(3)()()3222d d 2cos 12sin 3+--+⎰L x y xy y x y x x y ,其中L 为抛物线2x =πy 2上由点(0,0)到(π2,1)的一段弧;(4)()()22d d sin Lx yx y x y --+⎰,L 是圆周22y x x =-上由点(0,0)到(1,1)的一段弧;(5)()()d d e sin e cos xx Lx yy my y m +--⎰,其中m 为常数,L 为由点(a ,0)到(0,0)经过圆x 2+y 2=ax上半部分的路线(a 为正数).图11-4解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,Q =3x +5y -6,3Q x ∂=∂,1P y ∂=-∂,由格林公式得()()d d 24356d d 4d d 4d d 1432212LD DDx yx y x y Q P x y x y x yx y+-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰(2)P =x 2y cos x +2xy sin x -y 2e x ,Q =x 2sin x -2y e x ,则2cos 2sin 2e xPx x x x y y ∂=+-∂, 2cos 2sin 2e xQx x x x y x ∂=+-∂.从而P Q y x ∂∂=∂∂,由格林公式得. ()()222d d cos 2sin e sin 2e d d 0++--∂∂⎛⎫-= ⎪∂∂⎝⎭=⎰⎰⎰x x LD x yxy x xy x y x x y Q P x y x y(3)如图11-5所示,记OA ,AB ,BO 围成的区域为D .(其中BO =-L )图11-5P =2xy 3-y 2cos x ,Q =1-2y sin x +3x 2y 2 262cos Pxy y x y ∂=-∂,262cos Q xy y x x ∂=-∂ 由格林公式有:d d d d 0L OA AB D Q P P x Q y x y x y -++∂∂⎛⎫-+== ⎪∂∂⎝⎭⎰⎰⎰故π21220012202d d d d d d d d ππd d 12sin 3243d 12π4π4++=+=+++⎛⎫=+-+⋅⋅ ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰LOA AB OA ABP x Q y P x Q yP x Q y P x Q yO x yy y y y y(4)L 、AB 、BO 及D 如图11-6所示.图11-6由格林公式有d d d d ++∂∂⎛⎫-+=- ⎪∂∂⎝⎭⎰⎰⎰L AB BO D Q P P x Q y x y x y而P =x 2-y ,Q =-(x +sin 2y ).1∂=-∂Py ,1∂=-∂Q x ,即,0∂∂-=∂∂Q P x y于是()d d d d 0+++++=+=⎰⎰⎰⎰LABBOL AB BOP x Q y P x Q y从而()()()()()()()22222211220011300d d d d sin d d d d sin sin d d 1sin 131sin 232471sin 264L LBA OB P x Q y x y x y x y x y x y x y x y x y x y y x xy x y y +=--+=-+--+-+=-++⎡⎤⎡⎤=+-+⎢⎥⎢⎥⎣⎦⎣⎦=-+⎰⎰⎰⎰⎰⎰(5)L ,OA 如图11-7所示.图11-7P =e x sin y -my , Q =e x cos y -m , e cos x Py m y ∂=-∂,e cos x Q y x ∂=∂ 由格林公式得:22d d d d d d d d 1π22π8L OA D DDQ P P x Q y x y x y m x ym x ya m m a +∂∂⎛⎫-+= ⎪∂∂⎝⎭==⎛⎫=⋅⋅ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰于是:()()[]220202πd d d d 8πd 0e sin 00e cos08π0d 8π8+=-+=-+⋅⋅-⋅⋅-=-=⎰⎰⎰⎰L OA a x x a m aP x Q y P x Q y m a xm m m a xm a8.利用曲线积分,求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t ,y =a sin 3t ; (2)双纽线r 2=a 2cos2θ; (3)圆x 2+y 2=2ax . 解:(1) ()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t a t t t a t t t a tt t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得 cos cos 2x a θ=sin cos 2y a θ=从而x d y -y d x =a 2cos2θd θ.于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22LA x y y xa a a θθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为 cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin L A x y y x a a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰ 9.证明下列曲线积分与路径无关,并计算积分值: (1)()()()()1,10,0d d x y x y --⎰;(2)()()()()3,423221,2d d 663x yxy y x y xy +--⎰;(3)()()1,221,1d d x y x x y -⎰沿在右半平面的路径;(4)()()6,81,0⎰沿不通过原点的路径;证:(1)P =x -y ,Q =y -x .显然P ,Q 在xOy 面内有连续偏导数,且1P Q y x ∂∂==-∂∂,故积分与路径无关.取L 为从(0,0)到(1,1)的直线段,则L 的方程为:y =x ,x :0→1.于是()()()()11,100,00d 0d d x x y x y ==--⎰⎰(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123Pxy y y ∂=-∂,2123Q xy yx ∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x yxyy x y xy y xy y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰(3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x ∂=∂,在右半平面内恒有P Q y x ∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11x y x x y y -==--⎰⎰(4) P =,Q =P Q y x ∂∂=∂∂分在不含原点的区域内与路径无关, 取L 为从(1,0)→(6,0)→(6,8)的折线,则()()686,8101,0801529x y=+⎡=+⎣=⎰⎰⎰10.验证下列P (x ,y )d x +Q (x ,y )d y 在整个xOy 面内是某一函数u (x ,y )的全微分,并求这样的一个函数u (x ,y ):(1)(x +2y )d x +(2x +y )d y ; (2)2xy d x +x 2d y ;(3)(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y ; (4)(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y . 解:证:(1)P =x +2y ,Q =2x +y . 2P Q y x ∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()()()()(),0,0022022d d ,22d d 2222222x y xy yu x yx y x y x y x x yx y x y xy x y xy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Q x y x ∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()(),20,02022d d ,0d d x y xy u xy x x yx y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Q x xy y x ,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y是某个定义在整个xOy 面内函数u (x ,y )的全微分, ()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y xyy y y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos Px y y x y ∂=-+∂,2cos 2sin Q y x x yx ∂=-∂, 有P Q y x ∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分, ()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xyu x y x y x y y x y x x y x x yy x x y y x x y=++-=+-=+⎰⎰⎰11.证明:22d d x x y yx y ++在整个xOy 平面内除y 的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数.证:22x P x y =+,22y Q x y =+,显然G 是单连通的,P 和Q 在G 内具有一阶连续偏导数,并且.()2222∂∂-==∂∂+P Q xy y x x y ,(x ,y )∈G因此22d d x x y y x y ++在开区域G 内是某个二元函数u (x ,y )的全微分.由()()22222222d d 11ln 22d x y x x y y d x y x y x y ++⎡⎤==+⎢⎥++⎣⎦ 知()()221ln ,2u x y x y =+.12.设在半平面x >0中有力()3kF xi yj r =-+构成力场,其中k为常数,r =,证明:在此力场中场力所做的功与所取的路径无关. 证:场力沿路径L 所作的功为.33d d L k k W x x y y r r =--⎰ 其中3kx P r =-,3kyQ r =-,则P 、Q 在单连通区域x >0内具有一阶连续偏导数,并且 53(0)P kxy Q x y r x ∂∂==>∂∂因此以上积分与路径无关,即力场中场力所做的功与路径无关.13.当Σ为xOy 面内的一个闭区域时,曲面积分()d d ,,R x yx y z ∑⎰⎰与二重积分有什么关系?解:因为Σ:z =0,在xOy 面上的投影区域就是Σ故()()d d d d ,,,,0R x y R x yx y z x y ∑∑=±⎰⎰⎰⎰当Σ取的是上侧时为正号,Σ取的是下侧时为负号. 14.计算下列对坐标的曲面积分: (1)22d d x y z x y∑⎰⎰,其中Σ是球面x 2+y 2+z 2=R 2的下半部分的下侧;(2)d d d d d d z x y x y z y z x ∑++⎰⎰,其中Σ是柱面x 2+y 2=1被平面z =0及z =3所截得的在第Ⅰ封限内的部分的前侧;(3)()()()d d 2d d d d ,,,,,,f x y z f y z x f z x y x y z x y z x y z ∑+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰,其中f (x ,y ,z )为连续函数,Σ是平面x -y +z =1在第Ⅳ封限部分的上侧;(4)d d d d d d xz x y xy y z yz z x ∑++⎰⎰,其中Σ是平面x =0,y =0,z =0,x +y +z =1所围成的空间区域的整个边界曲面的外侧;(5)()()()d d d d d d y z z x x y y z x y z x ∑++---⎰⎰,其中Σ为曲面22z x y =+与平面z =h (h >0)所围成的立体的整个边界曲面,取外侧为正向; (6)()()22d d d d d d +++-⎰⎰y y z x z x x yy xz x z ∑,其中Σ为x =y =z =0,x =y =z =a 所围成的正方体表面,取外侧为正向;解:(1)Σ:222z R x y =---,下侧,Σ在xOy 面上的投影区域D xy 为:x 2+y 2≤R 2.