高等数学知识点总结

合集下载

高等数学基本知识点大全

高等数学基本知识点大全

高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。

变量x的变化范围叫做这个函数的定义域。

通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。

注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。

这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。

如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。

这里我们只讨论单值函数。

⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。

由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。

例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。

例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。

c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。

一般用横坐标表示自变量,纵坐标表示因变量。

高等数学各项基础知识点总结

高等数学各项基础知识点总结

高等数学知识点总结第一章函数与极限一.函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l =0,称f (x)是比g(x)高阶的无穷小,记以f (x)=0[)(x g ],称g(x)是比f(x)低阶的无穷小。

(2)l ≠0,称f (x)与g(x)是同阶无穷小。

(3)l =1,称f (x)与g(x)是等价无穷小,记以f (x)~g(x)2.常见的等价无穷小当x →0时sin x ~x ,tan x ~x ,x arcsin ~x ,x arccos ~x,1−cos x ~2/2^x ,x e −1~x ,)1ln(x +~x ,1)1(-+αx ~xα二.求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.(夹逼定理)设g (x )≤f (x )≤h (x )若A x h A x g ==)(lim ,)(lim ,则Ax f =)(lim 2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次233521211...()2!3!!sin ...(1)()3!5!(21)!n xn n n n x x x e x o x n x x x x x o x n ++=++++++=-+++-++)(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=)()1(...32)1ln(132n n n x o nx x x x x +-++-=++)(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital)法则.∞∞型未定式定理2设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则;(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式1011lim ()()n n k k f f x dx n n →∞==∑⎰(如果存在)三.函数的间断点的分类)()(lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→函数的间断点分为两类:(1)第一类间断点设0x 是函数y =f (x )的间断点。

