半导体工艺及器件模拟一
半导体器件模拟及数值分析(PDF)

主要内容2.12.22.32.1 器件模拟的基本方程组2.1.3 载流子输运的基本方程2.1.3.2小尺寸半导体器件的载流子输运方程(a) (b)图2.1 半导体中的载流子过冲. (a) GaAs材料, (b) Si材料2.1 器件模拟的基本方程组2.1.6光波导方程由Maxwell 方程组同样可以导出在半导体材料中传输的光波的电场分量E 所满足的方程:式中n 为材料的折射率,k 0 =2π/λ,λ是波长。
对于沿z 方向传播的波,式中β是波沿z 方向的传播常数,可得到Helmholtz 方程为,2022=+∇E E k n )(exp ),,(),,,(z t j E E E t z y x z y x βω−=E 222/,/ββ−=∂∂−=∂∂z j z 所以,)(22022=−+∇E E βk n T 式中,22222//y x T ∂∂+∂∂=∇2.3 半导体器件的分级模拟2.3.1 问题目的提出判断一个半导体器件模拟软件优劣的指标是功能全、精度高、速度快和便于用户使用。
功能全主要指能处理问题面广,便于用户使用则主要指程序输入参数形式简单,并以交互或对话方式工作。
实际开发半导体器件模拟软件时要考虑这两点,但这不是衡量半导体器件模拟方法本身优劣的指标。
衡量半导体器件模拟方法优劣的指标是速度快、精度高。
在半导体器件的计算机模拟中,除了从指标要求出发选取好的方法外,在给定精度的条件下,还经常使用分级模拟技术以减少计算时间和提高计算速度。
2.3 半导体器件的分级模拟2.3.3 分级模拟的意义随着工件条件的变化,模型方程的复杂性越来越高,相应地,模拟的复杂性也越来越高。
对于复杂的模拟问题,往往需要采用分级模拟的方法,该方法包括两点:(1)根据具体的工作条件,选用级别较低的模型方程,以在保证精度的条件下大大减少计算时间。
(2)利用低一级的解作为初值。
由于低一级的解是本级的很好近似,这样做将有效减少计算时间。
半导体工艺原理-集成电路制造工艺介绍

GND
Vi
T
Vo
R VDD
23
二)、MOS集成电路芯片制 造工艺
(N阱硅栅CMOS工艺)
24
1、CMOS工艺中的元器件结构
电阻
NSD和PSD电阻结构剖面图
25
多晶硅电阻结构剖面图
26
N阱电阻结构剖面图
27
电容
CMOS工艺中PMOS晶体管电容剖面图
28
CMOS工艺中N阱电容剖面图
29
多晶硅-多晶硅电容器剖面图
双极工艺主要分类
3
CMOS
●标准CMOS工艺(数字电路的主流工艺 技术)特点:互补的NMOS、PMOS,工 艺流程简单,集成度高
●模拟CMOS工艺(应用最广泛的模拟IC 工艺)特点:在标准CMOS的基础上集成 高品质的无源器件,此外对阈值电压精度 和耐压的要求更高
●RF CMOS(RF IC) 特点:依靠缩小光刻尺寸提高MOS晶体管 的速度,集成模拟IC所必需的高品质无源 器件
30
二极管
PSD/N阱齐纳二极管剖面图
31
PSD保护环肖特基二极管剖面图
32
MOS晶体管
N阱CMOS工艺中MOS晶体管剖面图
33
P阱CMOS工艺中MOS晶体管剖面图
34
双阱CMOS工艺中MOS晶体管剖面图
35
2、主要工艺流程图
36
衬底准备
P型单晶片
P+/P外延片
37
工艺流程:
氧化、光刻N-阱(nwell)
NBL
NSINK
P阱
PBL
57
●BCD(智能功率集成芯片) 特点:在BiCMOS优势的基础上再集成 DMOS等功率器件,是智能功率芯片的理 想工艺平台
《半导体器件与工艺》课件

晶圆制备
切割
将大块单晶硅切割成小片,得到晶圆。
研磨
对晶圆表面进行研磨,以降低表面粗糙度。
抛光
通过化学和机械作用对晶圆表面进行抛光,使其 表面更加光滑。
薄膜沉积
物理气相沉积
通过物理方法将材料气化并沉积在晶圆表面,如真空 蒸发镀膜。
化学气相沉积
通过化学反应将材料沉积在晶圆表面,如金属有机化 学气相沉积。
有巨大的应用潜力。
制程技术进步
纳米尺度加工
