半导体器件模拟仿真(精)
半导体行业的物理仿真利用物理仿真技术提高半导体产品的设计和性能

单击此处添加副标题
汇报人:XXX
目录
单击添加目录项标题
01
引言
02
财务工作概况
03
财务报表分析
04
财务工作总结
05
未来财务工作计划
06
01
添加章节标题
01
引言
本次汇报的目的和意义
目的:总结财务工作成果,发现问题并提出解决方案 意义:提高财务工作的效率和质量,为公司的发展提供有力支持
本年度财务工作的总体目标和计划
总体目标:确保公司财 务状况稳健,支持业务 发展
计划:制定详细的预算 和资金安排,加强成本 控制和风险管理,提高 财务分析和预测能力
财务工作的关键成果和亮点
收入增长:详细介绍公司收入的 增长情况,包括同比增长率和环 比增长情况。
利润提升:分析公司在提高利润 方面的策略和效果,如优化产品 结构、提高售价等。
风险管理:评估未来可能出现的财务风险,制定相应的风险应对措施,如 风险分散、风险转移等
01
结论与致谢
对本次汇报的总结和归纳
本次汇报的主要内容是财务工作的总结和归纳 汇报中分析了财务数据的趋势和变化 提出了改进财务工作的建议和措施 强调了财务工作的重要性和意义
对参与本次汇报的领导和同事的致谢
感谢领导给予的支持和指导
汇报的时间线和内容概述
引言:介绍汇报的主题和目的 时间线:按照时间顺序梳理财务工作的发展历程 内容概述:简要介绍汇报的主要内容和结构安排 总结:对整个汇报进行总结和展望
01
财务工作概况
财务工作的主要任务和职责
负责公司的日常账务处理,包括收入、支出、成本的核算 编制财务报表,分析财务状况,为管理层提供决策支持 制定并执行财务预算,控制成本和费用 协助公司进行税务申报和审计工作
Silvaco TCAD仿真软件在《半导体物理与器件》科研导向型教学中的应用

1 引言近几年,由于中美两国技术对抗和贸易摩擦,国内对微电子技术发展及人才需求都与日俱增,微电子、物理电子、集成电路等相关专业的本科、研究生毕业生都供不应求。
当下,从半导体材料制备生长到半导体器件加工各个环节都急需优秀人才。
作为微电子等专业的核心专业课程,《半导体物理与器件》相关课程主要介绍半导体器件的特性、工作原理及其局限性的基础知识。
要想更好地理解这些基础知识,就必须对半导体材料物理知识进行全面了解,同时半导体相关课程又以量子力学、固体物理、半导体材料物理以及半导体器件物理等知识相互支撑、交错在一起的。
不难看出,《半导体物理与器件》相关课程虽然具有相当的学习难度,但是其在过去以及未来全球信息产业中的重要性处于无法取代的地位[1]。
半导体相关仿真主要包括工艺仿真、器件仿真和电路仿真:工艺仿真包括离子注入、刻蚀、光刻等工艺的模拟,推动设计新工艺流程,改进旧工艺流程;器件仿真可以实现特性仿真、性能参数的提取,可用于设计新型器件,改良传统器件结构;电路仿真可以对电路的时序、工作性能等进行仿真,用于验证电路设计[2]。
2 Silvaco TCAD软件介绍Silvaco TCAD计算机辅助设计仿真软件现在已在半导体工业界处于领导地位,其软件包被遍布全球的半导体厂家用于半导体器件和集成电路的研究开发和测试生产中。
Silvaco还是Spice参数提取软件和模拟电路仿真软件SmartSpice的主要提供商。
Silvaco与国际上先进的高科技厂商合作,为半导体市场提供最新的技术和工艺。
此外,Silvaco公司还积极与全球各个大学达成多个合作计划,其大学计划的目的在于使教育和研究机构通过简便的渠道,使用Silvaco提供的TCAD、ICCAD和模拟/混合信号仿真软件,为大学提供全套EDA和TCAD软件,用于半导体相关课程研究和教学。
Silvaco TCAD软件是由Silvaco公司出品的一款辅助设计工具,它主要包含了工艺仿真模块Athena和器件仿真模块Atlas。
(精)功率器件仿真基本方法