()()()()()()()()()()22222222π42222002π222222222002π35422222222200354*******d d d d d cos sin d 1sin 2d d 81d d 1cos421612422π1635xyD RR R xy z x y x y x yR x y r r rR r R r R R r r R R R r R R r R r R r R R R r R r ∑θθθθθθθ=----=---=-⋅-⎡⎤+--⎣⎦⎡⎤=----+---⎣⎦=-⋅-+--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()72220772π105RR r R ⎡⎤-⎢⎥⎣⎦=(2)Σ如图11-8所示,Σ在xOy 面的投影为一段弧,图11-8故d d 0z x y ∑=⎰⎰,Σ在yOz 面上的投影D yz ={(y ,z )|0≤y ≤1,0≤z ≤3},此时Σ可表示为:21x y =-(y ,z )∈D yz,故23202d d 1d d d 1d 31d yzD x y z y y zz y yy y∑=-=-=-⎰⎰⎰⎰⎰⎰⎰Σ在xOz 面上的投影为D xz ={(x ,z )|0≤x ≤1,0≤z ≤3},此时Σ可表示为:21y x =-(x ,z )∈D xz, 故23202d d 1d d d 1d 31d xzD y z x x z xz x xx x∑=-=-=-⎰⎰⎰⎰⎰⎰⎰因此:120120d d d d d d 231d 61d π643π2z x y x y z y z xx x x x∑++⎡⎤=-⎢⎥⎣⎦=-=⋅=⎰⎰⎰⎰(3)Σ如图11-9所示,平面x -y +z =1上侧的法向量为 n ={1,-1,1},n 的方向余弦为1cos 3α=,1cos 3β-=,1cos 3γ=,图11-9由两类曲面积分之间的联系可得:()()()()()()()()()d d 2d d d d ,,,,,,cos d (2)cos d ()d d cos cos d d (2)d d ()d d cos cos (2)()d d d d 1d d xyD f x y z f y z x f z x y x y z x y z x y z s f y s f z x yf x x y f y x y f z x y f x f y f z x y f x x yx y z x yx y x y ∑∑∑∑∑αβαβγγ+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦=+++++=+++++=-+++⎡⎤+⎣⎦=-+=+-⎡⎤--⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 111212xyD x y==⨯⨯=⎰⎰⎰⎰(4)如图11-10所示:图11-10Σ=Σ1+Σ2+Σ3+Σ4.其方程分别为Σ1:z =0,Σ2:x =0,Σ3:y =0,Σ4:x +y +z =1,故()()123441100d d 000d d d d 11d d 124xyD xxz x yxz x yx x yx y x x y x y ∑∑∑∑∑∑-=+++=+++=--==--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由积分变元的轮换对称性可知.1d d dzd 24xy y z yz x ∑∑==⎰⎰⎰⎰因此.d d dyd d d 113248xz x y xy z yz z x ∑++=⨯=⎰⎰(5)记Σ所围成的立体为Ω,由高斯公式有:()()()()()()d d d d d d d d d 0d d d 0y z z x x yy z x y z x y z x y z x x y z x y z x y z ∑ΩΩ++---∂∂⎛⎫--∂-=++ ⎪∂∂∂⎝⎭==⎰⎰⎰⎰⎰⎰⎰⎰(6)记Σ所围的立方体为Ω, P =y (x -z ),Q =x 2,R =y 2+xz . 由高斯公式有()()()()()22200204d d d d d d d d d d d d d d d d d d 2d 2a aaaaaaay y z x z x x yyxz x z P Q R x y z x y z x y zx y x y z x y x a yx y y a x xy a a x ax a ∑ΩΩ+++-∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=+=+=+⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰15.设某流体的流速V =(k ,y ,0),求单位时间内从球面x 2+y 2+z 2=4的内部流过球面的流量. 解:设球体为Ω,球面为Σ,则流量3d d d d d d d 432d d d π2π33k y z y z xP Q x y z x y x y z ∑ΩΩΦ=+∂∂⎛⎫+= ⎪∂∂⎝⎭==⋅=⎰⎰⎰⎰⎰⎰⎰⎰(由高斯公式)16.利用高斯公式,计算下列曲面积分:(1)222d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ为平面x =0,y =0,z =0,x =a ,y =a ,z =a 所围成的立体的表面的外侧;(2)333d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ为球面x 2+y 2+z 2=a 2的外侧; (3)()()2232d d d d d d 2xz y z z x x yxy z xy y z ∑++-+⎰⎰,其中Σ为上半球体x 2+y 2≤a 2,0z ≤的表面外侧;(4)d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ是界于z =0和z =3之间的圆柱体x 2+y 2=9的整个表面的外侧;解:(1)由高斯公式()()22204d d d d d d d 2222d 6d 6d d d 3aaax y z y z x z x yvx y z vx y z x v x x y za ∑ΩΩΩ++=++=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰对称性(2)由高斯公式:()3332222ππ405d d d d d d d 3d 3d d sin d 12π5ax y z y z x z x yP Q R v x y z v x y z r ra ∑ΩΩθϕϕ++∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(3)由高斯公式得 ()()()2232222π2π222024π05d d d d d d 2d d d d sin d 2πsin d d 2π5aaxz y z z x x yxy z xy y z P Q R v x y z v z x y r r rr ra ∑ΩΩθϕϕϕϕ++-+∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++=⋅==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(4)由高斯公式得: 2d d d d d d d 3d 3π3381πx y z y z x z x yP Q R v x y z v∑ΩΩ++∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭==⋅⋅⋅=⎰⎰⎰⎰⎰⎰⎰⎰17.利用斯托克斯公式,计算下列曲线积分:(1)d d d y x z y x zΓ++⎰,其中Γ为圆周x 2+y 2+z 2=a 2,x +y +z =0,若从x 轴的正向看去,这圆周是取逆时针的方向;(2)()()()222222d d d x y zyz x y z x Γ++---⎰,其中Γ是用平面32x y z ++=截立方体:0≤x ≤1,0≤y ≤1,0≤z ≤1的表面所得的截痕,若从Ox 轴的正向看去,取逆时针方向; (3)23d d d y x xz y yz z Γ++⎰,其中Γ是圆周x 2+y 2=2z ,z =2,若从z 轴正向看去,这圆周是取逆时针方向;(4)22d 3d d +-⎰y x x y z zΓ,其中Γ是圆周x 2+y 2+z 2=9,z =0,若从z 轴正向看去,这圆周是取逆时针方向.解:(1)取Σ为平面x +y +z =0被Γ所围成部分的上侧,Σ的面积为πa 2(大圆面积),Σ的单位法向量为{}cos ,cos ,cos n αβγ==. 由斯托克斯公式22d d d cos cos cos d d πy x z y x zR Q Q P P R s y z x y z x ss a a Γ∑∑∑αβγ++⎡∂∂∂∂⎤⎛⎫⎛⎫∂∂⎛⎫--=++- ⎪⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎣⎦====⎰⎰⎰⎰⎰⎰⎰(2)记为Σ为平面32x y z ++=被Γ所围成部分的上侧,可求得Σ的面积为(是一个边长为2的正六边形);Σ的单位法向量为{}cos ,cos ,cos αβγ==n .由斯托克斯公式()()()(((()222222d d d2222d22d3d23292x y zy z x yz xy z x y sz xsx y zsΓ∑∑∑++---⎡+----=--⎢⎣=++===-⎰⎰⎰⎰⎰(3)取Σ:z=2,D xy:x2+y2≤4的上侧,由斯托克斯公式得:()()()2223d d dd d0d d d d3d d35d d5π220π-+=++--+=-+=-=-⨯⨯=-⎰⎰⎰⎰⎰⎰⎰xyDy x xz y yz zy z z x x yzz xx yzx yΓ∑∑(4)圆周x2+y2+z2=9,z=0实际就是xOy面上的圆x2+y2=9,z=0,取Σ:z=0,D xy:x2+y2≤9由斯托克斯公式得:()()()222d3d dd d d d d d000032d dd dπ39π+-=++---===⋅=⎰⎰⎰⎰⎰⎰⎰xyDy x x y z zy z z x x yx yx yΓ∑∑18.把对坐标的曲线积分()()d d,,LP x Q yx y x y+⎰化成对弧长的曲线积分,其中L为:(1)在xOy面内沿直线从点(0,0)到点(1,1);(2)沿抛物线y=x2从点(0,0)到点(1,1);(3)沿上半圆周x2+y2=2x从点(0,0)到点(1,1).解:(1)L的方向余弦πcos cos cos42αβ===,故()()d d,,dLP x Q yx y x yP x Qs++=⎰⎰(2)曲线y =x 2上点(x ,y )处的切向量T ={1,2x }.其方向余弦为cos α=,cos β=故()()d d ,,d 2,,LP x Q yx y x y P x xQ x y x y s++=⎰⎰(3)上半圆周上任一点处的切向量为⎧⎨⎩其方向余弦为cos α=cos 1x β=-故()()()()()d d ,,d ,,1LLP x Q yx y x y s Q x y x y x +⎤=+-⎦⎰⎰ 19.设Γ为曲线x =t ,y =t 2,z =t 3上相应于t 从0变到1的曲线弧,把对坐标的曲线积分d d d P x Q y R z Γ++⎰化成对弧长的曲线积分.解:由x =t ,y =t 2,z =t 3得d x =d t ,d y =2t d t =2x d t ,d z =3t 2dt =3y d t ,d s t =.故d cos d d cos d d cos d x s y s z s αβγ======因而d d d P x Q x R x s ΓΓ++=⎰⎰20.把对坐标的曲面积分 ()()()d d d d d d ,,,,,,P y z Q z x R x y x y z x y z x y z ∑++⎰⎰化成对面积的曲面积分,其中:(1) Σ是平面326x y ++=在第Ⅰ封限的部分的上侧; (2) Σ是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解:(1)平面Σ:326x y ++=上侧的法向量为n ={3,2,,单位向量为n 0={35,25,},即方向余弦为3cos 5α=,2cos5β=,cos γ=.因此:()()()()d d d d d d ,,,,,,d cos cos cos 32d 555P y z Q z x R x y x y z x y z x y z sP Q R sP Q R ∑∑∑αβγ++=++⎛⎫=++ ⎪⎝⎭⎰⎰⎰⎰⎰⎰(2)Σ:F (x ,y ,z )=z +x 2+y 2-8=0,Σ上侧的法向量n ={ F x ,F y ,F z }={ 2x ,2y ,1}其方向余弦:cos α=cos β=cos γ=故()()()()d d d d d d ,,,,,,d cos cos cos P y z Q z x R x y x y z x y z x y z sP Q R s∑∑∑αβγ++=++=⎰⎰⎰⎰⎰⎰。