随着制程技术的不断进步,半导体器件的特征尺寸不断缩小,目前已进入纳米尺度。纳米 尺度加工技术面临着诸多挑战,如表面效应、量子效应和隧穿效应等,需要不断探索新的 加工方法和材料体系。
异质集成技术
通过将不同材料、结构和工艺集成在同一芯片上,可以实现高性能、多功能和低成本的半 导体器件。异质集成技术需要解决材料之间的界面问题、应力问题和工艺兼容性问题等。
可靠性试验
对芯片进行各种环境条件下的可靠性试验,如温度循环、湿度、振动等。
失效分析
对失效的芯片进行失效分析,找出失效原因,以提高芯片的可靠性。
05 半导体工艺发展趋势与挑 战
新型材料的应用
01
硅基材料
作为传统的半导体材料,硅基材料在集成电路制造中仍占据主导地位。
随着技术的不断发展,硅基材料的纯度、结晶度和性能不断提升,为半
柔性电子技术
柔性电子技术是将电子器件制作在柔性基材上的技术,具有可弯曲、可折叠、可穿戴等优 点。柔性电子技术在智能终端、可穿戴设备、医疗健康等领域具有广泛的应用前景。
可靠性及成品率问题
可靠性问题
随着半导体器件的特征尺寸不断缩小,可靠 性问题日益突出。需要加强可靠性研究,建 立完善的可靠性评价体系,提高半导体器件 的长期稳定性。
半导体制造工艺流程_图文

SiO2 P+
AL
N+ N-epi
P-SUB
Al P+
主要制程介绍
矽晶圓材料(Wafer)
圓晶是制作矽半導體IC所用之矽晶片,狀似圓 形,故稱晶圓。材料是「矽」, IC( Integrated Circuit)厂用的矽晶片即為 矽晶體,因為整片的矽晶片是單一完整的晶體 ,故又稱為單晶體。但在整體固態晶體內,眾 多小晶體的方向不相,則為复晶體(或多晶體 )。生成單晶體或多晶體与晶體生長時的溫度 ,速率与雜質都有關系。
外延层电阻
SiO2
R
N+
R
P+
P
P+
N-epi
P-SUB
集成电路中电阻5
MOS中多晶硅电阻
多晶硅
SiO2氧化层Si源自其它:MOS管电阻集成电路中电容1
SiO2 P+
A-
N+E P+-I
N+-BL P-SUB
B+
A-
B+
N P+ Cjs
发射区扩散层—隔离层—隐埋层扩散层PN电容
集成电路中电容2
N+
後段backend构装packaging测试制程initialtestandfinaltest一晶圆处理制程晶圆处理制程之主要工作为在矽晶圆上制作电路与电子元件如电晶体电容体逻辑闸等为上述各制程中所需技术最复杂且资金投入最多的过程以微处理器microprocessor为例其所需处理步骤可达数百道而其所需加工机台先进且昂贵动辄数千万一台其所需制造环境为为一温度湿度与含尘particle均需控制的无尘室cleanroom虽然详细的处理程序是随著产品种类与所使用的技术有关
请简述半导体器件工艺的十大流程

请简述半导体器件工艺的十大流程半导体器件工艺是制造半导体器件的工艺流程,是半导体工程领域的重要组成部分。
半导体器件工艺流程包括十大流程,分别是晶圆生长、晶圆切割、清洁和清洗、化学氧化、物理氧化、光刻、蚀刻、沉积、离子注入和退火。
下面将详细介绍这十大流程。
首先是晶圆生长。
晶圆生长是制备半导体材料的第一步,也是半导体器件制造的基础。
它是利用化学气相沉积技术在单晶衬底上生长出高质量的半导体材料晶体。
晶圆生长的材料通常是硅、砷化镓等半导体材料。
其次是晶圆切割。
晶圆切割是将生长好的半导体晶体切割成一定大小的薄片,这些薄片被称为晶片。
晶圆切割的精度和质量直接影响到后续工艺的成功与否。
接着是清洁和清洗。
这一步是为了去除晶片表面的杂质和污染物,保证后续工艺的顺利进行。
清洁和清洗通常采用多种化学试剂和超声波清洗等方法。
然后是化学氧化和物理氧化。
化学氧化和物理氧化是为了在晶片表面形成一层氧化物膜,以保护晶片表面并提供绝缘层,以便后续形成电路结构。
接下来是光刻。
光刻是一种非常重要的半导体器件制造工艺,它通过选择性照射光源和光刻胶的方式,在晶片表面形成所需的图案。
这是制造半导体器件电路结构的关键步骤。
然后是蚀刻。
蚀刻是利用化学或物理方法去除光刻胶未被照射的部分,从而形成所需的图案。