高等数学知识点总结

高等数学知识点总结

高等数学是大学理工科学生的一门基础课程,涉及到数学分析、线性代数、概率论和数学物理方法等内容。

本文将对高等数学的知识点进行总结,以供参考。

一、数学分析1.极限与连续极限是数学分析的基础概念,主要研究函数在某一点的邻域内的性质。

极限的性质包括保号性、保序性等。

连续性是极限的一种特殊情况,一个函数在某一点的极限等于该点的函数值,则称该函数在该点连续。

2.导数与微分导数研究函数在某一点的切线斜率,是函数变化率的具体体现。

导数的计算方法包括定义法、导数法则和高阶导数等。

微分是导数的一种应用,主要研究函数在某一点的微小变化。

3.积分与不定积分积分是导数的逆运算,研究函数在某一区间内的累积变化。

积分的计算方法包括牛顿-莱布尼茨公式、换元积分法和分部积分法等。

不定积分是积分的一种扩展,没有明确的积分界限,主要用于求解原函数。

级数是数学分析中的重要部分,研究函数的和式。

常见的级数包括幂级数、泰勒级数和傅里叶级数等。

级数的收敛性判断是级数研究的关键,常用的判断方法有比较判别法、比值判别法和根值判别法等。

5.多元函数微分学多元函数微分学研究多个变量之间的函数关系。

主要内容包括偏导数、全微分、方向导数和雅可比矩阵等。

重积分是研究函数在空间区域上的累积变化。

重积分的计算方法包括一重积分、二重积分和三重积分等。

7.常微分方程常微分方程是描述自然界和工程技术中具有变化规律的数学模型。

常微分方程的解法包括分离变量法、常数变易法和线性微分方程组等。

二、线性代数矩阵是线性代数的基本工具,用于描述线性方程组和线性变换。

矩阵的运算包括加法、减法、数乘和矩阵乘法等。

矩阵的行列式用于判断线性方程组的解的情况。

2.线性方程组线性方程组是实际问题中常见的数学模型。

线性方程组的解法包括高斯消元法、矩阵求逆法和克莱姆法则等。

3.向量空间与线性变换向量空间是具有加法和数乘运算的向量集合。

线性变换是从一个向量空间到另一个向量空间的线性映射。

4.特征值与特征向量特征值和特征向量是描述矩阵性质的重要概念。

高等数学知识点总结pdf

高等数学知识点总结pdf

高等数学知识点总结pdf
高等数学知识点总结
一、函数与极限
1. 函数的定义、连续性与间断点
2. 导数与极值
3. 不定积分与定积分
4. 泰勒展开式与幂级数展开
5. 重要的极限定理:夹逼定理、洛必达法则等
二、微分方程
1. 一阶常微分方程与分离变量法
2. 一阶线性微分方程
3. 高阶线性常系数齐次微分方程
4. 高阶线性常系数非齐次微分方程
5. 欧拉方程与特征方程法
三、多元函数与偏导数
1. 多元函数的定义与性质
2. 偏导数与全微分
3. 隐函数与参数方程
4. 多元函数的极值与条件极值
四、重积分与曲线积分
1. 重积分的概念与性质
2. 极坐标系与二重积分
3. 三重积分与球坐标系
4. 曲线积分的概念与性质
5. 向量场的曲线积分和曲面积分
五、无穷级数与傅里叶级数
1. 数列极限与数列的收敛性
2. 数项级数的概念与性质
3. 正项级数的审敛法与一致收敛性
4. 幂级数与傅里叶级数的展开
六、空间解析几何
1. 点、直线与平面的方程
2. 曲线与曲面的方程
3. 空间中的向量运算
4. 空间曲线的切线与法平面
5. 空间曲面的切平面与法线
七、常微分方程
1. 一阶常微分方程的概念与解法
2. 高阶常微分方程的特征方程法
3. 常系数线性齐次微分方程的解法
4. 变系数线性齐次微分方程的解法
这些是高等数学中的一些重要知识点总结,掌握了这些知识,对于解题和理解高等数学的相关概念非常有帮助。

高等数学知识点

高等数学知识点

高等数学知识点高等数学知识点在日复一日的学习中,大家最熟悉的就是知识点吧?知识点有时候特指教科书上或考试的知识。

哪些知识点能够真正帮助到我们呢?下面是小编为大家收集的高等数学知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