功率器件仿真基本方法对于微波大功率有源器件来说,其输入输出阻抗是一个关键的参数,且不易测量。
而在设计中,没有这些参数,设计将无从下手。
目前微波大功率的有源器件大多采用金属氧化物半导体场效应晶体管(LDMOSFET-Lateral Diffused metallic oxide semiconductor field effect transistor),因此本文以LDMOS功率管的仿真为例探讨微波有源器件仿真。
由于大家所公认的大功率器件仿真的难度,特别是在器件模型建立方面的难度,使得这一工作较其他电路如小信号电路仿真做的晚,且精度也较小信号电路低。
目前公司内部在这方面所作的工作也相对较少。
随着技术的发展,目前的很多仿真软件已经做的很完善,如ADS,它可以提供各种数字和模拟系统及电路的仿真平台,用户的主要任务就是给目标器件建模和搭建电路。
而目前我们使用的主流LDMOS器件即Motorola的大部分器件均提供ADS仿真的模型,我们只要直接使用,这给我们的仿真工作带来了极大的方便,极大的减小了工作量,并提高了准确度。
本文主要探讨使用ADS2002仿真计算大功率LDMOS器件的工作点、输入输出阻抗及其对应的线性指标、电流、增益等电参数。
1LDMOS器件模型首先我们了解一下Motorola的LDMOS器件库的情况。
图1.1是其在原理图中的符号。
图1.1 Motorola LDMOS器件模型它的器件分为两类:单管(MRF_MET_MODEL & MRF_ROOT_MODEL)和对管(MRF_MET_PP_MODEL & MRF_ROOT_PP_MODEL)。
从上面的名称我们可以看出,每一个管子有两个模型,即MET模型和ROOT模型。
MET LDMOS 模型(Moto Electro Thermal Model)是一个经验大信号模型,它可以精确的描述在任意的偏置点和环境温度下的电流电压特性。
其大信号和小信号模型分别如图1.2和图1.3所示[1]。
30538模拟电子技术仿真实验课件

1.2 二极管的应用
1.2.3 限幅电路
1.二极管下限幅电路: 首先判断二极管的工作状态:假设断开 二极管,计算二极管阳极和阴极电位, 阴极电位为5V,只要阳极电位大于等于 5.7V,二极管导通,阳极电位低于5.7V, 二极管截止。由于输入电压是交流电, 所以只有在交流电的正半周且电压的瞬 时值大于等于5.7V时,输出电压等于输 入电压,Uo=Ui。在交流电的一个周期 内的大部分时间由于交流电的瞬时值小 于5.7V,二极管处于截止状态,所以输 出电压为5V。
(a) 电路图
(b)输入输出波形 图1-32 光电耦合器电路
1.4半导体三极管
1.4.1三极管内部电流分配关系
将三极管2N5551按照图1-33进行连接, 图中接入了3个电流表和2个电压表。3个 电流表分别用来测量基极电流IB、集电 极电流IC和发射极电流IE,两个电压表 一个用来测量发射结电压,另一个用来 测量集电结电压。通过改变可变电阻R3 的阻值,从而改变基极电流的大小。 图1-33 三极管内部电流分配关系
图1-29
电路负载发生变化
总之,要使稳压二极管起到稳压作用,流过它的反向电流必须在Imin ~ Imax 范围内变化,在这个范围内,稳压二极管工作安全而且它两端反向电压变化很 小。上述仿真实验中,其实质是用稳压管中电流的变化来补偿输出电流的变化。
1.3 特殊二极管的应用
1.3.2 发光二极管的应用
2.负载电阻发生变化 图1-29中,用可变电阻RL阻值的变化来 模拟负载的变化,当阻值由500Ω下降到 150Ω(阻值变化显示30%)时,负载上的电 流逐渐增大,即负载变得越来越重,这时 流过稳压管的电流下降到17mA,稳压器 的输出电压基本上保持在6.2V。如果继续 减小负载电阻的阻值,则流过稳压二极管 的反向电流继续减小,当流过稳压二极管 的反向电流小于它的最小维持电流(6mA) 时,稳压管也就失去了稳压作用。
CMOS模拟集成电路设计与仿真