蚀刻的精度和准确度对电路的性能和稳定性有着很大的影响。
接着是沉积。
沉积是将金属、氧化物等材料以化学气相沉积或物理气相沉积的方式沉积在晶片表面,形成电路结构所需的电极、导线和绝缘层等材料。
然后是离子注入。
离子注入是将掺杂剂以离子束的方式注入晶片内部,改变晶片的电学性能,以形成所需的电子器件。
最后是退火。
退火是通过加热晶片,以改变晶体结构和去除注入后的损伤,提高器件的性能和稳定性。
以上就是半导体器件工艺的十大流程。
这些流程相互关联,缺一不可,任何一步出现问题都会影响整个器件的性能和稳定性。
因此,在实际生产中,需要严格控制每一个环节,不断优化工艺流程,不断提高制造技术水平,以满足市场需求和技术发展的要求。
半导体器件与工艺(1)答辩

哈尔滨工程大学
微电子学
半导体基础
电阻率的结构与组分敏感性
用电阻率的高低来区分导体、半导体和绝缘体是不 够严密的 : 某些结构完整且不含杂质的半导体也会有跟 绝缘体不相上下的高电阻率,而当它们含有足够浓度的 某些特殊杂质时,其电阻率又会降到金属电阻率的范围, 甚至比某些导电性欠佳的金属导体的电阻率还低。 半导体是导电能力明显依赖于材料的内外状态的一 类特殊物质。
半导体基础
半导体导电的热敏性
载流子密度是器件特性的决定性因素。从器件工作 特性的稳定性考虑,保持载流子密度的稳定是最基本的 要求。非本征材料在一定的温度范围内主要靠杂质原子 提供载流子,而一个杂质原子最多只能提供一个电子或 空穴。当每个杂质原子都已“尽责”之后,载流子密度 即保持不变,器件即可望保持相应的稳定工作状态。因 此,实际半体器件大多采用掺杂材料。 非本征材料有本征激发和杂质电离两种载流子来源, 其载流子的总密度为二者之和。当本征激发的如状较小 时,靠杂质的完全电离保持载流子的恒定密度。当本征 载流子密度随着温度的升高而接近或超过掺杂浓度时, 非本征半导体即开始向本征半导体转变。
半导体中空穴的导电本质上还是电子的定向运动, 只不过这些电子不是自由电子而是被原子核束缚着的价 电子。半导体电导率表达式
q(nn p p )
则本征半导体电导率表达式
i qni (n p )
常用半导体的载流子迁移率也往往比金属良导体中 的自由电子的迁移率高,但是其电导率却非常小,这是 因为本征载流子浓度与金属中的载流子密度相比很小。
半导体基础
电子在金属和半导体中的能量分布
当温度 T 大于 0K 时,由于电子的平均动能为 3kT/2 ,满带 电子中会有一些能量偏高者越过禁带进入高能量的空带。任 何一个能带能够容纳的电子数很大,而在低温和常温下能够 越过一个宽度只有1eV的禁带的电子也都很少,因而这两个未 满带的特征大不一样,其能量较高者接近全空,能量较低者 接近全满。通常把非零温度下只有少许电子的近空带称为导 带,而把只有少许空状态的近满带称为价带。
半导体器件模拟仿真

athena - 考虑过程 必需对器件生成的外在条件、物理过程进行描述。
材料定义、
结构定义指令 athena之外的另一种可以生成器件信息的工具。
与devedit类似,用atlas器件仿真器语言编写器件信息。 与devedit不同的是需要编程操作,没有图形操作界面。
2. 熟悉并学会使用器件仿真软件 (1)学习如何用仿真语句编写器件的结构特征信息 (2)学习如何使用atlas器件仿真器进行电学特性仿真
3. 对半导体工艺仿真及器件仿真中所用到的模型加以了解
4*. 利用工艺器件仿真软件,培养和锻炼工艺流程设计和新器件 开发设计等方面的技能。
6. 半导体器件仿真的历史发展
仿真系统
*.str文件 指定工作条件下的 结构文件。包含器 件的载流子分布、 电势分布、电场分 布等信息。
输出端
指令的输入通过deckbuild 软件窗口传送至仿真器
*.log *.str等输出文件通过tonyplot软件窗口来查看 Atlas器件仿真部分
athena 工艺仿真器
Athena概述
用途:开发和优化半导体制造工艺流程。
电路模拟用器件模型参数
IC电路仿真
(IC Circuit Simulation)
3. 有什么用?