高等数学知识点1第一章:函数与极限1.理解函数的概念,掌握函数的表示方法。

2.会建立简单应用问题中的函数关系式。

3.了解函数的奇偶性、单调性、周期性、和有界性。

4.掌握基本初等函数的性质及图形。

5.理解复合函数及分段函数的有关概念,了解反函数及隐函数的概念。

6.理解函数连续性的概念(含左连续和右连续)会判别函数间断点的类型。

7.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左右极限间的关系。

8.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

9.掌握极限性质及四则运算法则。

10.理解无穷孝无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

第二章:导数与微分1.理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。

2.掌握导数的四则运算法则和复合函数的求导法则,掌握初等函数的求导公式,了解微分的四则运算法则和一阶微分形式的不变性,会求初等函数的微分。

3.会求隐函数和参数方程所确定的函数以及反函数的导数。

4.会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。

第三章:微分中值定理与导数的应用1.熟练运用微分中值定理证明简单命题。

2.熟练运用罗比达法则和泰勒公式求极限和证明命题。

3.了解函数图形的作图步骤。

了解方程求近似解的两种方法:二分法、切线法。

4.会求函数单调区间、凸凹区间、极值、拐点以及渐进线、曲率。

第四章:不定积分1.理解原函数和不定积分的概念,掌握不定积分的基本公式和性质。

2.会求有理函数、三角函数、有理式和简单无理函数的不定积分3.掌握不定积分的分步积分法。

高等数学 知识点总结

高等数学 知识点总结

高等数学知识点总结一、导数与微分1.导数的概念在数学中,导数是用来描述函数在某一点的变化率。

如果一个函数f(x)在点x处可导,那么f(x)在该点的导数记作f'(x),它表示函数f在x处的变化率。

2.导数的计算导数的计算可以通过极限的方法来求解。

例如,要计算函数f(x)在点x处的导数,可以计算f(x)在x+h处与x处函数值的差值与h的比值,当h趋向于0时的极限值即为f(x)在x 处的导数。

3.导数的性质导数具有一些重要的性质,如导数的线性性质、导数与函数的关系等。

4.微分的概念微分是导数的一个重要应用,在函数f(x)的某一点x处,函数值的微小增量与自变量的微小增量的比值称为函数f(x)在点x处的微分。

5.微分的计算微分可以通过导数来计算,函数f(x)在点x处的微分可以表示为dy=f'(x)dx。

这样,微分与导数的关系变得更加紧密。

6.微分的性质微分具有一些重要的性质,如微分的线性性质、微分的复合性质等。

二、多元函数的偏导数与全微分1.多元函数的概念多元函数是指具有多个自变量的函数,例如f(x,y)。

在多元函数中,每个自变量都是独立的,并且可以对每个自变量进行求导。

2.偏导数的概念多元函数对其中的某个自变量进行求导得到的导数称为偏导数,记作∂f/∂x,表示函数f对自变量x的偏导数。

3.偏导数的计算偏导数的计算可以通过极限的方法来求解,类似于一元函数的导数计算。

例如,对于函数f(x,y),其对x的偏导数可以表示为lim[(f(x+h,y)-f(x,y))/h],当h趋向于0时的极限值。

4.偏导数的性质偏导数具有一些重要的性质,如偏导数的线性性质、偏导数的交换性等。

5.全微分的概念在多元函数中,全微分是描述函数在某一点的微小增量与自变量的微小增量的比值。

6.全微分的计算全微分可以通过偏导数来计算,函数f(x,y)在点(x,y)处的全微分可以表示为df=∂f/∂xdx+∂f/∂ydy。

7.全微分的性质全微分具有一些重要的性质,如全微分的线性性质、全微分的复合性质等。

高等数学知识点汇总

高等数学知识点汇总

高等数学知识点高等数学知识点汇总通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。

下面小编给大家介绍高等数学知识点汇总,赶紧来看看吧!高等数学知识点汇总第一章函数与极限知识点1:函数的概念、函数定义域的求法知识点2:函数的分类、特殊类型的函数知识点3:函数的基本性质知识点4:数列极限的概念与性质知识点5:函数极限的概念与性质知识点6:证明极限式与证明极限不存在的方法知识点7:无穷小与无穷大的概念与关系知识点8:极限的四则运算法则知识点9:复合函数的极限运算法则知识点10:极限存在的两个准则知识点11:两个重要极限知识点12:无穷小的比较知识点13:函数连续性的概念及判断知识点14:函数间断点的求法及分类知识点15:闭区间上连续函数的性质第二章导数与微分知识点16:导数的概念知识点17:导数的几何意义、平面曲线的切线与法线方程的求法知识点18:复合函数的求导知识点19:反函数的求导知识点20:隐函数及参数方程的求导知识点21:微分的概念及运算知识点22:一元函数微分形式的不变性知识点23:导数的物理意义知识点24:按定义求导的题目类型知识点25:可导、可微与连续三个概念之间的关系知识点26:奇偶函数与周期函数的导数的性质知识点27:用求导公式与法则求导数知识点28:函数的高阶导数第三