数学分析(华东师大)第十一章反常积分,DOC

数学分析(华东师大)第十一章反常积分,DOC

第十一章反常积分§1反常积分概念一问题提出在讨论定积分时有两个最基本的限制:积分区间的有穷性和被积函数的有界性.但在很多实际问题中往往需要突破这些限制,考虑无穷区间上的“积分”,或是无界函数的“积分”,这便是本章的主题.例1(第二宇宙速度问题)在地球表面垂直发射火箭(图11-1),要使火箭克服地球引力无限远离地球,试问初速度v0至少要多大?设地球半径为R,火箭质量为m,地面上的重力加速度为g.仅供个人学习参考r mgR ∫∫2∫d x= mgR21-1 .Rx2R r当r →+∞时,其极限mgR 就是火箭无限远离地球需作的功.我们很自然地会把这极限写作上限为+∞的“积分”:图11-1+∞mgR2d x= limrmgR2Rx2r →+∞Rd x= mgR.x2最后,由机械能守恒定律可求得初速度v 0至少应使122mv 0= mgR.用g =9.81(m 6s /2),R =6.371×106(m )代入,便得例211-2).2∫ ∫ ∫ §1反常积分概念265从物理学知道,在不计摩擦力的情形下,当桶内水位高度为(h -x)时,水从孔中流出的流速(单位时间内流过单位截面积的流量)为 v=2g(h- x),其中g 为重力加速度. 设在很小一段时间d t 内,桶中液面降低的微小量为d x,它们之间应满足πR 2d x=v πr 2d t, 图11-2由此则有t=Rd 2.上可积.(1)+∞J=f(x )d x,(1′)a+∞ +∞ 并称 f(x)d x 收敛.如果极限(1)不存在,为方便起见,亦称f(x)d xaa发散.类似地,可定义f 在(-∞,b]上的无穷积分:bb∫∫ ∫ ∫∫266第十一章反常积分∫f(x)d x=lim∫f(x )d x.(2)-∞u →-∞u对于f 在(-∞,+∞)上的无穷积分,它用前面两种无穷积分来定义:+∞af(x)d x=-∞-∞+∞ f(x)d x+af(x)d x, (3)其中a 为任一实数,当且仅当右边两个无穷积分都收敛时它才是收敛的.注1无穷积分(3)的收敛性与收敛时的值,都和实数a 的选取无关.注2由于无穷积分(3)是由(1)、(2)两类无穷积分来定义的,因此,f 在任何有限区间[v,u]ì(-∞,+∞)上,首先必须是可积的.+∞注3af(x)d x 收敛的几何意义是:若f 在[a,+线轴之间那一块向右无限延伸的 图11-31∫) +∞ d x 2 x(ln x)p ; 2) +∞d x-∞1+x 2.解1)由于无穷积分是通过变限定积分的极限来定义的,因此有关定积分的换元积分法和图11-4a∫∫§1反常积分概念267分部积分法一般都可引用到无穷积分中来.对于本例来说,就有∫+∞d x+∞d t2x(ln x)p =∫ln2tp.从例3知道,该无穷积分当p >1时收敛,当p ≤1时发散.2)任取实数a,讨论如下两个无穷积分:∫d x+∞d x -∞1+x2和∫a由于a1+x2.lim∫d x = lim (arctan a-arctan u)u →-∞ u1+x 2v u →-∞=arctan a+π,2注定义[u,b]ì(5)(5′)bf(x)a 而无 b界函数反常积分 f(x)d x 又称为瑕积分.a类似地,可定义瑕点为b 时的瑕积分:bu∫f(x)d x=lim∫f(x)d x.au →b-a其中f 在[a,b)有定义,在点b 的任一左邻域内无界,但在任何[a,u]ì[a,b)1 1 x 268 第十一章反常积分上可积.若f 的瑕点c ∈(a,b),则定义瑕积分b c b∫f(x )d x=∫f(x )d x+∫f(x)d xaacub=lim ∫f(x )d x+lim ∫f(x )d x.(6)u →c-av →c+v其中f 在[a,c)∪(c,b]上有定义,在点c 的任一领域内无界,但在任何[a,u]ì[a,c)和[v,b]ì(c,b]上都可积.当且仅当(6)式右边两个瑕积分都收敛时,左边的瑕积分才是收敛的.又若a 、b 两点都是f 的瑕点,而f 在任何[u,v]ì(a,b)上可积,这时定义瑕积分b c b∫f(x)d x=∫f(x)d x+∫f(x )d x(7)其中c ,上可积例6(8)故当0<q <1时,瑕积分(8)收敛,且∫d x ∫d x 1q = lim 0 u →0+u x q=1- q ;∫∫§1反常积分概念269而当q ≥1时,瑕积分(8)发散于+∞.上述结论在图11-4中同样能获得直观的反映. 如果把例3与例6联系起来,考察反常积分 +∞我们定义d xx p (p>0). (9)∫+∞d x 1d x+∞d x 0xp=∫0x p+∫1xp,它当且仅当右边的瑕积分和无穷积分都收敛时才收敛.但由例3与例6的结果可知,这两个反常积分不能同时收敛,故反常积分(9)对任何实数p 都是发散的.习题1.讨论下列无穷积分是否收敛?若收敛,则求其值:+∞2.3.4.举例说明: f(x)d x 收敛且f 在[a,+∞)上连续时,不一定有limax →+∞f(x)=0.+∞5.证明:若af(x)d x 收敛,且存在极限lim x →+∞f(x)=A,则A=0.∫ ∫∫ ∫∫ ∫ ∫ ∫ 270第十一章反常积分+∞6.证明:若f 在[a,+∞)上可导,且a+∞f(x)d x 与 af ′(x )d x 都收敛,则lim x →+∞f(x)=0.§2无穷积分的性质与收敛判别一无穷积分的性质+∞由定义知道,无穷积分auf(x)d x 收敛与否,取决于函数F(u) =f(x)d x 在u →+∞时是否存在极限.因此可由函数极限的柯西准则导出无穷 a积分收敛的柯西准则.+∞定理11.1无穷积分af(x)d x 收敛的充要条件是:任给ε>0,存在G此外,+∞ [k a(1)性质d x 与+∞ b(2)另一充要条件:任给ε>0,存在G ≥a,当u> G 时,总有 +∞f(x)d x<ε.u∫ ∫ ∫ ∫∫ ∫ ∫ §2无穷积分的性质与收敛判别271事实上,这可由+∞u +∞∫f(x)d x=∫f(x)d x+∫f(x)d xaau结合无穷积分的收敛定义而得.+∞性质3若f 在任何有限区间[a,u ]上可积,且有a+∞f(x)d x 亦必收敛,并有a|f(x)|d x 收敛,则+∞+∞f(x)d x≤aa+∞f(x) d x. (3)证由≥a,当u等式(u +∞由于 |f(x)|d x 关于上限u 是单调递增的,因此aa|f(x)|d x 收敛的u 充要条件是 a| f(x)|d x 存在上界.根据这一分析,便立即导出下述比较判别法(请读者自己写出证明):定理11.2(比较法则)设定义在[a,+∞)上的两个函数f 和g 都在任何∫ ∫ ∫ ∫∫∫∫272 第十一章反常积分有限区间[a,u]上可积,且满足f(x)≤g(x),x ∈[a,+∞),+∞+∞ 则当 g(x )d x 收敛时aa+∞ +∞|f(x)|d x 必收敛(或者,当 a|f(x)|d x 发散时,ag(x)d x 必发散).