一方面,充分认识半导体物理学,半导体器件物理学等这些抽象 难懂的理论基础知识在半导体工业中的实际应用。加强理论教学 的效果。
仿真也可以部分取代了耗费成本的硅片实验,可以降低成本,缩 短了开发周期和提高成品率。也就是说,仿真可以虚拟生产并指 导实际生产。
功能: (1)勾画器件。 (2)生成网格。(修改网格) 既可以对用devedit画好的器件生成网格,或对athena工艺仿真生成含有网格信息的 器件进行网格修改。
半导体器件模拟仿真

2. 在整个学科中所处的位置是什么?
从纵向来讲,和其他CAD类或仿真类课程一样,它是基础理论知 识和实际生产的链接点。 从横向来讲, 电路模拟、工艺模拟、器件模拟之间的关系可以用下 面的结构图来表示
本门课程 重点学习部分
工艺仿真
(Process Simulation)
器件仿真
(Device Simulation)
一、概论:半导体仿真概述 Introduction of Semiconductor Simulation
1. 这门课是研究什么的?
(1)什么是仿真? 仿真和另外一个词汇建模(modeling)是密不可分的。 所谓建模就是用数学方式抽象地总结出客观事物发展的一般规律。 仿真是在这个一般规律的基础上,对某事物在特定条件下的行动 进行推演和预测。 因此可以说建模是仿真的基础,仿真是随着建模的发展而发展的。 建模和仿真的关系可以比作程序设计中算法和语言的关系。
3. 对半导体工艺仿真及器件仿真中所用到的模型加以了解 4*. 利用工艺器件仿真软件,培养和锻炼工艺流程设计和新器件 开发设计等方面的技能。
6. 半导体器件仿真的历史发展
1949年: 半导体器件模拟的概念起源于此年肖克莱(Shockley)发表的论文, 这篇文章奠定了结型二级管和晶体管的基础。但这是一种局部分 析方法,不能分析大注入情况以及集电结的扩展。 1964年: 古默尔(H.K.Gummel)首先用数值方法代替解析方法模拟了一维 双极晶体管,从而使半导体器件模拟向计算机化迈进。 1969年: D.P.Kennedy和R.R.O’Brien第一个用二维数值方法研究了JFET。 J.W.Slotboom用二维数值方法研究了晶体管的DC特性。 从此以后,大量文章报导了二维数值分析在不同情况和不同器件 中的应用。相应地也有各种成熟的模拟软件,如CADDET和 MINIMOS等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 半导体工艺及器件模拟(仿真)概述
1.什么是仿真?
仿真(Simulation)和建模(modeling)是密不可分的。 建模是用数学方式抽象地总结出客观事物发展的一般规律。 仿真是在这个一般规律的基础上,对某事物在特定条件下的 行为进行推演和预测。因此建模是仿真的基础,仿真是随着 建模的发展而发展的。
.