章微分中值定理与导数的应用知识点29:罗尔定理、拉格朗日中值定理的应用知识点30:柯西中值定理的应用知识点31:有关中值定理证明题的典型实例知识点32:洛必达法则求极限知识点33:求极限的方法总结知识点34:函数的零点(方程的根)存在性与唯一性的证明知识点35:函数的零点(方程的根)个数的讨论知识点36:不等式的证明方法总结知识点37:泰勒公式的求法知识点38:泰勒公式的应用知识点39:函数的单调性及判别知识点40:函数的极值及判别知识点41:函数的最值及判别知识点42:渐近线的分类与求法知识点43:曲线的凸凹性和拐点知识点44:曲率、曲率圆及曲率半径(数学一、二)知识点45:弧微分知识点46:导数在经济领域的应用(数学三)第四章不定积分知识点47:不定积分的概念与性质知识点48:不定积分的换元积分法知识点49:不定积分的分部积分法知识点50:有理函数与三角有理式的不定积分知识点51:不定积分计算技巧的典型实例第五章定积分知识点52:定积分的概念与基本性质知识点53:变上限的积分及其导数知识点54:奇偶函数与周期函数的积分性质知识点55:涉及定积分证明题型的典型实例知识点56:用牛顿-莱布尼兹定理计算定积分知识点57:定积分的换元积分法知识点58:定积分的分部积分法知识点59:定积分的特殊计算方法的典型实例知识点60:无穷限的.反常积分的概念与计算知识点61:无界函数的反常积分的概念与计算第六章定积分的应用知识点62:用定积分求平面图形的面积知识点63:用定积分求特殊立体的体积知识点64:用定积分求弧长知识点65:定积分的物理应用(数一、二)知识点66:连续函数的平均值(数一、二)第七章空间解析几何与向量代数知识点67:空间直角坐标系及相关概念(数一)知识点68:向量的属性、向量的长度与夹角(数一)知识点69:向量的各类运算及其运算法则(数一)知识点70:用向量解决的几何问题(数一)知识点71:平面的法向量与平面方程(数一)知识点72:直线的方向向量与直线方程(数一)知识点73:两个平面间的关系(数一)知识点74:两条直线间的关系(数一)知识点75:直线与平面的关系(数一)知识点76:点到平面的距离的计算(数一)知识点77:点到直线的距离的计算(数一)知识点78:旋转曲面(数一)知识点79:柱面(数一)知识点80:二次曲面(数一)知识点81:空间曲线的方程及其在坐标面上的投影(数一)第八章多元函数微分法及其应用知识点82:多元函数的概念和几何意义知识点83:二元函数的极限知识点84:二元函数的连续性知识点85:偏导数的概念与常规计算知识点86:高阶偏导数知识点87:多元函数可微与全微分知识点88:连续,可偏导,可微的关系知识点89:多元复合函数的求导法则知识点90:多元函数的微分形式不变性知识点91:多元隐函数的求导知识点92:多元函数的极值问题知识点93:条件极值问题、拉格朗日乘数法知识点94:多元函数的最值问题知识点95:方向导数(数一、二)知识点96:数量场的梯度(数一、二)知识点97:空间曲线的切线与法平面(数一、二)知识点98:空间曲面的切平面与法线(数一、二)知识点99:二元函数的二阶泰勒公式(数一)第九章重积分知识点100:重积分的概念与性质知识点101:直角坐标下二重积分的定限与计算知识点102:极坐标下二重积分的定限与计算知识点103:直角坐标下三重积分的定限与计算知识点104:柱面坐标下三重积分的定限与计算知识点105:球面坐标下三重积分的定限与计算知识点106:重积分积分次序的交换知识点107:利用积分区域的对称性及被积函数的奇偶性求重积分的技巧第十章曲线积分与曲面积分知识点108:第一类曲线积分的概念与计算知识点109:第二类曲线积分的概念与计算知识点110:两类曲线积分之间的联系知识点111:二元函数全微分求积知识点112:格林公式及其应用知识点113:曲线积分与路径无关的条件知识点114:第一类曲面积分的概念与计算知识点115:第二类曲面积分的概念与计算知识点116:两类曲面积分之间的联系知识点117:高斯公式及其应用知识点118:通量与散度知识点119:斯托克斯公式及其应用知识点120:环流量与旋度知识点121:涉及重积分与曲线曲面积分的证明题总结第十一章无穷级数知识点122:级数的概念及性质(数一、三)知识点123:级数收敛的概念与判别法(数一、三)知识点124:正项级数的审敛法(数一、三)知识点125:交错级数、莱布尼兹判别法(数一、三)知识点126:函数项级数与幂级数的概念(数一、三)知识点127:函数的幂级数展开(数一、三)知识点128:阿贝尔判别法(数一、三)知识点129:幂级数的收敛域(数一、三)知识点130:幂级数的和函数(数一、三)知识点131:绝对收敛与条件收敛(数一、三)知识点132:傅里叶级数的展开式的求法(数一)知识点133:傅里叶级数的周期延拓(数一)知识点134:傅里叶级数的奇偶延拓(数一)第十二章微分方程知识点135:微分方程的基本概念知识点136:可分离变量的微分方程知识点137:齐次微分方程知识点138:一阶线性微分方程知识点139:全微分方程知识点140:伯努利方程知识点141:用变量替换解微分方程举例知识点142:含变限积分的方程知识点143:可降阶的高阶微分方程知识点144:线性微分方程解的性质和结构知识点145:二阶常系数齐次线性方程知识点146:n阶常系数齐次线性方程知识点147:二阶常系数非齐次线性方程知识点148:欧拉方程(数学一)知识点149:差分方程(数学三)知识点150:微分方程应用题的典型实例。