+∞例1讨论sin xd x 的收敛性. 1+x 2+∞解由于sin x1d x π1+x2≤1+x 2,x ∈[0,+∞),以及∫1+x 2=为收敛2(§1sin xd x 为绝对收敛. =c,则有:(i i .则有:.xp a推论3设f 定义于[a,+∞),在任何有限区间[a,u]上可积,且则有: lim x →+∞x pf(x) =λ.+∞(i)当p >1,0≤λ<+∞时, f(x)d x 收敛;a+∞(ii)当p ≤1,0<λ≤+∞时,af(x)d x 发散.+∞∫∫∫1§2无穷积分的性质与收敛判别273例2讨论下列无穷限积分的收敛性:1∫)+∞x αe -xd x;2)1+∞x 2d x. 0x 5+1解本例中两个被积函数都是非负的,故收敛与绝对收敛是同一回事.1)由于对任何实数α都有limx →+∞x 2·x αe -x= lim x →+∞ x α+2ex=0,因此根据上述推论3(p =2,λ=0),推知1)对任何实数α都是收敛的.2)由于12limx →+∞x 2·x x 5+1=1,, g(x)limx →+∞又因u 2>u 1 11于是有uξuf(x)g(x)d x ≤g(u 1)·uuf(x)d x+ g(u 2)·∫ f(x)d x11ξξ u=g(u 1)·∫f(x )d x ∫-f(x)d xaa22u∫∫ ∫ ∫∫∫∫ ∫274第十一章反常积分2+ g(u 2)·ξf(x)d x-∫f(x)d xε4M ·2M+ +∞ aaε4M·2M=ε.根据柯西准则,证得af(x)g(x)d x 收敛.+∞定理11.4(阿贝尔(Abel)判别法)若 af(x)d x 收敛,g(x)在[a,+∞)+∞上单调有界,则a f(x)g(x)d x 收敛.这定理同样可用积分第二中值定理来证明,但又可利用狄利克雷判别法更方便地获得证明(留作习题).:+而1 u∫1cos2x 1 其中12xd x=2 2 cos ttd t 满足狄利克雷判别条件,是收敛的,而+∞d x12x是发散的,因此当0<p ≤1时该无穷积分不是绝对收敛的.所以它是条 件收敛的.例4证明下列无穷积分都是条件收敛的:<∫∫ ∫∫ ∫ ∫∫ ∫∫+∞ §2无穷积分的性质与收敛判别275+∞sin x 2d x,1+∞cos x 2d x,1+∞x sin x 4d x.1证前两个无穷积分经换元t =x 2得到+∞+∞sin x 2d x=1 1+∞ +∞ cos x 2d x= 11sin t d t, 2 tcos t d t.2 t由例3已知它们是条件收敛的.对于第三个无穷积分,经换元t =x 2而得∫x sin x 4d x=1+∞sin t 2d t,,甚至是无界的,1.2.+∞若a收敛.3.g(x).(1(4.(5∫)ln (1+x)d x;(6)11+x +∞x md x(n 、m ≥0).1xn0 1+xn5.讨论下列无穷积分为绝对收敛还是条件收敛:(1∫)sin xd x;(2)1x+∞sgn(sin x)d x;1+x2+∞+∞∫ ∫∫∫∫∫276第十一章反常积分(3∫)x cos xd x; (4)100+xln(ln x)sin x d x.eln x6.举例说明∫:+∞+∞ +∞f(x)d x 收敛时aaf 2(x )d x 不一定收敛∫; +∞ f(x)d x 绝对收敛时,af 2(x)d x 也不一定收敛. a+∞ +∞7.证明:若af(x)d x 绝对收敛,且lim x →+∞f(x)=0,则a+∞f 2(x)d x 必定收敛.8.证明:若f 是[a,+∞)上的单调函数,且 af(x)d x 收敛,则lim x →+∞f(x)=0,且f(x)=o 1x,x →+∞.+∞9.10,存在δ>性质b∫f 1(x )a敛,(1)性质b c∫f(x)d x 与∫f(x)d x 同敛态,并有aab c b∫f(x)d x=∫f(x )d x+∫f(x)d x,(2)aacb其中 f(x)d x 为定积分.c+∞+∞∫∫∫∫(x- a)p ∫§3瑕积分的性质与收敛判别277性质3设函数f的瑕点为x=a,f在(a,b]的任一内闭区间[u,b]上可b积.则当af(x) d x收敛时∫,b bf(x)d x也必定收敛,并有ab∫f(x)d x ≤∫f(x) d x. (3)a ab b同样地,当a f(x) d x收敛时,称f(x)d x为绝对收敛.又称收敛而不绝a对收敛的瑕积分是条件收敛的.判别瑕积分绝对收敛的比较法则及其推论如下:定理11.6(比较法则)设定义在(a,b]上的两个函数f与g,瑕点同为x=a,在任何[u,b]ì(a,b]上都可积,且满足则当, bg(x)a((成为则有:(ii)当f(x) ≥1,且p≥1时,af(x) d x发散.推论3设f定义于(a,b],a为其瑕点,且在任何[u,b]ì(a,b]上可积. 如果则有: limx→a +(x- a)p f(x) =λ,∫ ∫x278第十一章反常积分b(i )当0<p <1,0≤λ<+∞时af(x)d x 收敛;b(ii)当p ≥1,0<λ≤+∞时a例1判别下列瑕积分的收敛性:f(x)d x 发散.1∫) ln x d x ;2∫)0 x2x1ln xd x.解本例两个瑕积分的被积函数在各自的积分区间上分别保持同号———ln x在(0,1]上恒为负, x 在(1,2]上恒为正———所以它们的瑕积分收敛与绝xln x2(i)x →0+x1-α· 1+x =1,根据定理11.6推论3,当0<p =1-α<1,即α>0且λ=1时,瑕积分I(α)收1∫ §3瑕积分的性质与收敛判别279敛;当p =1-α≥1,即α≤0且λ=1时,I(α)发散.(ii)再讨论J(α),它是无穷积分.由于α-1lim x →+∞ x 2-α·x1+x= lim x →+∞ x 1+x =1,根据定理11.2推论3,当p =2-α>1,即α<1且λ=1时,J(α)收敛;而当p =2-α≤1,即α≥1且λ=1时,J(α)发散.1.2.3.4.5.x)d x=π62/6.(1∫) =-πln20 2(2∫)θsin θd θ=2πln2. 01-cos θπ1∫2∫ 280 第十一章反常积分总练习题1.证明下列等式:1 p-1 +∞-p (1∫) x d x=∫x d x,p>0;0x+1 1 x+1+∞ p-1 +∞-p (2∫) x d x=∫xd x,0<p<1.0 x+1 0 x+12.证明下列不等式:(1)π<∫d x <π;22 (2)1 20 1-1 e 1-x 4 +∞ < 0 2 e -x d x<1+1. 2e3.计算下列反常积分的值:4.5.(2)若6.(也收敛.(2+∞ a●。