1
半导体工艺和器件模拟
2.本课程主要研究内容:
半导体工艺模拟
在计算机辅助下,运用数学模型对具体工艺进行模拟的过程 。
半导体器件模拟
通过工艺模拟得出的杂质分布结果,并施加一定的偏压,对
所制造器件的电学性质进行分析和研究。
课程重点:工艺流程描述语句,器件的工艺实现,器件几 何结构及掺杂,电学特性仿真,器件的参数提取,
.
15
半导体工艺和器件模拟
如果Etching()括号中只有一种材料被指定,没有刻蚀速 率,则这种材料所有与空气接触部分都被去掉了。 例如:Etching(Material=Ox),所有暴露到空气中的SiO2都 将去掉。
如果材料和刻蚀速率都不写,而且只有一种材料与空气接触 的话,这种材料会被腐蚀掉,如果只有光刻胶与大气接触, 则光刻胶被去掉了。例如:Etching()
这可通过晶圆方向扭转来控制,一般将晶圆的取向偏移3~7º
.
20
半导体工艺模拟--DIOS
DIOS软件中没有预沉积命令,因此在DIOS软件中实现掺杂均 采用离子注入命令。
离子注入DIOS语句:
Implantation(Element=As, Dose=5e14,
Energy=50keV, tilt=0, Rotation=-90º)
11
半导体工艺和器件模拟
淀积: 物理方法: 蒸发(热蒸发,电子束蒸发),溅射。 化学方法:化学气相沉积(CVD) 描述淀积的基本语句: 淀积(材料,厚度(或时间及沉积速率),类型) 类型包括各行同性、各向异性、填充式,缺省指各向同性。 Deposit(material=oxide, Thick=100nm) Deposit(material=ox,Thick=0.2um,Dtype=Fill,
.
16
半导体工艺和器件模拟
4.掺杂 主要包括两种
1)热扩散
在扩散过程中横向扩散约占纵向扩散的75~85%,扩散主要包
括杂质预沉积和再分布(推进氧化),推进工艺的温度高于
预沉积的温度。
硅的氧化需从表面开始消耗硅,表层的杂质怎样变化?由杂
质导电类型确定。如果是N型掺杂,则发生所谓的堆积效
应,当氧化硅的界面提升到表面的时候,N型杂质会向硅中
IC电路仿真所用器件模型参数提取。
.
2
半导体工艺和器件模拟
3.半导体仿真器
仿真实质上是通过仿真器来实现的。一般仿真器实质上等于 输入接口+模型库+算法+输出接口,核心部分是模型库的建 立,其中精度、处理速度需要通过算法来调节。一个半导体 仿真器功能是否强大,就是看模型库是否强大。 半导体工艺、半导体物理、部分集成电路理论不仅是学习这 门功课所需要的前期基础知识,也同样是开发仿真软件中最 需要的理论基础。 所以仿真器是随着对半导体理论的探索和对实验数据的累计 的发展而发展的。
艺仿真软件的使用方法(氧化、扩散、离子注入、淀积、 刻蚀、光刻等工艺流程描述语句)
.
7
半导体工艺和器件模拟
2)熟悉并学会使用器件仿真软件: (1)学习如何用仿真语句编写器件的结构特征信息 (2)学习如何使用Dessis器件仿真器进行电学特性仿真 (3)利用工艺器件仿真软件Dios,培养和锻炼工艺流程设
3. 通过热处理,还可使晶圆表面的光刻胶溶剂蒸发掉,得 到精确图形。
.
23
半导体工艺模拟--DIOS
一、DIOS软件介绍:
DIOS is a multidimensional process simulator for semiconductor devices.
It simulates complete fabrication sequences including etching and deposition, ion implantation, and diffusion and oxidation with identical models in one dimension and two dimensions.
分流,此效应增加了硅的新表层中的杂质数量。如果杂质为
P型的硼,会发生相反的效应。硼原子更容易溶于氧化层。
SiO2吸硼排磷
.
17
半导体工艺和器件模拟
在小尺寸器件的掺杂时,热扩散存在以下问题: 横向扩散:每次遇到高温都会发生横向扩散,则器件设计时
必须留出足够的距离。导致增加管芯面积 超浅结 低杂质掺杂控制困难 高效率MOS管要求栅区的掺杂浓度小于
、倾角、离子成分不变。 离子注入的下一步,一般要跟着退火命令。
Diffusion( time=10min, temperature=1000ºC)
.