高等数学知识点汇总

高等数学知识点汇总

高等数学知识点汇总高等数学知识点汇总1. 集合:集合是一组具有特定意义的对象的总称。

集合可以根据不同条件被分类,如有界集合、无界集合、空集合、子集、伯努利子集、近似集合等。

2. 函数:函数是一种特殊的数学关系,它用于表示一个自变量和它的函数值之间的对应关系。

如果一个函数的自变量和因变量是多元的,那么就称这个函数为多元函数。

3. 微积分:微积分是数学中的一个重要分支,它研究数量之间的变化。

它主要有两个重要的概念:·微分学,它是用极限的思想去研究函数之间的变化·积分学,它是用定积分的思想去求解函数之间的面积4. 相似几何:相似几何是一种特殊的几何图形,它指的是两个图形之间存在着唯一的比例,即它们之间的长度比例,面积比例是相等的。

5. 概率统计:概率统计是数学中的一个重要分支,它主要研究随机事件的发生概率。

它设计了几种概率分布,如二项分布、泊松分布、正态分布、贝叶斯分布等。

6. 数列:数列是由一些有特宁顺序排列的数字或元素组成的序列。

数列分为等差数列、等比数列、定点数列和其他特殊数列。

7. 极限:极限是数学中的一个重要概念,它用来描述一个变量在不变的情况下,它的初始值或最终值无限接近但又不等于某一特定值。

8. 椭圆:椭圆是一种曲线,可以通过椭圆方程来表示。

它具有两个焦点和一个长轴和短轴,这两个轴是椭圆的解释。

它在物理学中用来计算椭圆偏心率和圆周率。

9. 向量:向量是指一个数量,它有大小和方向。

它可以用来表示几何形状的位置或运动,也可以用来描述物理量,如力、速度和加速度。

10. 四元数:四元数又称复数,它是一种用来表示复平面上变量之间关系的数学形式,一个四元数由实部和虚部组成,它们与实数的加减乘除运算类似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学知识点总结导数公式:导数公式:(tan x)′ = sec2 x (c tan x)′ = csc2 x (sec x)′ = sec x tan x (csc x)′ = csc x cot x (a x )′ = a x ln a 1 (loga x)′ = x ln a基本积分表:基本积分表:三角函数的有理式积分:三角函数的有理式积分:(arcsin x )′ =11 x2 1 (arccos x )′ = 1 x2 1 (arctan x )′ = 1+ x2 1 (arc cot x )′ = 1+ x2∫ tan xdx = ln cos x + C ∫ cot xdx = ln sin x + C ∫ sec xdx = ln sec x + tan x + C ∫ csc xdx = ln csc x cot x + Cdx 1 x = arctan +C 2 +x a a dx 1 xa ∫ x 2 a 2 = 2a ln x + a + C dx 1 a+x ∫ a 2 x 2 = 2a ln a x + C dx x ∫ a 2 x 2 = arcsin a + C∫ cos ∫ sindx2x x= ∫ sec 2 xdx = tan x + C = ∫ csc 2 xdx = cot x + Cdx2∫a∫ sec x tan xdx = sec x + C ∫ csc x cot xdx = csc x + Cx ∫ a dx =2ax +C ln a∫ shxdx = chx + C ∫ chxdx = shx + C ∫dx x ±a2 2= ln( x + x 2 ± a 2 ) + Cπ2π2I n = ∫ sin n xdx = ∫ cos n xdx =0 0 2n 1 I n2 n∫ ∫ ∫sinx =x a2 2 2 x + a dx = x + a + ln( x + x 2 + a 2 ) + C 2 2 x a2 x 2 a 2 dx = x 2 a 2 ln x + x 2 a 2 + C 2 2 x a2 x a 2 x 2 dx = a 2 x 2 + arcsin + C 2 2 a22u 1 u2 x 2du ,x = cos ,= tan ,= u dx 1+ u2 1+ u2 2 1+ u21 / 13一些初等函数:一些初等函数:两个重要极限:两个重要极限:ex ex 双曲正弦: shx = 2 x e + e x 双曲余弦: chx = 2 shx e x e x 双曲正切: thx = = chx e x + e x arshx = ln( x + x 2 + 1)archx = ± ln( x + x 2 1) 1 1+ x arthx = ln 2 1 x三角函数公式:三角函数公式:诱导公式:·诱导公式:函数角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α ·和差角公式:和差角公式:limsinx x +x →=x1 = elimx →∞(11 ) xsin -sinα cosα cosα sinα -sinα -cosα -cosα -sinα sinαcos cosα sinα -sinα -cosα -cosα -sinα sinα cosα cosαtg -tanα cotα -cotα -tanα tanα cotα -cotα -tanα tanαctg -cotα tanα -tanα -cotα cotα tanα -tanα -cotα cotα·和差化积公式:和差化积公式:sin(α ± β ) = sin α cos β ± cos α sin β cos(α ± β ) = cos α cos β m sin α sin β tan α ± tan β tan(α ± β ) = 1 m tan α tan β cot α cot β m 1 cot(α ± β ) = cot β ± cot αsin α + sin β = 2 sinα +β2 2 α+β αβ sin α sin β = 2 cos sin 2 2 α+β α β cos α + cos β = 2 cos cos 2 2 α+β α β cos α cos β = 2 sin sin 2 2cosα β2 / 13·倍角公式:倍角公式:sin 2α = 2 sin α cosα cos 2α = 2 cos2 α 1 = 1 2 sin 2 α = cos2 α sin 2 α cot2 α 1 cot 2α = 2 cotα 2 tanα tan 2α = 1 tan2 α·半角公式:半角公式:sin 3α = 3sinα 4 sin3 α cos3α = 4 cos3 α 3 cosα 3 tanα tan3 α tan 3α = 1 3 tan2 αsin tanα2=± =±α 1 cos α 1 + cos α cos = ± 2 2 2 α 1 cos α 1 cos α sin α 1 + cos α 1 + cos α sin α = = cot = ± = = 1 + cos α sin α 1 + cos α 2 1 cos α sin α 1 cos αa b c = = = 2R sin A sin B sin C·余弦定理:c = a + b 2ab cos C 余弦定理:2 2 2α2·正弦定理:正弦定理:定理·反三角函数性质:arcsin x = 反三角函数性质:π2arccos x arctan x =π2arc cot x高阶导数公式——莱布尼兹(Leibniz)公式:高阶导数公式——莱布尼兹(Leibniz)公式:——莱布尼兹k (uv) ( n ) = ∑ C n u ( nk ) v ( k ) k =0 n= u ( n ) v + nu ( n1) v′ +n(n 1) ( n2) n(n 1)L(n k + 1) ( nk ) ( k ) u v + L + uv ( n ) u v′′ + L + 2! k!中值定理与导数应用:中值定理与导数应用:拉格朗日中值定理:f (b) f (a) = f ′(ξ )(b a) f (b) f (a ) f ′(ξ ) 柯西中值定理:= F (b) F (a ) F ′(ξ ) 当F( x) = x时,柯西中值定理就是拉格朗日中值定理。