CMOS模拟集成电路设计与仿真CMOS(互补金属-氧化物半导体)模拟集成电路设计与仿真在当前半导体行业中具有重要的地位。
CMOS模拟集成电路是指利用CMOS工艺制作的电路,它融合了模拟电路和数字电路的特点,可以实现复杂的模拟信号处理和调制解调等功能。
在本文中,我们将介绍CMOS模拟集成电路的设计流程、仿真方法以及相关应用。
CMOS模拟集成电路设计的流程包括需求分析、电路拓扑设计、器件选型和尺寸确定、偏置电流源设计、电路级仿真与优化等几个步骤。
首先,需求分析是确定电路的性能指标和功能要求,包括增益、带宽、功耗等。
然后,根据需求分析,设计电路的拓扑结构,确定电路中各个电子器件的连接关系和整体布局。
接下来,从器件库中选择合适的器件,并确定器件的尺寸,以满足性能指标。
偏置电流源设计是保证电路工作的稳定性和线性度的关键,其中包括长尾对偏置、电流镜等方式。
最后,进行电路级仿真与优化,通过仿真分析电路的静态和动态性能,并对电路参数进行优化。
CMOS模拟集成电路的仿真方法有很多种,常见的包括电路级仿真和系统级仿真。
电路级仿真主要是使用电路仿真工具(如Cadence、SPICE 等)对电路进行详细的分析和验证,包括直流工作点分析、交流增益分析、噪声分析、失调分析等。
系统级仿真则是利用系统仿真工具(如MATLAB、Simulink等)对整个模拟集成电路进行性能评估和验证,包括输入输出特性、信噪比、动态范围等。
仿真结果可以帮助设计人员理解电路的工作原理、验证电路的性能指标,同时可以指导设计改进和优化。
CMOS模拟集成电路的应用非常广泛,包括通信、媒体、医疗和电力等领域。
以通信领域为例,CMOS模拟集成电路可以用于信号调制和解调、频率合成、射频前端等。
在媒体领域,它可以用于音频放大器、视频处理、图像传感器等。
在医疗领域,CMOS模拟集成电路可以实现心电图放大器、血压测量设备等。
在电力领域,它可以用于电力传输和转换、能量管理等。
虚拟仿真实验在半导体器件物理实验中的应用探究

总第494期Vol.4942020年12月Dec.2020大学(教学与教育)University(Teaching&Education)虚拟仿真实验在半导体器件物理实验中的应用探究段小玲,王树龙,许晟瑞(西安电子科技大学微电子学院,陕西西安710071)摘要:半导体器件物理实验是微电子与集成电路专业的核心专业实验,具有实践性强及技术更新快的特点,而真实实验环节存在实验设备昂贵、安全风险和器件内部特征与参数信息难以获得等问题。
西安电子科技大学微电子学院实验中心把虚拟仿真实验应用到半导体器件物理实验当中,作为真实实验的有效补充,通过虚实结合的实验模式探索,解决了经费有限、安全风险和教学内容前沿创新不足等问题,积极促进了高水平、高素质、强能力的集成电路人才培养。
关键词:虚拟仿真;半导体器件物理实验;虚实结合中图分类号:G642.0文献标识码:A文章编号:1673-7164(2020)48-0075-03半导体器件是集成电路芯片的核心部分,其性能高低主导着芯片的整体性能。
半导体器件物理实验是微电子与集成电路专业的一门基础实验课,其涉及的实验设备相对昂贵,受到经费预算、场地空间、安全风险、试错成本、实验课时以及半导体器件本身结构特点等条件的限制,真实实验很难实现学生人手一台设备实验,使其在有限的实践环节中充分理解实验原理、进行实验操作并对实验结果进行全面深刻地分析。
为了解决实验课中普遍存在的问题,各大高校致力于实验室建设、团队建设、实验教学内容和教学模式改革探索和实践研究2〕。
西安电子科技大学微电子学院微电子与集成电路实验中心通过专业基础实验室重构和虚拟仿真实验室建设的多年探索,取得了一些教学改革经验叫进行了系列虚拟仿真实验建设和探索。
例如,把虚拟仿真实验应用到半导体器件物理实验当中,借助虚拟仿真技术“层层”剖析半导体器件,宜观、形象地展现出半导体器件内部不同方向上结构和参数的变化规律,增强学生对半导体器件结构、特性和原理的把握,弥补了传统实验教学存在的不足,使半导体器件物理实验教学更加高效。
半导体工艺及器件仿真工具Sentaurus_TCAD