《高等数学教程》第十一章重积分习题参考答案

《高等数学教程》第十一章重积分习题参考答案

《高等数学教程》第十一章 重积分 习题参考答案习题11-11.(,)DQ x y d μσ=⎰⎰.3.(1)0; (2)0; (3)124I =I4.(1)12I ≥I ; (2) 12I ≤I ; (3)12I ≥I ; (4) 12I ≤I .5.(1)02≤I ≤; (2)20π≤I ≤; (3)28≤I ≤; (4)36100ππ≤I ≤.习题11-2(A)1. (1)40(,)xdx f x y dy ⎰⎰或2404(,)yy dy f x y dx ⎰⎰;(2)12220122(,)(,)x xx x dx f x y dy dx f x y dy +⎰⎰⎰⎰或2122122(,)(,)y y y y dy f x y dx dy f x y dx +⎰⎰⎰⎰;(3)224(,)x xf x y dy -⎰或2402(,)(,)dy f x y dx dy f x y dx +⎰⎰.2. (1)42(,)x dx f x y dy ⎰⎰; (2)101(,)ydy f x y dx ⎰⎰;(3)1102(,)ydy f x y dx -⎰⎰; (4)1(,)y eedy f x y dx ⎰⎰.3. (1)203; (2)32π-; (3)655; (4)6415; (5)1e e -- 4. (1)92; (2)21122e e -+.5. 335.6. (1)20(cos ,sin )bad f r r rdr πθθθ⎰⎰;(2)2cos 202(cos ,sin )d f r r rdr πθπθθθ--⎰⎰;(3)1(cos sin )20(cos ,sin )d f r r rdr πθθθθθ-+⎰⎰;(4)3sec tan cot 444(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθθπθθθθθθ+++⎰⎰⎰⎰sec tan 304(cos ,sin )d f r r rdr πθθπθθθ+⎰⎰;7. (1)sec csc 4402(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ+⎰⎰⎰⎰;(2)23cos 04()d f r rdr πθπθ⎰⎰;(3)1210cos sin (cos ,sin )d f r r rdr πθθθθθ+⎰⎰; (4)sec 40sec tan (cos ,sin )d f r r rdr πθθθθθθ⎰⎰.8. (1)434a π; 1. 9. (1)2364π; (2)(2ln 21)4π-; (3)34()33R π-; (4)a .10. 4332a π.习题11-2(B)1. (1)12(,)yydy f x y dx -⎰⎰; (2)110(,)dy f x y dx ⎰;(3)1012111(,)(,)(,)xf x y dy dx f x y dy dx f x y dy --++⎰⎰⎰⎰⎰;(4)0242(,)(,)y dy f x y dx dy f x y dx +-+⎰⎰⎰.2. (1)0; (2)430; (3)8)3(4)1sin1-. 3. (1)2sec 41arctan4(cos ,sin )d f r r rdr πθθθθ⎰;(3)4cos 202cos (cos ,sin )d f r r rdr πθθθθθ⎰⎰;4. (1)38π; (2)52π.5. (1)2π; (2)49-(3)22π-; (4)414a ; (5)2π.6. (1)232a π; (2)22a ; (3)232π-.7. (1)43π; (2)7ln 23; (3)12e -; (4)2ab π. 8. 6π.习题11-3(A)1. (1)22111(,,)x y dx f x y z dz -+⎰⎰;(2)2221212(,,)x x y dx f x y z dz --+⎰⎰;(3)2211(,,)x y dx f x y z dz -+⎰;(4)1111(,,)dx f x y z dz -⎰⎰.2.32; 3. 15(ln 2)28-; 4.21162π-; 5. (1)1(1)e π--; (2)712π; (3)163π; (4)289a . 6. (1)45π; (2)476a π; (3)552()15R a π-; (4)1330π.7. (1)18; (2)8π; (3)10π; (4)ln 3ln 2)3π-. 8. 4k R π习题11-3(B)1. (1)(,,)aa dx f x y z dz -⎰;200(cos ,sin ,)ad rdr f r r z dz πθθθ⎰⎰;2220sin (cos sin ,sin sin ,cos )ad d f d ππθϕϕρθϕρθϕρϕρρ⎰⎰⎰;(2)11(,,)dx f x y z dz -⎰;21(cos ,sin ,)rd rdr f r r z dz πθθθ⎰⎰;2240sin (cos sin ,sin sin ,cos )d d f d ππθϕϕρθϕρθϕρϕρρ⎰⎰.(3)2211(,,)x y dx f x y z dz +-⎰⎰;2200(cos ,sin ,)rr d rdr f r r z dz πθθθ⎰⎰⎰;2csc 220csc cot 4sin (cos sin ,sin sin ,cos )d d f d ππϕπϕϕθϕϕρθϕρθϕρϕρρ⎰⎰⎰;2.222241()3x y x y f dz --+⎰;2224103r rd f dz πθ-⎰⎰,6π3.2020Rd rdr dr πθI =⎰⎰⎰; 23402sin Rd d d πππθϕϕρρI =⎰⎰⎰, 5415R π. 4. (1)835; (2)2845; (3)0; (4)559480R π. 5. 336π; 6. π; 7. 45π.习题11-4(A)1.2.1)6π.3. 22(2)R π-.4.320. 5. (1)0033(,)58x y ; (2)4(0,)3bπ; (3)22(,0)2()a ab b a b +++. 6. (1)34y a b πI =; 220()4ab a b πI =+(2)725x I =, 967y I =;(3) )33x ab I =, 33y a bI =;7. (1)3(0,0)4; (2)44333()(0,0,)8()A B A B --; (3)2227(,,)5530a a a .8. (1)483a ; (2)27(0,0,)60a ; (3) 611245a .9. 649k R π.习题11-4(B)1. .2. 3535(,)4854.3. .4.44()32b a πρ-.5. 43512a π.6. 368105ρ. 7. (0,0,54a ).8.222(3)12a h a h π+. 9. 2432;327r R R π=.10. 2(lnx F G μ=;0y F =; z F Ga πμ=.11. 0x y F F ==; 2)z F G h πρ=-.总复习题十一一、1.B 2.C 3.C 4.A 5.B 6.A 二、1.(1)()x f x -;2.(1,1)y y --;3.54π;4.41(1)2e --; 5.42211()4R a bπ+. 三、1.2409π-;2.314()33R π-; 3.0; 4.2503π;5. 2(,)(,)f x y dx f x y dx +-22(,)(,)f x y dx f x y dx -.6. 42π-.7.212A . 8. 8π.9. 5144. 10. 以球心O 及0P 的连线作为x 轴正方向建立直角坐标系质心:(,0,0)4R-。