曲率:曲率:弧微分公式:ds = 1 + y ′ 2 dx , 其中y ′ = tg α K 平均曲率:= α .α : 从M 点到M ′点,切线斜率的倾角变化量;s:MM ′弧长。

s y ′′ α dα M 点的曲率:K = lim = = . s → 0 s ds (1 + y ′ 2 ) 3 1 . a3 / 13直线:K = 0; 半径为a的圆:K =定积分的近似计算:定积分的近似计算:矩形法:f ( x) ≈ ∫abba ( y0 + y1 + L + y n1 ) n ba 1 [ ( y0 + y n ) + y1 + L + y n1 ] n 2 ba [( y0 + y n ) + 2( y 2 + y 4 + L + y n2 ) + 4( y1 + y3 + L + y n1 )] 3n梯形法:f ( x) ≈ ∫a bb抛物线法:f ( x) ≈ ∫a定积分应用相关公式:定积分应用相关公式:功:W = F s 水压力:F = p A m1m2 , k为引力系数r2 b 1 函数的平均值:= y f ( x)dx ba ∫ a 引力:F = k 1 2 均方根:∫ f (t )dt ba a空间解析几何和向量代数:空间解析几何和向量代数:b空间2点的距离:d = M 1 M 2 = ( x2 x1 ) 2 + ( y 2 y1 ) 2 + ( z 2 z1 ) 2 向量在轴上的投影:ju AB = AB cos ,是AB与u轴的夹角。