(5) 输出说明语句
color: 用于设定、填充被仿真的器件结构中某特定区域杂质 浓度等值曲线的颜色。 contour: 用于设臵二维浓度剖面等值分布曲线的图形输出。 graphics: 启动或更新Sentaurus Process已经设臵的图形输出。 layers: 用于打印器件结构材料的边界数据和相关数据。 print.1d: 沿器件结构的某一维方向打印相关数据。 plot.1d: 沿器件结构的某一维方向输出某些物理量之间的变化曲线。 plot.2d: 输出器件结构中二维浓度剖面分布曲线。 plot.tec: 启动或更新Sentaurus Process–Tecplot SV所输出的 一维、二维和 三维图形。 print.data: 以x、y、z的坐标格式打印数据。 writePlx: 设臵输出一维掺杂数据文件。 struct: 设臵网格结构及求解信息。
的基础上,又做了一些重要的改参数数据库浏览器(PDB),为用户提供了 修改模型参数和增加模型的方便途径。
• 增加了一维模拟结果输出工具Inspect和二维、三维模拟结
果输出工具(Tecplot SV)。 • 增加了小尺寸模型。这些小尺寸模型主要有: − 高精度刻蚀模型,
2017/8/1
2/117
Sentaurus简介
Sentaurus Process和Sentaurus Device可以支持的仿真器 件类型非常广泛,包括CMOS,功率器件,存储器,图
像传感器,太阳能电池,和模拟/射频器件。
Sentaurus TCAD还提供互连建模和参数提取工具,为 优化芯片性能提供关键的寄生参数信息。
2017/8/1
3/117
Sentaurus TCAD的启动
半导体器件数值仿真软件MEDICI

第1章 半导体器件数值仿真软件MEDICI1.1 MEDICI 功能简介Medici TM[1]是先驱(A V ANT !)公司的一个用于二维器件模拟的软件,它对势能场和载流子的二维分布建模,通过解泊松方程和电子、空穴的电流连续性等方程来获取特定偏置下的电学特性。
通过求解二极管和双极型三极管以及与双载流子有关的电流效应(诸如闩锁效应)的电流连续性方程和泊松方程来分析器件。
Medici 也能分析单载流子起主要作用的器件,例如:MOSFET ,JFET ,MESFET 。
另外,MEDICI 还可以被用来分析器件在瞬态情况下的变化。
在亚微米器件模拟中,MEDICI 通过联解电子和空穴的能量平衡和其他的器件方程,可以对深亚微米的器件进行模拟。
像热载流子和速度过冲等效应在MEDICI 的模型中已经考虑,并能分析它们的影响。
1.2 MEDICI 的基本物理描述1.2.1 基本方程MEDICI 的主要功能就是分别对静电势Ψ、电子浓度n 和空穴浓度p 求解三大类自连续的微分方程,包括泊松方程、连续性方程和波尔兹曼输运理论(即电流密度方程)。
1、泊松方程:半导体器件的电学行为由泊松方程控制。
2q()D A s p n N N ερ+-∇ψ=--+-- (1-1)s A D N N ρε、、、-+分别代表介电系数、电离施主杂质浓度、电离受主杂质浓度和界面电荷体密度2、连续性方程:电子和空穴的连续性方程也控制着电学行为。
1()(,,)n n n n n J U G F n p t q →→∂=∇⋅--=ψ∂ (1-2)1()(,,)p p p p p J U G F n p t q →→∂-=∇⋅--=ψ∂ (1-3)n J →和p J →分别代表电子电流密度和空穴电流密度。
U n 和U p 分别代表电子和空穴的复合率,其为正值时,表示载流子复合,为负值时则表示载流子产生。
3、波尔兹曼输运理论:在波尔兹曼输运理论中,公式(1-2)中的n J →和公式(1-3)中的p J →可以被描述成关于载流子浓度和电子及空穴的准费米势n φ→∇和p φ→∇的两个方程。