分析方法 第十一章 反常积分

分析方法  第十一章 反常积分
a
b
c
b
当且仅当 f ( x)dx与 f ( x)dx同时收敛时, 称 f ( x)dx收敛, 且其值
a c a
c
a
b
c
b
f ( x)dx f ( x)dx f ( x)dx
若a, b都是f的瑕点, 并且f在任何u, v a, b上可积, 可任取c a, b,

u
f ( x)dx I , 则称极限值I为函数f ( x)在[a,)上的无
a
u
u
f ( x)dx lim f ( x)dx I .
a u a
也称无穷积分 f ( x)dx收敛.
a
u

反之, 若 lim
u
f ( x)dx不存在, 称无穷积分 f ( x)dx发散.
1 a
, 并且它们收敛时, 有 与 f ( x)dx 同敛态即同时收敛或发散



a, u 上可积, 则对b : a b, f ( x)dx 性质2 若函数f ( x)在任何有限区间
a
b

f ( x)dx f ( x)dx f ( x)dx.
a a b
0 0
dx dx dx ,积分收敛 . 2 2 2 1 x 1 x 1 x 0

0

定义2 设函数f ( x)定义在区间 (a, b]上, 且在点a的任意右邻域无界 ,
u, b (a, b], f ( x)在u, b上可积, 若存在极限 称a为函数f ( x)的瑕点, 并对任何
u
由例3知,当p 1时无穷积分收敛 ,当p 1时发散.
dx dx (2) lim lim arctan u , 2 2 u u 1 x 1 x 2 0 0 dx dx lim lim arctan u . 2 2 u u 1 x 1 x 2 u

第十一章反常积分习题课

第十一章反常积分习题课

第十一章 反常积分习题课一 概念叙述 1.叙述()dx x f a⎰+∞收敛的定义.答:()dx x f a⎰+∞收敛⇔()()lim+∞→+∞=⎰⎰uaau f x dx f x dx 存在.⇔()lim0+∞→+∞=⎰uu f x dx .2.叙述()b af x dx ⎰(a 是暇点)收敛的定义.答:()ba f x dx ⎰收敛⇔()()lim +→=⎰⎰b buau a f x dx f x dx 存在.⇔0,0,εδ∀>∃>当δ<<+a u a ,有()()ε-<⎰⎰b buaf x dx f x dx .3. 叙述()dx x f a⎰+∞收敛的柯西准则.答:无穷积分()dx x f a⎰+∞收敛的柯西准则是:任给0ε>,存在0M >,只要12,u u M >,便有()()()2121u u u aau f x dx f x dx f x dx ε-=<⎰⎰⎰.4. 叙述()b af x dx ⎰(a 是暇点)收敛的柯西准则.答:瑕积分()dx x f ba ⎰(瑕点为a )收敛的充要条件是:任给0ε>,存在0δ>,只要()12,,u u a a ∈+δ,总有()()()2121b bu u u u f x dx f x dx f x dx -=<ε⎰⎰⎰.二 疑难问题1.试问⎰+∞adx x f )(收敛与0)(lim =+∞→x f x 有无联系?答:首先,0)(lim =+∞→x f x 肯定不是⎰+∞adx x f )(收敛的充分条件,例如01lim=+∞→x x ,但⎰+∞11dx x发散.那么0)(lim =+∞→x f x 是否是⎰+∞adx x f )(收敛的必要条件呢?也不是!例如⎰+∞12sin dx x ,⎰+∞12cos dx x ,⎰+∞14sin dxx x 都收敛,因为前两个无穷积分经换元2t x =得到⎰+∞12sin dx x 1+∞=⎰,21cos x dx +∞=⎰=dt tt ⎰+∞12cos ,则⎰+∞12sin dx x ,⎰+∞12cos dx x 是条件收敛,对于第三个无穷积分,经换元2t x =而得⎰+∞14sin dx x x =⎰+∞12sin 21dt t ,它也是条件收敛的. 从这三个无穷积分的收敛性可以看到,当x →+∞时被积函数即使不趋于零,甚至是无界的,无穷积分仍有可能收敛.注:若lim ()0x f x A →+∞=≠,则⎰+∞ax x f d )(发散.注:1)若⎰+∞ax x f d )(收敛,且lim ()x f x A →+∞=存在, 则定有0)(lim =+∞→x f x ;2)若⎰+∞a x x f d )(收敛,且f 在[)+∞,a 上为单调,则0)(lim =+∞→x f x ;3)若⎰+∞a x x f d )(收敛,且f 在[)+∞,a 上一致连续,则0)(lim =+∞→x f x ;4)若⎰+∞ax x f d )(收敛,且()d af x x +∞'⎰收敛,则0)(lim =+∞→x f x .证:1)设A x f x =+∞→)(lim .若0≠A (不妨设0A >),则由极限保号性,M a ∃>,当x M ≥时满足 于是有()()2MaAf x dx u M ≥+-⎰, 于是 而这与⎰+∞ax x f d )(收敛相矛盾,故0A =.2)不妨f 在[)+∞,a 上单调增,若f 在[)+∞,a 上无上界,则0A ∀>,M a ∃>,当x M ≥时,使A x f ≥)(.类似于1)的证明,推知⎰+∞+∞=a dx x f )(,矛盾.所以f 在[)+∞,a 上单调增而有上界,于是由单调有界定理知A x f x =+∞→)(lim 存在.依据已证得的命题1),0)(l i m =+∞→x f x .3)由f 在[)+∞,a 上一致连续,则0,0εδ∀>∃>,(设)δε≤[),,x x a '''∀∈+∞ x x δ'''-<只要时,就有()()2f x f x ε'''-<.又因⎰+∞adx x f )(收敛,故对上述,M a δ∃>,当12,x x M >时,有212()2x x f x dx δ<⎰.现对任何x M >,取12,x x M >,且使1221,.x x x x x δ<<-=此时由 便得(),.f x x M ε<>这就证得.0)(lim =+∞→x f x4)因为()d af x x +∞'⎰收敛,则()()()lim()d lim uau u f x x f u f a →+∞→+∞'=-⎰存在,于是()lim u f u →+∞存在,由1)得证.2.()af x dx +∞⎰收敛,与|()|af x dx +∞⎰收敛,2()af x dx +∞⎰收敛的关系?答:1)因为绝对收敛⇒收敛,反之不对,条件收敛的例子都是反例,则|()|af x dx +∞⎰收敛()af x dx +∞⎰收敛.2)()af x dx +∞⎰2()af x dx +∞⎰收敛,例1+∞⎰条件收敛,但 21111sin 1cos 21cos 2222xx x dx dx dx dx x x x x+∞+∞+∞+∞-==-⎰⎰⎰⎰,112dx x +∞⎰发散,1cos 22x dx x+∞⎰发散,则21sin x dx x +∞⎰发散. 例 211dx x +∞⎰收敛,但11dx x+∞⎰发散. 3)()af x dx +∞⎰收敛2()af x dx +∞⎰收敛,例 ()2441,10,1n n x n n f x n x n n ⎧≤<+⎪⎪=⎨⎪+≤<+⎪⎩,对ε∀,总存在1M >,使当n M >时,都有41221n n nn dx n ε+=<⎰. 故但对于()2f x ,例302sin x dx x+∞⎰绝对收敛,即302sin x dx x+∞⎰收敛,因为312sin x dx x+∞⎰绝对收敛,即312sin x dx x+∞⎰收敛,而1302sin x dx x⎰,0是暇点,取12p =,则3322sin lim lim 1ppx x x x x x xx++→→==,因为112p =<收敛. 因为2133330010sin 1cos 21cos 21cos 2222x x x x dx dx dx dx x x x x+∞+∞+∞---==+⎰⎰⎰⎰, 311cos 22xdx x +∞-⎰收敛.1301cos 22x dx x -⎰,0是暇点,取1p = ,则23300141cos 22lim lim 122p p x x xx x x x x ++→→-==, 因为1p =,则发散.例 211dx x +∞⎰收敛,但11dx x+∞⎰发散. 3.()baf x dx ⎰(a 为瑕点)收敛,与|()|baf x dx ⎰收敛 ,2()baf x dx ⎰收敛的关系?答:1)|()|baf x dx ⎰收敛()baf x dx ⎰收敛.因为绝对收敛⇒收敛,反之不对,条件收敛的例子都是反例. 2)()baf x dx ⎰收敛2()baf x dx ⇒⎰收敛,()baf x dx ⎰收敛2()baf x dx ⇒⎰收敛.反例1⎰收敛,但101dx x ⎰发散.3)若2()b af x dx ⎰(a 为瑕点)收敛,则|()|baf x dx ⎰(a 为瑕点)收敛.证 因()()212f x f x +≤,则由比较原则,可得|()|b a f x dx ⎰收敛,从而()b a f x dx ⎰收敛.3.下列说法对吗?1)因为sin xx 在0没有定义,则10sin x dx x⎰是瑕积分;2)因为ln 1xx -在1x =没有定义,则1x =是10ln 1x dx x-⎰的暇点.答:若被积函数f 在点a 的近旁是无界的,这时点a 称为f 的瑕点.1)错误,因为0sin lim 1x x x +→=,则s i n xx在0的近旁有界,因此不是瑕点,10sin x dx x ⎰是定积分.若()x f 在(]b a ,上连续,()A x f ax =+→lim (常数),则()⎰badx x f 可看成正常积分,事实上,定义()()(]⎩⎨⎧∈==.,,,,b a x x f a x A x F 知()x F 在[]b a ,上连续,即()⎰badxx F 存在,而()()()⎰⎰⎰-→-→++==ba ba b adx x F dx x f dx x f εεεε00lim lim ,由于()x F 在[]b a ,上连续,知变下限函数()()⎰-=ba dx x F G εε在[]a b -,0上连续,有()()()⎰==+→ba dx x F G G 0limεε,即()().⎰⎰=b a b a dx x F dx x f 故()⎰ba dx x f 可看成正常积分。