Pr v v v v Pr ju (a1 + a 2 ) = Pr ja1 + Pr ja 2 v v v v a b = a b cosθ = a x bx + a y b y + a z bz , 是一个数量, 两向量之间的夹角:θ = cos i v v v c = a × b = ax bx j ay by k a x bx + a y b y + a z bz a x + a y + a z bx + b y + bz2 2 2 2 2 2v v v v v v a z , c = a b sin θ .例:线速度:v = w × r .bz ay by cy az czax v vv v v v 向量的混合积:b c ] = (a × b ) c = bx [a cx 代表平行六面体的体积。

v v v bz = a × b c cos α ,α为锐角时,4 / 13平面的方程:v 1、点法式:A( x x0 ) + B( y y 0 ) + C ( z z 0 ) = 0,其中n = { A, B, C}, M 0 ( x0 , y0 , z 0 ) 2、一般方程:Ax + By + Cz + D = 0 x y z 3、截距世方程:+ + = 1 a b c 平面外任意一点到该平面的距离:d = Ax0 + By0 + Cz 0 + D A2 + B 2 + C 2x = x0 + mt x x0 y y 0 z z 0 v 空间直线的方程:= = = t , 其中s = {m, n, p}; 参数方程:y = y0 + nt m n p z = z + pt 0 二次曲面:x2 y2 z 2 1、椭球面:2 + 2 + 2 = 1 a b c 2 2 x y 2、抛物面:+ = z(p, q同号), 2 p 2q 3、双曲面:x2 y2 z2 单叶双曲面:2 + 2 2 = 1 a b c 2 2 x y z2 双叶双曲面:2 2 + 2 =(马鞍面) 1 a b c多元函数微分法及应用全微分:dz =z z u u u dx + dy du = dx + dy + dz z x y x y全微分的近似计算:z ≈ dz = f x ( x, y )x + f y ( x, y )y 多元复合函数的求导法:dz z u z v z = f [u (t ), v(t )]= + dt u t v t z z u z v z = f [u ( x, y ), v( x, y )]= + x u x v x 当u = u ( x, y ),v = v( x, y )时,du = u u v v dx + dy dv = dx + dy x y x y隐函数的求导公式:F F F dy dy d2y 隐函数F ( x, y ) = 0,= x , 2 = ( x )+( x ) x Fy y Fy dx dx Fy dx Fy F z z 隐函数F ( x, y, z ) = 0,= x ,= x y Fz Fz5 / 13F F ( x, y , u , v ) = 0 ( F ,G ) u 隐函数方程组:J = = G (u , v) G ( x, y, u , v) = 0 u u 1 ( F , G) v 1 ( F , G) = = x J ( x, v ) x J (u , x) u 1 ( F , G) v 1 ( F , G ) = = y J ( y, v) y J (u , y )微分法在几何上的应用:微分法在几何上的应用:F v = FuG Gu vFv Gvx = (t ) xx y y0 z z 0 空间曲线y = ψ (t )在点M ( x0 , y0 , z 0 )处的切线方程:0 = = ′(t 0 ) ψ ′(t 0 ) ω ′(t 0 ) z = ω (t ) 在点M处的法平面方程:′(t 0 )( x x0 ) + ψ ′(t 0 )( y y0 ) + ω ′(t 0 )( z z 0 ) = 0 v Fy Fz Fz Fx Fx F ( x, y , z ) = 0 , 则切向量T = { , , 若空间曲线方程为:G y G z Gz G x Gx G ( x, y, z ) = 0 曲面F ( x, y, z ) = 0上一点M ( x0 , y0 , z 0 ),则:v 1、过此点的法向量:n = {Fx ( x0 , y0 , z 0 ), Fy ( x0 , y 0 , z 0 ), Fz ( x0 , y0 , z 0 )} x x0 y y0 z z0 3、过此点的法线方程:= = Fx ( x0 , y0 , z 0 ) Fy ( x0 , y0 , z 0 ) Fz ( x0 , y0 , z 0 )方向导数与梯度:方向导数与梯度:Fy Gy2、过此点的切平面方程:Fx ( x0 , y0 , z 0 )( x x0 ) + Fy ( x0 , y0 , z 0 )( y y0 ) + Fz ( x0 , y0 , z 0 )( z z 0 ) = 0f f f 函数z = f ( x, y )在一点p ( x, y )沿任一方向l的方向导数为:= cos + sin l x y 其中为x轴到方向l的转角。

相关文档
最新文档