22
半导体工艺模拟--DIOS
5. 热处理
1. 离子注入后有一步重要的热处理。掺杂原子的注入所造 成的晶格损伤会被热处理修复,称为退火。
2. 金属导线在晶圆上制成后,为确保良好的导电性,金属 会在450ºC左右热处理,使其与晶圆表面紧密熔合。
DIOS has been applied to a wide variety of technologies such as VLSI CMOS, power devices, and advanced SOI processes in leading semiconductor companies. 主流
(c) 刻蚀速率控制法: 可控制各向同性和各向异性速率。
Etching(material=ox, remove=0.01, Rate(isotropic=…, A0=…,A1=…, A2=…, A3=…)) 可通过调整A1,A2,A3,A0的值刻出任意形状,A0~A3可正可 负。在刻蚀侧墙的时候,可以通过调整Isotropic和A1的大 小来调整侧墙保留保留厚度,比值越大,侧墙越薄,如果只 定义isotropic则为各向同性,只定义A1表示垂直刻蚀。
属Al等.
.
19
半导体工艺模拟--DIOS
离子注入缺点:
离子注入产生晶格损伤
需要激活掺入的杂质 修复晶格损伤和电激活可通过加热来实现,称为退火.
退火的温度要低于扩散的温度,防止横向扩散.退火通常在 600~1000ºC. 离子注入产生表面时,离子可沿沟道深 入,达到预计的10倍.
氧化:在DIOS中所有的高温工艺均用Diffusion来表示
氧化的基本参数 氧化(时间,温度,加入的气体)
Diffusion(time=10min,temper=900deg,atmosphere=O2)
其他的高温过程,例如Hcl,H2O,H2O2,N2,Epitaxy, prebake,
mixture,均采用Diffusion语句. 作为字头。
1E15/cm3,扩散工艺不容易控制浓度。源漏区的浅结也很难控 制。 表面易污染 易产生位错
.
18
半导体工艺模拟--DIOS
离子注入: 离子注入是一个物理过程,克服了热扩散的许多缺点: 无横向扩散 可在室温下进行 对杂质的位置和数量控制准确 离子注入的掩膜不只采用SiO2,也可用光刻胶, Si3N4,金
剂量单位的缺省值为cm-2
能量单位的缺省值是KeV
Tilt 表示晶圆的倾角
Rotation表示晶圆的旋转角
.
21
半导体工艺模拟--DIOS
当有tilt倾角时,一般采取多次注入模式: 定义Numsplits参量来设置旋转的次数. 每次旋转角度为 360º/Numsplits. 每次注入的剂量为总剂量的1/Numsplits, 每次注入的能量
.
10
半导体工艺和器件模拟
1.衬底的准备: 衬底的基本参数
衬底(类型、掺杂浓度、晶向)
Substrate(element=P, Concentration=5e15, orientation=100)
Element不用P型N型,而用具体掺杂的杂质。
2. 增层:指在晶圆表面形成薄膜的加工工艺,主要包括:
Some of its capabilities are available in three dimensions.
.
24
半导体工艺模拟--DIOS
Very efficient nonlinear and linear solvers allow for the simulation of very complicated structures where10000 to 100,000 grid points can be handled.
.
4
半导体工艺和器件模拟
工艺仿真: 可实现离子注入、氧化、刻蚀、光刻等工艺过程的模拟。可 用于设计新工艺,改良旧工艺。 器件仿真:
可以实现电学特性仿真,电学参数提取。 可用于设计新型器件,改良旧结构器件,验证器件的电学特 性。如MOS晶体管,二极管,双极性晶体管等。或建立简约 模型以用于电路仿真。
.
9
半导体工艺和器件模拟
首先结合半导体器件制造的基本工艺,介绍ISE_TCAD平 台工艺仿真指令:
半导体工艺模块称为DIOS, 首先需要编写一个文件,其扩展 名必须为*_dio.cmd. 例如:PN_dio.cmd 下面结合半导体器件制备的主要工艺讲解文件中的指令用法
。 几乎所有器件制备工艺都是这些工艺步骤的反复应用。 四个最基本的工艺步骤包括增层、光刻、掺杂、热处理
YFill=0.5)
.