高数下册第11章复习题与答案

高数下册第11章复习题与答案

高数下册第11章复习题与答案第十一章-无穷级数练习题(一). 基本概念1.设∑∞=1n n U 为正项级数,下列四个命题(1)若,0lim =∞→n n U 则∑∞=1n n U 收敛;(2)若∑∞=1n n U 收敛,则∑∞=+1100n n U 收敛;(3)若,1lim 1>+∞→nn n U U 则∑∞=1n n U 发散;(4)若∑∞=1n n U 收敛,则1lim 1<+∞→nn n U U .中, 正确的是( ) A .(1)与(2); B .(2)与(3);C .(3)与(4);D .(4)与(1).2.下列级数中,收敛的是(). A .∑∞=11n n ; B .∑∞=+112n n n ; C . +++3001.0001.0001.0; D . + +??? ??+??? ??+43243434343. 3.在下列级数中,发散的是(). A .∑∞=-11)1(n n n ;B .∑∞=+11n n n; C .∑∞=131n nn;D . +-+-44332243434343.4.条件()满足时,任意项级数1nn u∞=∑一定收敛.A. 级数1||n n u ∞=∑收敛;B. 极限lim 0n n u →∞=;C .极限1lim1n n nu r u +→∞=<;D. 部分和数列1n n k k S u ==∑有界.5.下列级数中条件收敛的是().A . ∑∞=11cos n n ; B. ∑∞=11n n ;C. ∑∞=-11)1(n n n ; D. ∑∞=-11)1(n n n n .6.下列级数中绝对收敛的是().A . ∑∞=-11)1(n n n ; B. ∑∞=-121)1(n n n ; C. ∑∞=+-11)1(n n n n ; D. ∑∞=11sin n n .(二). 求等比级数的和或和函数。

提示:注意首项 7.幂级数 1021+∞=∑n n n x 在)2,2(-上的和函数=)(x s . 8.幂级数∑∞=-04)1(n n nnx 在)4,4(-上的和函数=)(x s .9.无穷级数1n n ∞=∑的和S = .(三). 判定正项级数的敛散性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 反常积分一、单选题(每题2分)1、广义积分dxx x ⎰∞+-1211=( )A 、0B 、2πC 、4πD 、发散2、广义积分dx x x ⎰∞+-+2221=( )A 、4lnB 、0C 、4ln 31D 、发散3、广义积分⎰+-20234x x dx=( )A 、3ln 1-B 、32ln21 C 、3ln D 、发散4、下列广义积分收敛的是( )A 、⎰∞+edx x xln B 、⎰∞+e x x dx ln C 、⎰∞+e x x dx 2)(ln D 、⎰∞+ex x dx21)(ln5、下列广义积分发散的是( )A 、⎰∞-0dxe xB 、⎰π2cos x dx C 、⎰-202x dx D 、⎰∞+-0dx e x6、下列积分中( )是收敛的A 、⎰∞+∞-xdx sin B 、⎰-222sin ππx dx C 、⎰∞+0dx e x D 、⎰-101x dx 7、下列广义积分发散的是( )A 、⎰-11sin x dx B 、⎰--1121x dx C 、⎰∞+-02dx xe x D 、⎰∞+22)(ln x x dx8、⎰=-10121dx e x x( )A 、e 1B 、11-eC 、e 1-D 、∞9、已知2sin 0π=⎰∞+dx x x ,则=⎰∞+dx x x x 0cos sin ( )A 、0B 、4πC 、 2πD 、π10、广义积分=+⎰∞+∞-dx x 211( )A 、0B 、2πC 、2π-D 、π11、下列积分中绝对收敛的是( )A 、dx x x ⎰∞+12sin B 、dx x x ⎰∞+1sin C 、dx x ⎰∞+12sin D 、dx x x ⎰∞+14sin12、已知广义积分dxx ⎰∞+∞-sin ,则下列答案中正确的是( )A 、因为()x f 在()+∞∞-,上是奇函数,所以0sin =⎰∞+∞-dx xB 、dxx ⎰∞+∞-sin =()()()[]0cos cos cos =∞--∞+-=∞-∞+-xC 、dx x ⎰∞+∞-sin =()0cos cos lim sin lim =+-=⎰-+∞→+∞→b b xdx bbb bD 、dxx ⎰∞+∞-sin 发散13、设广义积分dxe kb ⎰∞+-0收敛,则k ( )A 、0≥B 、0>C 、0<D 、0=答案:BCDCB DAABD ADB二、判断题(每题2分)1、当10<<λ时,无穷积分dx x x⎰∞+1cos λ条件收敛; ( ) 2、当10<<λ时,无穷积分dx x x ⎰∞+1sin λ绝对收敛; ( )3、若无穷积分()⎰∞+adxx f 收敛,而函数()x ϕ在[)+∞,a 单调有界,则无穷积分()()⎰∞+adxx x f ϕ收敛; ( )4、若()⎰∞+adxx f 收敛,则()0lim =+∞→x f x ; ( )5、若()x f 在[)+∞,a 无界,则()⎰∞+a dx x f 发散; ( )6、若()x f x +∞→lim 不存在,则()⎰∞+adxx f 发散; ( )7、若()x f 单调, ()⎰∞+a dx x f 收敛,则()0lim =+∞→x f x ; ( )8、若()⎰∞+a dx x f 收敛,则()⎰∞+adxx f 2收敛; ( )9、若()⎰∞+adx x f2,()⎰∞+adxx g 2收敛,则()()⎰∞+adxx g x f 收敛; ( )10、如果()⎰∞+adxx f 收敛,()x g 在[)+∞,a 上有界,则()()⎰∞+a dx x g x f 收敛;( )11、若()⎰∞+adxx f 收敛,()0lim =+∞→x f x ,则()⎰∞+adxx f 2收敛; ( )12、如果()⎰∞+adxx f 绝对收敛,()1lim =+∞→x g x ,则()()⎰∞+adxx g x f 收敛;( )答案:××× ××× ×三、填空题(每题2分)1、若无穷积分()⎰∞+a dx x f 收敛,则()=⎰∞++∞→dx x f pp lim;2、若无穷积分()⎰∞+adxx f 收敛,则a b >时,无穷积分()⎰∞+bdxx f ;3、设(]b a x ,∈∀,函数()0≥x f ,a 是其瑕点,且极限())0()(lim +∞≤≤=-+→d d x f a x ax λ,若+∞≤<≥d 0,1λ,则瑕积分()⎰ba dx x f ;4、设[)+∞∈∀,a x ,函数()0≥x f ,0>a ,且极限())0(lim +∞≤≤=+→d d x f x ax λ,若+∞<≤>d 0,1λ,则无穷积分()⎰∞+a dx x f ;5、若()⎰∞+adxx f 收敛,则无穷积分()⎰∞+adxx f ;6、当1>λ时,无穷积分dx x x ⎰∞+1cos λ ;7、当1≥p 时,瑕积分⎰10px dx ;8、若()⎰∞+adxx f 收敛,且存在极限()Ax f x =+∞→lim ,则=A ;9、=+⎰∞+12)1(x x dx ;=⎰∞+e x x dx 2ln ;10、设⎰∞-∞→=⎪⎭⎫ ⎝⎛+at axx dtte x x 1lim ,则常数=a ;11、如果广义积分dxx p ⎰∞++11收敛,则p ;12、如果广义积分dxx p ⎰-11发散,则p ;答案:1、0 2、收敛 3、发散 4、收敛 5、绝对收敛 6、绝对收敛7、发散 8、0 9、2ln 21;1 10、2 11、2-< 12、2≥四、计算题(每题5分)1、⎰∞+++0284x x dx解:⎰∞+++0284x x dx =)022arctan 21(lim 4)2(lim 02u x x dx u u u +=+++∞→+∞→⎰=8)42(21)422(arctan 21limππππ=-=-++∞→u u 2、dxx x 1sin 122⎰∞+π解:设x t 1=,则dt t dx 21-=,有dx x x 1sin 122⎰∞+π=120cos sin 02==-⎰ππt tdt3、⎰∞+-+222x x dx解:⎰∞+-+222x x dx =221ln 31lim )2111(31lim 2u x x dx x x u u u ⎪⎭⎫ ⎝⎛+-=+--+∞→+∞→⎰ =2ln 32)2ln 221ln lim (31=-+-+∞←u u u4、⎰1ln xdx解:⎰1ln xdx =()1)ln 1(lim 1ln lim ln lim 0100-=+--=-=+++→→→⎰εεεεεεεεx x x xdx5、⎰--1121x dx 解:⎰--1121x dx=⎰⎰-→+-→-+-++εεεε10200121lim 1lim x dx x dx=)1arcsin 10(arcsin lim 0εεε-++-+→xx))1arcsin()1arcsin((lim 0εεε-++--=+→=πππ=+226、()⎰--112x x dx 解:因为()C x C t t dtt x xx dx +--=+-=+-=---⎰⎰1arctan 2arctan 2121122所以()⎰--1012x x dx=01)1arctan 2(lim 1)2(lim 010εεεε---=--++→-→⎰x xx dx=2)4arctan lim (20ππεε=--+→7、⎰∞+++04211dx x x解:由 Cx x x x xx d dx x x x dx x x +-=+--=++=++⎰⎰⎰21arctan 212)1()1(111112222342得⎰∞+++04211dxx x =221arctan 21lim 11lim 20420πεεεε=-=++⎰++→+∞→→+∞→u x x dx x x uu u8、())0(ln >⎰∞+a x x dx ap解:1=p 时,+∞===+∞→∞++∞→⎰⎰a u x x x d x x dxu u a au ln ln lim ln ln lim ln1≠p 时,()()a u x p x xd x x dxpu uapu a p-+∞→+∞→∞+-==⎰⎰1)(ln 11limln ln limln=⎪⎩⎪⎨⎧<∞>--11)(ln 111p p a p p故当1>p 时,()⎰∞+apx x dx ln =()pa p --1ln 111≤p 时,()⎰∞+apx x dxln 发散;9、⎰2)ln(sin πdxx解:=I ⎰20)ln(sin πdx x =⎰+→20sin ln lim πεxdx ⎰+→=422sin ln lim 2πεεtdt t x=⎰+++→42)cos ln sin ln 2(ln lim 2πεεdtt t=⎰⎰++⋅4040cos ln 2sin ln 242ln 2πππtdttdt=⎰⎰+=++404022ln 2cos ln 2sin ln 22ln 2ππππIxdx xdx由此求得2ln 2π-=I10、⎰∞+-∈=0)(N n dx e x I x n n解:当0=n 时,⎰∞+-==001dx e I x当1≥n 时,dx x e n ux e dx x e I un x u nxu unxu n ⎰⎰--+∞→-+∞→-+∞→+-==010lim 0)(lim lim=⎰---+∞→=u n n x u nI dx x e n 011lim则 !12)1(0n I n n I n =⋅⋅-=Λ 五、证明题(每题5分)1、证明01ln 02=+⎰∞+dx x x证:令t x 1=,则 ⎰⎰⎰∞-∞+∞++-=⎪⎭⎫ ⎝⎛⋅+=+00222021ln 1111ln1ln dt t t dt t t t dx x x =⎰∞++-021ln dx x x则有01ln 02=+⎰∞+dx x x2、证明dxx x ⎰∞++01cos 收敛,且11cos 0≤+⎰∞+dx x x证:dx x x ⎰∞++01cos =dxx x x x ⎰∞+++∞++02)1(sin 01sin =dxx x⎰∞++02)1(sin又()22111sin x x x+≤+)(,而dxx ⎰∞++02)1(1收敛,所以dx x x ⎰∞++02)1(sin 收敛⇒dxx x ⎰∞++01cos 收敛而≤+=+⎰⎰∞+∞+02)1(sin 1cos dx x xdx xx1011)1(102=∞++-=+⎰∞+x dx x 3、证明:若()x f 在()+∞∞-,上连续,且()⎰∞+∞-dxx f 收敛,则对任何()+∞∞-∈,x ,有()()⎰∞-=x x f dt t f dx d , ()()⎰∞+-=x x f dt t f dx d ,证:,a ∀由条件()1J dx x f =⎰∞-,()⎰∞+=02J dx x f 都存在;再由()x f 连续可得()()()⎰⎰∞-=⎪⎭⎫ ⎝⎛+=x x a x f dt t f J dx d dt t f dx d ,1 ()()()⎰⎰∞+-=⎪⎭⎫ ⎝⎛+=x ax x f J dt t f dx d dt t f dx d ,24、 设()⎰∞+adxx f 收敛,证明:(1)若极限()x f x +∞→lim 存在,则()0lim =+∞→x f x(2)若()x f 在[)∞+a 上为单调函数,则()0lim =+∞→x f x证:(1)设()Ax f x =+∞→lim 。

相关文档
最新文档